Как найти гидрооксид натрия

Физические свойства

Гидроксид натрия (едкий натр) NaOH — белый, гигроскопичный, плавится и кипит без разложения. Хорошо растворяется в воде.

Относительная молекулярная масса Mr = 40; относительная плотность для тв. и ж. состояния d = 2,130; tпл = 321º C; tкип = 1390º C;

Способы получения

1. Гидроксид натрия получают электролизом раствора хлорида натрия:

2NaCl + 2H2O → 2NaOH + H2 + Cl2

2. При взаимодействии натрия, оксида натрия, гидрида натрия и пероксида натрия с водой также образуется гидроксид натрия:

2Na + 2H2O → 2NaOH + H2

Na2O + H2O → 2NaOH

2NaH + 2H2O → 2NaOH + H2

Na2O2 + H2O → 2NaOH + H2O2

3. Карбонат натрия при взаимодействии с гидроксидом кальция образует гидроксид натрия:

Na2CO3 + Ca(OH)2 → CaCO3↓ + 2NaOH

Качественная реакция

Качественная реакция на гидроксид натрия — окрашивание  фенолфталеина в малиновый цвет.

Химические свойства

1. Гидроксид натрия реагируют со всеми кислотами (и сильными, и слабыми, и растворимыми, и нерастворимыми). При этом образуются средние или кислые соли, в зависимости от соотношения реагентов:

3NaOH + H3PO4 → Na3PO4 + H2O

2NaOH + H3PO4 → Na2HPO4 + 2H2O

NaOH + H3PO4 → NaH2PO4 + H2O

2. Гидроксид натрия реагирует с кислотными оксидами. При этом образуются средние или кислые соли, в зависимости от соотношения реагентов:

2NaOH(избыток)  + CO2 → Na2CO3 + H2O

NaOH + CO2 (избыток)  → NaHCO3

3. Гидроксид натрия реагирует с амфотерными оксидами и гидроксидами. При этом в расплаве образуются средние соли, а в растворе комплексные соли:

2NaOH + Al2O3  → 2NaAlO2 + H2O

в растворе образуется комплексная соль — тетрагидроксоалюминат:

2NaOH + Al2O3 + 3H2O → 2Na[Al(OH)4]

4. С кислыми солями гидроксид натрия также может взаимодействовать. При этом образуются средние соли, или менее кислые соли:

NaOH + NaHCO3 →  Na2CO3  +  H2O

5. Гидроксид натрия взаимодействует с простыми веществами-неметаллами (кроме инертных газов, азота, кислорода, водорода и углерода).

При этом кремний окисляется до силиката и водорода:

2NaOH + Si + H2O → Na2SiO3 + H2

Фтор окисляет щелочь. При этом выделяется молекулярный кислород:

4NaOH + 2F2 → 4NaF + O2 (OF2) + 2H2O

Другие галогенысера и фосфор — диспропорционируют в растворе гидроксида натрия:

3NaOH +  P4 +  3H2O =  3NaH2PO2  +  PH3

2NaOH(холодный)  +  Cl2  = NaClO  +  NaCl  +  H2O

6NaOH(горячий)  +  3Cl2  =  NaClO3  +  5NaCl  +  3H2O

Сера взаимодействует с гидроксидом натрия только при нагревании:

6NaOH  +  3S  =  2Na2S   +  Na2SO3  +  3H2O

6. Гидроксид натрия взаимодействует с амфотерными металлами, кроме железа и хрома. При этом в расплаве образуются соль и водород:

2NaOH + Zn → Na2ZnO2 + H2

В растворе образуются комплексная соль и водород:

2NaOH + 2Al  + 6Н2О = 2Na[Al(OH)4] + 3Н2

7. Гидроксид натрия вступает в обменные реакции с растворимыми солями.

Хлорид меди (II) реагирует с гидроксидом натрия с образованием хлорида натрия и осадка гидроксида меди (II):

2NaOH + CuCl2 = Cu(OH)2↓+ 2NaCl

Также с гидроксидом натрия взаимодействуют соли аммония.

Например, при взаимодействии хлорида аммония и гидроксида натрия образуются хлорид натрия, аммиак и вода:

NH4Cl + NaOH = NH3 + H2O + NaCl

8. Гидроксид натрия проявляет свойства сильного основания. В воде практически полностью  диссоциирует, образуя щелочную среду и меняя окраску индикаторов.

NaOH ↔ Na+ + OH

9. Гидроксид натрия в расплаве подвергается электролизу. При этом на катоде восстанавливается натрий, а на аноде выделяется молекулярный кислород:

4NaOH → 4Na + O2 + 2H2O

Определение и формула

Гидроксид натрия

Неорганическое вещество, относящееся к классу щелочей. Является сильным основанием.

Формула

NaOH

Альтернативные названия

  • едкий натр;
  • каустическая сода;
  • гидроокись натрия;
  • едкая щелочь.

«Едкие» названия гидроксида натрия обуславливаются его способностью повреждать кожу человека, вызывая сильный ожог, а также разъедать бумагу, дерево и др.

Свойства гидроксида натрия

Физические свойства

Едкий натр – белое или желтоватое твердое вещество. Хорошо растворяется в воде, выделяя при этом большое количество тепла. На воздухе теряет свою форму, как бы «расплываясь». Это происходит из-за поглощения им паров воды из воздуха.

Свойство Описание
плотность 2,13 г/см³
молярная масса 39,997 г/моль
температура плавления 323°C
температура кипения 1403°C
растворимость в воде 108,7 г/100 мл

Химические свойства

  1. Гидроксид натрия реагирует с кислотами, образуя соль и воду (реакция нейтрализации):

2NaOH+H2SO4=Na2SO4+H2O

  1. Взаимодействует с солями:

2NaOH+CuSO4=Cu(OH)2+Na2SO4

  1. Вступает в реакцию с амфотерными оксидами:

2NaOH+ZnO=Na2ZnO2+H2O

  1. С амфотерными гидроксидами:

3NaOH+Al(OH)3=Na3[Al(OH)6]

  1. Характерны реакции с кислотными оксидами:

2NaOH+CO2=Na2CO3+H2O

Будучи сильным основанием, едкий натр также способен на реакции с многотомными спиртами, эфирами, некоторыми металлами и неметаллами, галогенами. Также вступает в реакцию со стеклом в результате длительного взаимодействия, поэтому эту щелочь хранить в стеклянной таре не рекомендуется.

Получение

Существуют химические и электрохимические методы получения гидроксида.

Химические методы

Известковый:

Na2CO3+Ca(OH)2=2NaOH+CaCO3

Ферритный:

Na2CO3+Fe2O3=2NaFeO2+CO2;

2NaFeO2+nH2O=2NaOH+Fe2O3*nH2O.

Электрохимические методы

В основе методов – электролиз водного раствора хлорид натрия (поваренной соли). Различают диафрагменный, мембранный и ртутные способы.

В настоящее время химические методы используются мало из-за ряда существенных недостатков: примеси в получаемой щелочи, энергоёмкий процесс. Поэтому в промышленности более предпочтительны электрохимические методы получения едкого натра.

Применение

Гидроксид натрия нашел широкое применение в жизни человека.

  • В первую очередь, это его участие в целлюлозно-бумажной промышленности при производстве бумаги, картона и других изделий.
  • Выступает в качестве катализатора или реагента в ряде химических реакций.
  • Используется при производстве моющих средств: шампуней, мыла и др.
  • Для получения биотоплива гидроксид — главный катализатор реакции.
  • Активно применяется для нейтрализации ядовитых газов в военных оборонных комплексах.
  • Удаляет засоры в канализационных трубах (входит в состав растворяющих агентов).
  • В пищевой промышленности гидроксид зарегистрирован как добавка Е524. Известны некоторые блюда, рецепт которых включает едкую щелочь.
  • В медицине, в частности дерматологии, является ключевым компонентом составов, удаляющих ороговевшие участки кожи, папилломы, бородавки, мозоли и др.
  • Известно использование едкой щелочи при обработке древесины в деревообрабатывающей промышленности.

Тест по теме «Гидроксид натрия»

У этого термина существуют и другие значения, см. Сода.

Гидрокси́д на́трия (лат. Nátrii hydroxídum; другие названия — каустическая сóда, éдкий натр[2], гидроóкись нáтрия) — неорганическое химическое вещество, самая распространённая щёлочь, химическая формула NaOH. В год в мире производится и потребляется около 57 миллионов тонн едкого натра.

Гидроксид натрия
Sodium-hydroxide-crystal-3D-vdW.png
SodiumHydroxide.jpg
Общие
Систематическое
наименование
Гидроксид натрия
Традиционные названия едкий натр; гидроокись натрия; каустик; аскарит;
каустическая сода;
едкая щёлочь
Хим. формула NaOH
Рац. формула NaOH
Физические свойства
Молярная масса 39,997 г/моль
Плотность 2,13 г/см³
Термические свойства
Температура
 • плавления 323 °C
 • кипения 1403 °C
Давление пара 0 ± 1 мм рт.ст.[1]
Химические свойства
Растворимость
 • в воде 108,7 г/100 мл
Классификация
Рег. номер CAS 1310-73-2
PubChem 14798
Рег. номер EINECS 215-185-5
SMILES

[OH-].[Na+]

InChI

InChI=1S/Na.H2O/h;1H2/q+1;/p-1

HEMHJVSKTPXQMS-UHFFFAOYSA-M

Кодекс Алиментариус E524
RTECS WB4900000
ChEBI 32145
Номер ООН 1823
ChemSpider 14114
Безопасность
Предельная концентрация 0,5 мг/м³
ЛД50 149 мг/кг
Токсичность ирритант, высокотоксичен
Пиктограммы СГС Пиктограмма «Коррозия» системы СГС
NFPA 704

NFPA 704 four-colored diamond

0

3

1

ALK

Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
Commons-logo.svg Медиафайлы на Викискладе

Интересна история тривиальных названий как гидроксида натрия, так и других щелочей. Название «едкая щёлочь» обусловлено свойством разъедать кожу (вызывая сильные ожоги)[3], бумагу и другие органические вещества. До XVII века щёлочью (фр. alkali) называли также карбонаты натрия и калия. В 1736 году французский учёный Анри Дюамель дю Монсо впервые указал на различие этих веществ: гидроксид натрия получил название «каустическая сода», карбонат натрия — «кальцинированная сода», а карбонат калия — «поташ».

В настоящее время содой принято называть натриевые соли угольной кислоты. В английском и французском языках слово sodium означает натрий, potassium — калий.

Физические свойстваПравить

Гидроксид натрия — белое твёрдое вещество. Сильно гигроскопичен, на воздухе «расплывается», активно поглощая пары воды и углекислый газ из воздуха. Хорошо растворяется в воде, при этом выделяется большое количество теплоты. Раствор едкого натра мылок на ощупь.

Термодинамика растворов

ΔH0 растворения для бесконечно разбавленного водного раствора −44,45 кДж/моль.

Из водных растворов при +12,3…+61,8 °C кристаллизуется моногидрат (ромбическая сингония), температура плавления +65,1 °C; плотность 1,829 г/см³; ΔH0обр −425,6 кДж/моль), в интервале от −28 до −24 °C — гептагидрат, от −24 до −17,7 °C — пентагидрат, от −17,7 до −5,4 °C — тетрагидрат (α-модификация). Растворимость в метаноле 23,6 г/л (t = +28 °C), в этаноле 14,7 г/л (t = +28 °C). NaOH·3,5Н2О (температура плавления +15,5 °C).

Химические свойстваПравить

Гидроксид натрия (едкая щёлочь) — сильное химическое основание (к сильным основаниям относят гидроксиды, молекулы которых полностью диссоциируют в воде), к ним относят гидроксиды щелочных и щёлочноземельных металлов подгрупп Iа и IIа периодической системы Д. И. Менделеева, KOH (едкое кали), Ba(OH)2 (едкий барит), LiOH, RbOH, CsOH, а также гидроксид одновалентного таллия TlOH. Щёлочность (основность) определяется валентностью металла, радиусом внешней электронной оболочки и электрохимической активностью: чем больше радиус электронной оболочки (увеличивается с порядковым номером), тем легче металл отдаёт электроны, и тем выше его электрохимическая активность и тем левее располагается элемент в электрохимическом ряду активности металлов, в котором за ноль принята активность водорода.

Водные растворы NaOH имеют сильную щелочную реакцию (pH 1%-го раствора = 13,4). Основными методами определения щелочей в растворах являются реакции на гидроксид-ион (OH), (c фенолфталеином — малиновое окрашивание и метиловым оранжевым (метилоранжем) — жёлтое окрашивание). Чем больше гидроксид-ионов находится в растворе, тем сильнее щёлочь и тем интенсивнее окраска индикатора.

Гидроксид натрия вступает в следующие реакции:

с кислотами, амфотерными оксидами и гидроксидами
  • c кислотами — с образованием солей и воды:
 ;
  (кислая соль, при отношении 1:1);
  (в избытке NaOH).

Общая реакция в ионном виде:

 ;
  • с амфотерными оксидами которые обладают как основными, так и кислотными свойствами, и способностью реагировать с щелочами, как с твёрдыми при сплавлении:
 ;
  — в растворе;
с амфотерными гидроксидами
  — при сплавлении;
  — в растворе;
с солями в растворе:
 

Гидроксид натрия используется для осаждения гидроксидов металлов. К примеру, так получают гелеобразный гидроксид алюминия, действуя гидроксидом натрия на сульфат алюминия в водном растворе, при этом избегая избытка щёлочи и растворения осадка. Его и используют, в частности, для очистки воды от мелких взвесей.

c неметаллами:

например, с фосфором — с образованием гипофосфита натрия:

 ;
с серой
 ;
с галогенами
  (дисмутация хлора в разбавленном растворе при комнатной температуре);
  (дисмутация хлора при нагревании в концентрированном растворе).
с металлами

Гидроксид натрия вступает в реакцию с алюминием, цинком, титаном. Он не реагирует с железом и медью (металлами, которые имеют низкий электрохимический потенциал). Алюминий легко растворяется в едкой щёлочи с образованием хорошо растворимого комплекса — тетрагидроксоалюмината натрия и водорода:

 

Эта реакция использовалась в первой половине XX века в воздухоплавании: для заполнения водородом аэростатов и дирижаблей в полевых (в том числе боевых) условиях, так как данная реакция не требует источников электроэнергии, а исходные реагенты для неё могут легко транспортироваться.

с эфирами, амидами и алкилгалогенидами (гидролиз):

с жирами (омыление) такая реакция необратима, так как получающаяся кислота со щёлочью образует мыло и глицерин. Глицерин впоследствии извлекается из подмыльных щёлоков путём вакуум-выпарки и дополнительной дистилляционной очистки полученных продуктов. Этот способ получения мыла был известен на Ближнем Востоке с VII века.

В результате взаимодействия жиров с гидроксидом натрия получают твёрдые мыла (они используются для производства кускового мыла), а с гидроксидом калия либо твёрдые, либо жидкие мыла в зависимости от состава жира.

с многоатомными спиртами — с образованием алкоголятов:
 

Качественное определение ионов натрияПравить

Атомы натрия придают пламени жёлтое свечение.

  1. По цвету пламени горелки — атомы натрия придают пламени жёлтую окраску.
  2. С использованием специфических реакций на ионы натрия.
Реагент Фторид аммония Нитрит цезия-калия-висмута Ацетат магния Ацетат цинка Пикро-

лоновая кислота

Диокси-

винная кислота

Бромбензол-

сульфокислота

Ацетат уранила-цинка
Цвет осадка белый бледно-жёлтый жёлто-зелёный жёлто-зелёный белый белый бледно-жёлтый зеленовато-жёлтый

Методы полученияПравить

Гидроксид натрия может получаться в промышленности химическими и электрохимическими методами.

Химические методы получения гидроксида натрияПравить

К химическим методам получения гидроксида натрия относятся пиролитический, известковый и ферритный.

Химические методы получения гидроксида натрия имеют существенные недостатки: расходуется большое количество энергоносителей, получаемый едкий натр сильно загрязнён примесями.

В настоящее время эти методы почти полностью вытеснены электрохимическими методами производства.

Пиролитический методПравить

Пиролитический метод получения гидроксида натрия является наиболее древним и начинается с получения оксида натрия Na2О путём прокаливания карбоната натрия (например, в муфельной печи). В качестве сырья может быть использован и гидрокарбонат натрия, разлагающийся при нагревании на карбонат натрия, углекислый газ и воду:

 
 

Полученный оксид натрия охлаждают и очень осторожно (реакция происходит с выделением большого количества тепла) добавляют в воду:

 

Известковый методПравить

Известковый метод получения гидроксида натрия заключается во взаимодействии раствора соды с гашеной известью при температуре около 80 °С. Этот процесс называется каустификацией и проходит по реакции:

 

В результате реакции получается раствор гидроксида натрия и осадок карбоната кальция. Карбонат кальция отделяется от раствора фильтрацией, затем раствор упаривается до получения расплавленного продукта, содержащего около 92 % масс. NaOH. Затем NaOH плавят и разливают в железные барабаны, где он кристаллизуется.

Ферритный методПравить

Ферритный метод получения гидроксида натрия состоит из двух этапов:

 
 

Первая реакция представляет собой процесс спекания кальцинированной соды с окисью железа при температуре 800—900 °С. При этом образуется спёк — феррит натрия и выделяется двуокись углерода. Далее спёк обрабатывают (выщелачивают) водой по второй реакции; получается раствор гидроксида натрия и осадок Fe2O3 nH2О, который после отделения его от раствора возвращается в процесс. Получаемый раствор щёлочи содержит около 400 г/л NaOH. Его упаривают до получения продукта, содержащего около 92 % масс. NaOH, а затем получают твёрдый продукт в виде гранул или хлопьев.

Электрохимические методы получения гидроксида натрияПравить

Способ основан на электролизе растворов галита (минерала, состоящего в основном из поваренной соли NaCl) с одновременным получением водорода и хлора. Этот процесс можно представить суммарной формулой:

 

Едкая щёлочь и хлор вырабатываются тремя электрохимическими методами. Два из них — электролиз с твёрдым катодом (диафрагменный и мембранный методы), третий — электролиз с жидким ртутным катодом (ртутный метод).

В мировой производственной практике используются все три метода получения хлора и каустика с явной тенденцией к увеличению доли мембранного электролиза.

Показатель на 1 тонну NaOH Ртутный метод Диафрагменный метод Мембранный метод
Выход хлора, % 99 96 98,5
Электроэнергия, кВт·ч 3150 3260 2520
Концентрация NaOH, % 50 12 35
Чистота хлора, % 99,2 98 99,3
Чистота водорода, % 99,9 99,9 99,9
Массовая доля O2 в хлоре, % 0,1 1—2 0,3
Массовая доля Cl в NaOH, % 0,003 1—1,2 0,005

В России приблизительно 35 % от всего выпускаемого каустика вырабатывается электролизом с ртутным катодом и 65 % — электролизом с твёрдым катодом.

Диафрагменный методПравить

Схема старинного диафрагменного электролизера для получения хлора и щёлоков: А — анод, В — изоляторы, С — катод, D — пространство заполненное газами (над анодом — хлор, над катодом — водород), М — диафрагма

Наиболее простым из электрохимических методов в плане организации процесса и конструкционных материалов для электролизера является диафрагменный метод получения гидроксида натрия.

Раствор соли в диафрагменном электролизере непрерывно подаётся в анодное пространство и протекает через, как правило, нанесённую на стальную катодную сетку асбестовую диафрагму, в которую иногда добавляют небольшое количество полимерных волокон.

Во многих конструкциях электролизеров катод полностью погружен под слой анолита (электролита из анодного пространства), а выделяющийся на катодной сетке водород отводится из под катода при помощи газоотводных труб, не проникая через диафрагму в анодное пространство благодаря противотоку.

Противоток — очень важная особенность устройства диафрагменного электролизера. Именно благодаря противоточному потоку, направленному из анодного пространства в катодное через пористую диафрагму, становится возможным раздельное получение щёлоков и хлора. Противоточный поток рассчитывается так, чтобы противодействовать диффузии и миграции OH ионов в анодное пространство. Если величина противотока недостаточна, тогда в анодном пространстве в больших количествах начинает образовываться гипохлорит-ион (ClO), который затем может окисляться на аноде до хлорат-иона ClO3. Образование хлорат-иона серьёзно снижает выход по току хлора и является основным побочным процессом в этом методе получения гидроксида натрия. Также вредит и выделение кислорода, которое, к тому же, ведёт к разрушению анодов и, если они из углеродных материалов, попаданию в хлор примесей фосгена.

На аноде
  — основной процесс;
 ;
 
На Катоде
  — основной процесс;
 ;
 

В качестве анода в диафрагменных электролизерах может использоваться графитовый или угольный электроды. На сегодня их, в основном, заменили титановые аноды с окисидно-рутениево-титановым покрытием (аноды ОРТА) или другие малорасходуемые аноды.

На следующей стадии электролитический щёлок упаривают и доводят содержание в нём NaOH до товарной концентрации 42—50 % масс. в соответствии со стандартом.

Поваренная соль, сульфат натрия и другие примеси при повышении их концентрации в растворе выше их предела растворимости выпадают в осадок. Раствор едкой щёлочи декантируют от осадка и передаётся в качестве готового продукта на склад или продолжают стадию упаривания для получения твёрдого продукта, с последующим плавлением, превращением в чешуйки или гранулы.

Выпавшую в осадок в виде кристаллов поваренную соль возвращают назад в процесс, приготавливая из неё так называемый обратный рассол. От неё, во избежание накапливания примесей в растворах, перед приготовлением обратного рассола отделяют примеси.

Убыль анолита восполняют добавкой свежего рассола, получаемого подземным выщелачиванием соляных пластов, минеральных рассолов типа бишофита, предварительно очищенного от примесей или растворением галита. Свежий рассол перед смешиванием его с обратным рассолом очищают от механических взвесей и большей части ионов кальция и магния.

Полученный хлор отделяется от паров воды, сжимается компрессорами и подаётся либо на производство хлорсодержащих продуктов, либо на сжижение.

Благодаря относительной простоте и дешевизне диафрагменный метод получения гидроксида натрия до сих пор широко используется в промышленности.

Мембранный методПравить

Мембранный метод производства гидроксида натрия наиболее энергоэффективен, однако сложен в организации и эксплуатации.

С точки зрения электрохимических процессов мембранный метод подобен диафрагменному, но анодное и катодное пространства полностью разделены непроницаемой для анионов катионообменной мембраной. Благодаря этому свойству становится возможным получение более чистых, чем в случае с диафрагменного метода, щелоков. Поэтому в мембранном электролизере, в отличие от диафрагменного, не один поток, а два.

В анодное пространство поступает, как и в диафрагменном методе, поток раствора соли. А в катодное — деионизированная вода.
Из анодного пространства вытекает поток обеднённого анолита, содержащего также примеси гипохлорит- и хлорат-ионов и хлор, а из катодного — щёлока и водород, практически не содержащие примесей и близкие к товарной концентрации, что уменьшает затраты энергии на их упаривание и очистку.

Щёлочь, получаемая с помощью мембранного электролиза, практически не уступает по качеству получаемой при помощи метода с использованием ртутного катода и постепенно заменяет щёлочь, получаемую ртутным методом.

Однако питающий раствор соли (как свежий, так и оборотный) и вода предварительно максимально очищается от любых примесей. Такая тщательная очистка объясняется высокой стоимостью полимерных катионообменных мембран и их уязвимостью для примесей в питающем растворе.

Кроме того, ограниченная геометрическая форма, а также низкая механическая прочность и термическая стойкость ионообменных мембран во многом определяют сравнительно сложные конструкции установок мембранного электролиза. По той же причине мембранные установки требуют наиболее сложных систем автоматического контроля и управления.

Схема мембранного электролизера.

Ртутный метод с жидким катодомПравить

В ряду электрохимических методов получения щёлоков самым эффективным способом является электролиз с ртутным катодом.

Щёлоки, полученные при электролизе с жидким ртутным катодом, значительно чище полученных диафрагменным способом (для некоторых производств это критично). Например, в производстве искусственных волокон можно применять только высокочистый каустик), а по сравнению с мембранным методом организация процесса при получении щёлочи ртутным методом гораздо проще.

Установка для ртутного электролиза состоит из электролизёра, разлагателя амальгамы и ртутного насоса, объединённых между собой ртутепроводами.

Катодом электролизёра служит поток ртути, прокачиваемой насосом. Аноды — графитовые, угольные или малоизнашивающиеся (ОРТА, ТДМА или другие). Вместе с ртутью через электролизёр непрерывно течёт поток питающего раствор поваренной соли.

На аноде происходит окисление ионов хлора из электролита, и выделяется хлор:

  — основной процесс;
 ;
 

Хлор и анолит отводится из электролизёра. Анолит, выходящий из электролизёра, донасыщают свежим галитом, извлекают из него примеси, внесённые с ним, а также вымываемые из анодов и конструкционных материалов, и возвращают на электролиз. Перед донасыщением из анолита извлекают растворённый в нём хлор.

На катоде восстанавливаются ионы натрия, которые образуют низкоконцентрированный раствор натрия в ртути (амальгаму натрия):

 

Амальгама непрерывно перетекает из электролизёра в разлагатель амальгамы. В разлагатель также непрерывно подаётся высокоочищенная вода. В нём амальгама натрия в результате самопроизвольного химического процесса почти полностью разлагается водой с образованием ртути, раствора каустика и водорода:

 

Полученный таким образом раствор каустика, являющийся товарным продуктом, практически не содержит примесей. Ртуть почти полностью освобождается от металлического натрия и возвращается в электролизер. Водород отводится на очистку.

Растущие требования к экологической безопасности производств и дороговизна металлической ртути ведут к постепенному вытеснению ртутного метода методами получения щёлочи с твёрдым катодом, в особенности мембранным методом.

Лабораторные методы полученияПравить

В лаборатории гидроксид натрия иногда получают химическими способами, но чаще используется небольшой электролизёр диафрагменного или мембранного типа[источник не указан 235 дней].

Рынок каустической содыПравить

В России, согласно ГОСТ 2263-79, производятся следующие марки натра едкого:

  • ТР — твёрдый ртутный (чешуированный);
  • ТД — твёрдый диафрагменный (плавленый);
  • РР — раствор ртутный;
  • РХ — раствор химический;
  • РД — раствор диафрагменный.
Наименование показателя ТР ОКП 21 3211 0400 ТД ОКП 21 3212 0200 РР ОКП 21 3211 0100 РХ 1 сорт ОКП 21 3221 0530 РХ 2 сорт ОКП 21 3221 0540 РД Высший сорт ОКП 21 3212 0320 РД Первый сорт ОКП 21 3212 0330
Внешний вид Чешуированная масса белого цвета. Допускается слабая окраска Плавленая масса белого цвета. Допускается слабая окраска Бесцветная прозрачная жидкость Бесцветная или окрашенная жидкость. Допускается выкристаллизованный осадок Бесцветная или окрашенная жидкость. Допускается выкристаллизованный осадок Бесцветная или окрашенная жидкость. Допускается выкристаллизованный осадок Бесцветная или окрашенная жидкость. Допускается выкристаллизованный осадок
Массовая доля гидроксида натрия, %, не менее 98,5 94,0 42,0 45,5 43,0 46,0 44,0

Основные сферы примененияПравить

Едкий натр применяется во множестве отраслей промышленности и для бытовых нужд:

  • Каустик применяется в целлюлозно-бумажной промышленности для делигнификации (сульфатный процесс) целлюлозы, в производстве бумаги, картона, искусственных волокон, древесно-волоконных плит.
  • Для омыления жиров при производстве мыла, шампуня и других моющих средств. В древности во время стирки в воду добавляли золу, и, по-видимому, хозяйки обратили внимание, что если зола содержит жир, попавший в очаг во время приготовления пищи, то посуда легко моется. О профессии мыловара (сапонариуса) впервые упоминает примерно в 385 году нашей эры Теодор Присцианус. Арабы варили мыло из масел и соды с VII века, сегодня мыла производятся тем же способом, что и 10 веков назад. В настоящее время продукты на основе гидроксида натрия (с добавлением гидроксида калия), нагретые до +50…+60 °C, применяются в сфере промышленной мойки для очистки изделий из нержавеющей стали от жира и других масляных веществ, а также остатков механической обработки.
  • В химических отраслях промышленности — для нейтрализации кислот и кислотных оксидов, как реагент или катализатор в химических реакциях, в химическом анализе для титрования, для травления алюминия и в производстве чистых металлов, в нефтепереработке — для производства масел.
  • Для изготовления биодизельного топлива — получаемого из растительных масел и используемого для замены обычного дизельного топлива. Для получения биодизеля к девяти массовым единицам растительного масла добавляется одна массовая единица спирта (то есть соблюдается соотношение 9:1), а также щелочной катализатор (NaOH). Полученный эфир (главным образом линолевой кислоты) отличается хорошей воспламеняемостью, обеспечиваемой высоким цетановым числом. Цетановое число — условная количественная характеристика самовоспламеняемости дизельных топлив в цилиндре двигателя (аналог октанового числа для бензинов). Если для минерального дизтоплива характерен показатель в 50-52 %, то метиловый эфир уже изначально соответствует 56-58 % цетана. Сырьём для производства биодизеля могут быть различные растительные масла: рапсовое, соевое и другие, кроме тех, в составе которых высокое содержание пальмитиновой кислоты (пальмовое масло). При его производстве в процессе этерификации также образуется глицерин, который используется в пищевой, косметической и бумажной промышленности, либо перерабатывается в эпихлоргидрин по методу Solvay.
  • В качестве агента для растворения засоров канализационных труб, в виде сухих гранул или в составе гелей (наряду с гидроксидом калия). Гидроксид натрия дезагрегирует засор и способствует лёгкому продвижению его далее по трубе.
  • В гражданской обороне для дегазации и нейтрализации отравляющих веществ, в том числе зарина, в ребризерах (изолирующих дыхательных аппаратах (ИДА), для очистки выдыхаемого воздуха от углекислого газа.
  • В текстильной промышленности — для мерсеризации хлопка и шерсти. При кратковременной обработке едким натром с последующей промывкой волокно приобретает прочность и шелковистый блеск.
  • Гидроксид натрия также используется для мойки пресс-форм автопокрышек.
  • В приготовлении пищи: для мытья и очистки фруктов и овощей от кожицы, в производстве шоколада и какао, напитков, мороженого, окрашивания карамели, для размягчения маслин и придания им чёрной окраски, при производстве хлебобулочных изделий. Зарегистрирован в качестве пищевой добавки E-524. Некоторые блюда готовятся с применением каустика:
    • лютефиск — скандинавское блюдо из рыбы — сушёная треска вымачивается 5-6 дней в едкой щёлочи и приобретает мягкую, желеобразную консистенцию.
    • брецель — немецкие крендели — перед выпечкой их обрабатывают в растворе едкой щёлочи, которая способствует образованию уникальной хрустящей корочки.
  • В косметологии для удаления ороговевших участков кожи, бородавок, папиллом.
  • В фотографии — как ускоряющее вещество в проявителях для высокоскоростной обработки фотографических материалов[4][5].

Меры предосторожности при обращении с гидроксидом натрияПравить

Химический ожог в результате действия раствора гидроксида натрия. Фотография сделана через 44 часа после воздействия

Гидроксид натрия (едкий натр) — едкое и весьма токсичное вещество, обладающее ярко выраженными щелочными свойствами. По ГОСТ 12.1.005-76 едкий натр относится к вредным веществам 2-го класса опасности[6][7]. Поэтому при работе с ним нужно соблюдать осторожность. При попадании на кожу, слизистые оболочки и в глаза образуются серьёзные химические ожоги[8]. Попадание больших количеств едкого натра в глаза вызывает необратимые изменения зрительного нерва (атрофию) и, как следствие, потерю зрения.

При контакте слизистых поверхностей с едкой щёлочью необходимо промыть поражённый участок струёй воды, а при попадании на кожу — слабым раствором уксусной и борной кислоты. При попадании едкого натра в глаза следует немедленно промыть их сначала раствором борной кислоты, а затем водой.

Предельно допустимая концентрация аэрозоля гидроксида натрия NaOH в воздухе рабочей зоны составляет 0,5 мг/м³ в соответствии с ГОСТ 12.1.007-76[9].

Гидроксид натрия негорюч; пожаро- и взрывобезопасен[10].

Охрана природыПравить

Едкий натр — опасное вещество для окружающей среды, подавляет биохимические процессы, оказывает токсическое действие[11][12].

Защита окружающей среды должна быть обеспечена соблюдением требований технологического регламента, правил перевозки и хранения.

Предельно допустимая концентрация (ПДК) едкого натра в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования (по катионам натрия) составляет 200 мг/дм3, 2-й класс опасности в соответствии с гигиеническими нормативами[13]. Необходим контроль водородного показателя (pH 6,5-8,5 и не более)[14].

Ориентировочно безопасный уровень воздействия (ОБУВ) едкого натра в атмосферном воздухе населённых мест составляет 0,01 мг/м3 в соответствии с гигиеническими нормативами[15].

При утечке или же рассыпании значительного количества едкий натр нейтрализуют слабым раствором кислоты. Нейтрализованный раствор направляют на обезвреживание и утилизацию[3].

ПримечанияПравить

  1. http://www.cdc.gov/niosh/npg/npgd0565.html
  2. name=https://www.mkmagna.ru_Натр едкий технический 46 % рд (раствор)
  3. 1 2 name=https://www.safework.ru_Гидроксид натрия
  4. Редько, 1999, с. 129.
  5. Гурлев, 1988, с. 294.
  6. name=https://docs.cntd.ru_ГОСТ 4328-77 Реактивы. Натрия гидроокись. Технические условия (с Изменениями N 1, 2)
  7. name=https://docs.cntd.ru_ГОСТ 2263-79 Реактивы. Натр едкий технический. Технические условия (с Изменениями N 1, 2)
  8. name=https://docs.cntd.ru_ГОСТ Р 55064-2012 Натр едкий очищенный. Технические условия
  9. name=https://docs.cntd.ru_ГОСТ 12.1.007-76 Система стандартов безопасности труда (ССБТ). Вредные вещества. Классификация и общие требования безопасности (с Изменениями N 1, 2)
  10. name=https://docs.cntd.ru_ГОСТ 12.1.004-91 Система стандартов безопасности труда (ССБТ) Пожарная безопасность. Общие требования (с Изменением N 1)
  11. name=https://docs.cntd.ru_ГОСТ 4328-66 Реактивы. Натрия гидрат окиси (натр едкий)
  12. name=https://docs.cntd.ru_ГОСТ 2263-59 Натр едкий технический (сода каустическая)
  13. name=https://docs.cntd.ru_ГОСТ P 55064-2012 Натр едкий технический. Технические условия
  14. name=https://docs.cntd.ru_ГОСТ 2263-71 Натр едкий технический (с Изменением N 2)
  15. name=https://www.chempack.ru_Натр едкий технический гранулированный

ЛитератураПравить

  • Общая химическая технология. Под ред. И. П. Мухленова. Учебник для химико-технологических специальностей вузов. — М.: Высшая школа.
  • Некрасов Б. В. Основы общей химии, т. 3. — М.: Химия, 1970.
  • Фурмер И. Э., Зайцев В. Н. Общая химическая технология. — М.: Высшая школа, 1978.
  • Приказ Минздрава РФ от 28 марта 2003 г. № 126 «Об утверждении Перечня вредных производственных факторов, при воздействии которых в профилактических целях рекомендуется употребление молока или других равноценных пищевых продуктов».
  • Постановление Главного государственного санитарного врача РФ от 4 апреля 2003 г. № 32 «О введении в действие Санитарных правил по организации грузовых перевозок на железнодорожном транспорте. СП 2.5.1250-03».
  • Федеральный закон от 21 июля 1997 г. № 116-ФЗ «О промышленной безопасности опасных производственных объектов» (с изм. на 18 декабря 2006 г.).
  • Приказ МПР РФ от 2 декабря 2002 г. № 786 «Об утверждении федерального классификационного каталога отходов» (с изм. и доп. от 30 июля 2003 г.).
  • Постановление Госкомтруда СССР от 25 октября 1974 г. № 298/П-22 «Об утверждении списка производств, цехов, профессий и должностей с вредными условиями труда, работа в которых даёт право на дополнительный отпуск и сокращённый рабочий день» (с изм. на 29 мая 1991 г.).
  • Постановление Министерства труда России от 22 июля 1999 г. № 26 «Об утверждении типовых отраслевых норм бесплатной выдачи специальной одежды, специальной обуви и других средств индивидуальной защиты работникам химических производств».
  • Постановление Главного государственного санитарного врача РФ от 30 мая 2003 г. № 116 О введении в действие ГН 2.1.6.1339-03 «Ориентировочные безопасные уровни воздействия (ОБУВ) загрязняющих веществ в атмосферном воздухе населённых мест».(с изм. на 3 ноября 2005 г.).
  • Гурлев Д. С. Справочник по фотографии (обработка фотоматериалов). — К.: Тэхника, 1988.
  • Редько А. В. Основы фотографических процессов. — 2-е изд.. — СПб.: «Лань», 1999. — 512 с. — (Учебники для ВУЗов. Специальная литература). — 3000 экз. — ISBN 5-8114-0146-9.
Гидроксид натрия
Гидроксид натрия гранулы
Гидроксид натрия
Традиционные названия едкий натр, каустик,
каустическая сода,
едкая щёлочь
Хим. формула NaOH
Рац. формула NaOH
Молярная масса 39,997 г/моль
Плотность 2,13 г/см³
Т. плав. 323 °C
Т. кип. 1403 °C
Давление пара 0 ± 1 мм рт.ст.
Растворимость в воде 108,7 г/100 мл
ГОСТ ГОСТ 4328-77 ГОСТ Р 55064-12 ГОСТ 2263-79
Рег. номер CAS 1310-73-2
PubChem 14798
Рег. номер EINECS 215-185-5
SMILES

[OH-].[Na+]

InChI

1S/Na.H2O/h;1H2/q+1;/p-1

HEMHJVSKTPXQMS-UHFFFAOYSA-M

Кодекс Алиментариус E524
RTECS WB4900000
ChEBI 32145
Номер ООН 1823
ChemSpider 14114
Пиктограммы СГС Гидроксид натрия
Приводятся данные для стандартных условий (25 °C, 100 кПа), если не указано иного.

Гидроксид натрия (лат. Nátrii hydroxídum; другие названия — каустическая сода, едкий натр) — самая распространённая щёлочь, химическая формула NaOH. В год в мире производится и потребляется около 57 миллионов тонн едкого натра.

Интересна история тривиальных названий как гидроксида натрия, так и других щелочей. Название «едкая щёлочь» обусловлено свойством разъедать кожу (вызывая сильные ожоги), бумагу и другие органические вещества. До XVII века щёлочью (фр. alkali) называли также карбонаты натрия и калия. В 1736 году французский учёный Анри Дюамель дю Монсо впервые различил эти вещества: гидроксид натрия стали называть каустической содой, карбонат натрия — кальцинированной содой, а карбонат калия — поташом. В настоящее время содой принято называть натриевые соли угольной кислоты. В английском и французском языках слово sodium означает натрий, potassium — калий.

Содержание

  • 1 Физические свойства
  • 2 Химические свойства
  • 3 Качественное определение ионов натрия
  • 4 Методы получения
    • 4.1 Химические методы получения гидроксида натрия
      • 4.1.1 Пиролитический метод
      • 4.1.2 Известковый метод
      • 4.1.3 Ферритный метод
    • 4.2 Электрохимические методы получения гидроксида натрия
      • 4.2.1 Диафрагменный метод
      • 4.2.2 Мембранный метод
      • 4.2.3 Ртутный метод с жидким катодом
      • 4.2.4 Лабораторные методы получения
  • 5 Рынок каустической соды
  • 6 Применение
  • 7 Меры предосторожности при обращении с гидроксидом натрия

Гидроксид натрия гранулы

Физические свойства

Гидроксид натрия — белое твёрдое вещество. Сильно гигроскопичен, на воздухе «расплывается», активно поглощая пары воды из воздуха. Хорошо растворяется в воде, при этом выделяется большое количество теплоты. Раствор едкого натра мылок на ощупь.

Термодинамика растворов

ΔH0 растворения для бесконечно разбавленного водного раствора −44,45 кДж/моль.

Из водных растворов при +12,3…+61,8 °C кристаллизуется моногидрат (сингония ромбическая), температура плавления +65,1 °C; плотность 1,829 г/см³; ΔH0обр −425,6 кДж/моль), в интервале от −28 до −24 °C — гептагидрат, от −24 до −17,7 °C — пентагидрат, от −17,7 до −5,4 °C — тетрагидрат (α-модификация). Растворимость в метаноле 23,6 г/л (t = +28 °C), в этаноле 14,7 г/л (t = +28 °C). NaOH·3,5H2O (температура плавления +15,5 °C).

Гидроксид натрия гранулы

Гидроксид натрия гранулы

                         Натр едкий — гранулы

Химические свойства

Гидроксид натрия (едкая щёлочь) — сильное химическое основание (к сильным основаниям относят гидроксиды, молекулы которых полностью диссоциируют в воде), к ним относят гидроксиды щелочных и щёлочноземельных металлов подгрупп Iа и IIа периодической системы Д. И. Менделеева, KOH (едкое кали), Ba(OH)2 (едкий барит), LiOH, RbOH, CsOH, а также гидроксид одновалентного таллия TlOH. Щёлочность (основность) определяется валентностью металла, радиусом внешней электронной оболочки и электрохимической активностью: чем больше радиус электронной оболочки (увеличивается с порядковым номером), тем легче металл отдаёт электроны, и тем выше его электрохимическая активность и тем левее располагается элемент в электрохимическом ряду активности металлов, в котором за ноль принята активность водорода.

Водные растворы NaOH имеют сильную щелочную реакцию (pH 1%-раствора = 13,4). Основными методами определения щелочей в растворах являются реакции на гидроксид-ион (OH), (c фенолфталеином — малиновое окрашивание и метиловым оранжевым (метилоранжем) — жёлтое окрашивание). Чем больше гидроксид-ионов находится в растворе, тем сильнее щёлочь и тем интенсивнее окраска индикатора.

Гидроксид натрия вступает в следующие реакции:

с кислотами, амфотерными оксидами и гидроксидами
  • c кислотами — с образованием солей и воды:
 NaOH + HCl → NaCl + H2O
 NaOH + H2S → NaHS + H2 (кислая соль, при отношении 1:1)
 2NaOH + H2S → Na2S + 2H2O (в избытке NaOH)

Общая реакция в ионном виде:

 OH + H+ → H2O
  • с амфотерными оксидами которые обладают как основными, так и кислотными свойствами, и способностью реагировать с щелочами, как с твёрдыми при сплавлении:
 2NaOH + ZnO →ot Na2ZnO2 + H2 — при сплавлении
 2NaOH + ZnO + H2O → Na2[Zn(OH)4] — в растворе
с амфотерными гидроксидами
 NaOH + Al(OH)3ot NaAlO2 + 2H2O — при сплавлении
 3NaOH + Al(OH)3 → Na3[Al(OH)6 — в растворе
с солями в растворе:
 2NaOH + CuSO4 → Cu(OH)2↓ + Na2SO4

Гидроксид натрия используется для осаждения гидроксидов металлов. К примеру, так получают гелеобразный гидроксид алюминия, действуя гидроксидом натрия на сульфат алюминия в водном растворе, при этом избегая избытка щёлочи и растворения осадка. Его и используют, в частности, для очистки воды от мелких взвесей.

c неметаллами:

например, с фосфором — с образованием гипофосфита натрия:

 4P + 3NaOH + 3H2O → PH3↑ + 3NaH2PO2

с серой:

 3S + 6NaOH → 2Na2S + Na2SO3 + 3H2O
с галогенами
 2NaOH + Cl2 → NaClO + NaCl + H2 (дисмутация хлора при комнатной температуре)
 6NaOH + 3Cl2 → NaClO3 + 5NaCl + 3H2 (дисмутация хлора при нагревании раствора)
с металлами

Гидроксид натрия вступает в реакцию с алюминием, цинком, титаном. Он не реагирует с железом и медью (металлами, которые имеют низкий электрохимический потенциал). Алюминий легко растворяется в едкой щёлочи с образованием хорошо растворимого комплекса — тетрагидроксоалюмината натрия и водорода:

 2Al + 2NaOH + 6H2O → 2Na[Al(OH)4] + 3H2

Эта реакция использовалась в первой половине XX века в воздухоплавании: для заполнения водородом аэростатов и дирижаблей в полевых (в том числе боевых) условиях, так как данная реакция не требует источников электроэнергии, а исходные реагенты для неё могут легко транспортироваться.

с эфирами, амидами и алкилгалогенидами (гидролиз):

с жирами (омыление) такая реакция необратима, так как получающаяся кислота со щёлочью образует мыло и глицерин. Глицерин впоследствии извлекается из подмыльных щёлоков путём вакуум-выпарки и дополнительной дистилляционной очистки полученных продуктов. Этот способ получения мыла был известен на Ближнем Востоке с VII века.

В результате взаимодействия жиров с гидроксидом натрия получают твёрдые мыла (они используются для производства кускового мыла), а с гидроксидом калия либо твёрдые, либо жидкие мыла в зависимости от состава жира.

с многоатомными спиртами — с образованием алкоголятов:
 HOCH2CH2OH + 2NaOH → NaOCH2CH2ONa + 2H2O

Качественное определение ионов натрия

Атомы натрия придают пламени жёлтое свечение.

  1. По цвету пламени горелки — атомы натрия придают пламени жёлтую окраску
  2. С использованием специфических реакций на ионы натрия
 

Реагент Фторид аммония Нитрит цезия-калия-висмута Ацетат магния Ацетат цинка Пикро-

лоновая кислота

Диокси-

винная кислота

Бромбензол-

сульфокислота

Ацетат уранила-цинка
Цвет осадка белый бледно-жёлтый жёлто-зелёный жёлто-зелёный белый белый бледно-жёлтый зеленовато-жёлтый

Гидроксид натрия

Методы получения

Гидроксид натрия может получаться в промышленности химическими и электрохимическими методами.

Химические методы получения гидроксида натрия

К химическим методам получения гидроксида натрия относятся пиролитический, известковый и ферритный.

Химические методы получения гидроксида натрия имеют существенные недостатки: расходуется большое количество энергоносителей, получаемый едкий натр сильно загрязнён примесями.

В настоящее время эти методы почти полностью вытеснены электрохимическими методами производства.

Пиролитический метод

Пиролитический метод получения гидроксида натрия является наиболее древним и начинается с получения оксида натрия Na2О путём прокаливания карбоната натрия при температуре 1000 °C (например, в муфельной печи):

 Na2CO31000∘C Na2O + CO2

В качестве сырья может быть использован и гидрокарбонат натрия, разлагающийся при 200 °C на карбонат натрия, углекислый газ и воду.

 2NaHCO3200∘C Na2CO3 + CO2 + H2O →1000∘C Na2O + 2CO2 + H2O

Полученный оксид натрия охлаждают и очень осторожно (реакция происходит с выделением большого количества тепла) добавляют в воду:

 Na2O + H2O → 2NaOH

Известковый метод

Известковый метод получения гидроксида натрия заключается во взаимодействии раствора соды с гашеной известью при температуре около 80 °С. Этот процесс называется каустификацией и проходит по реакции:

 Na2CO3 + Ca(OH)2 → 2NaOH + CaCO3

В результате реакции получается раствор гидроксида натрия и осадок карбоната кальция. Карбонат кальция отделяется от раствора фильтрацией, затем раствор упаривается до получения расплавленного продукта, содержащего около 92 % масс. NaOH. Затем NaOH плавят и разливают в железные барабаны, где он кристаллизуется.

Ферритный метод

Ферритный метод получения гидроксида натрия состоит из двух этапов:

 Na2CO3 + Fe2O3 → 2NaFeO2 + CO2
 2NaFeO2 + 2H2O → 2NaOH + Fe2O3 ⋅ H2O

Реакция 1 представляет собой процесс спекания кальцинированной соды с окисью железа при температуре 1100—1200 °С. При этом образуется спек — феррит натрия и выделяется двуокись углерода. Далее спек обрабатывают (выщелачивают) водой по реакции 2; получается раствор гидроксида натрия и осадок Fe2O3*xH2O, который после отделения его от раствора возвращается в процесс. Получаемый раствор щёлочи содержит около 400 г/л NaOH. Его упаривают до получения продукта, содержащего около 92 % масс. NaOH, а затем получают твёрдый продукт в виде гранул или хлопьев.

Электрохимические методы получения гидроксида натрия

Электрохимически гидроксид натрия получают электролизом растворов галита (минерала, состоящего в основном из поваренной соли NaCl) с одновременным получением водорода и хлора. Этот процесс можно представить суммарной формулой:

 2NaCl + 2H2O → H2↑ + Cl2↑ + 2NaOH

Едкая щёлочь и хлор вырабатываются тремя электрохимическими методами. Два из них — электролиз с твёрдым катодом (диафрагменный и мембранный методы), третий — электролиз с жидким ртутным катодом (ртутный метод).

В мировой производственной практике используются все три метода получения хлора и каустика с явной тенденцией к увеличению доли мембранного электролиза.

Показатель на 1 тонну NaOH Ртутный метод Диафрагменный метод Мембранный метод
Выход хлора, % 99 96 98,5
Электроэнергия, кВт·ч 3150 3260 2520
Концентрация NaOH, % 50 12 35
Чистота хлора, % 99,2 98 99,3
Чистота водорода, % 99,9 99,9 99,9
Массовая доля O2 в хлоре, % 0,1 1—2 0,3
Массовая доля Cl в NaOH, % 0,003 1—1,2 0,005

В России приблизительно 35 % от всего выпускаемого каустика вырабатывается электролизом с ртутным катодом и 65 % — электролизом с твёрдым катодом.

Диафрагменный метод

Схема старинного диафрагменного электролизера для получения хлора и щёлоков: А — анод, В — изоляторы, С — катод, D — пространство заполненное газами (над анодом — хлор, над катодом — водород), М — диафрагма

Наиболее простым из электрохимических методов в плане организации процесса и конструкционных материалов для электролизера является диафрагменный метод получения гидроксида натрия.

Раствор соли в диафрагменном электролизере непрерывно подаётся в анодное пространство и протекает через, как правило, нанесённую на стальную катодную сетку асбестовую диафрагму, в которую иногда добавляют небольшое количество полимерных волокон.

Во многих конструкциях электролизеров катод полностью погружен под слой анолита (электролита из анодного пространства), а выделяющийся на катодной сетке водород отводится из под катода при помощи газоотводных труб, не проникая через диафрагму в анодное пространство благодаря противотоку.

Противоток — очень важная особенность устройства диафрагменного электролизера. Именно благодаря противоточному потоку, направленному из анодного пространства в катодное через пористую диафрагму, становится возможным раздельное получение щёлоков и хлора. Противоточный поток рассчитывается так, чтобы противодействовать диффузии и миграции OH ионов в анодное пространство. Если величина противотока недостаточна, тогда в анодном пространстве в больших количествах начинает образовываться гипохлорит-ион (ClO), который затем может окисляться на аноде до хлорат-иона ClO3. Образование хлорат-иона серьёзно снижает выход по току хлора и является основным побочным процессом в этом методе получения гидроксида натрия. Также вредит и выделение кислорода, которое, к тому же, ведёт к разрушению анодов и, если они из углеродных материалов, попаданию в хлор примесей фосгена.

Анод:

 2Cl → Cl2 + 2e  — основной процесс
 2H2O → O2 + 4H+ + 4e
 6ClO3 + 3H2O → 2ClO3 + 4Cl + 1,5O2↑ + 6H+ + 6e
Катод:

 2H2O + 2e → H2↑ + 2OH  — основной процесс
 ClO + H2O + 2e → Cl + 2OH 
 ClO3 + 3H2O + 6e → Cl + 6OH

В качестве анода в диафрагменных электролизерах может использоваться графитовый или угольный электроды. На сегодня их, в основном, заменили титановые аноды с окисно-рутениево-титановым покрытием (аноды ОРТА) или другие малорасходуемые.

На следующей стадии электролитический щёлок упаривают и доводят содержание в нём NaOH до товарной концентрации 42—50 % масс. в соответствии со стандартом.

Поваренная соль, сульфат натрия и другие примеси при повышении их концентрации в растворе выше их предела растворимости выпадают в осадок. Раствор едкой щёлочи декантируют от осадка и передают в качестве готового продукта на склад или продолжают стадию упаривания для получения твёрдого продукта, с последующим плавлением, чешуированием или грануляцией.

Обратную, то есть кристаллизовавшуюся в осадок, поваренную соль возвращают назад в процесс, приготавливая из неё так называемый обратный рассол. От неё, во избежание накапливания примесей в растворах, перед приготовлением обратного рассола отделяют примеси.

Убыль анолита восполняют добавкой свежего рассола, получаемого подземным выщелачиванием соляных пластов, минеральных рассолов типа бишофита, предварительно очищенного от примесей или растворением галита. Свежий рассол перед смешиванием его с обратным рассолом очищают от механических взвесей и значительной части ионов кальция и магния.

Полученный хлор отделяется от паров воды, компримируется и подаётся либо на производство хлорсодержащих продуктов, либо на сжижение.

Благодаря относительной простоте и дешевизне диафрагменный метод получения гидроксида натрия до сих пор широко используется в промышленности.

Гидроксид натрия

Мембранный метод

Мембранный метод производства гидроксида натрия наиболее энергоэффективен, однако сложен в организации и эксплуатации.

С точки зрения электрохимических процессов мембранный метод подобен диафрагменному, но анодное и катодное пространства полностью разделены непроницаемой для анионов катионообменной мембраной. Благодаря этому свойству становится возможным получение более чистых, чем в случае с диафрагменного метода, щелоков. Поэтому в мембранном электролизере, в отличие от диафрагменного, не один поток, а два.

В анодное пространство поступает, как и в диафрагменном методе, поток раствора соли. А в катодное — деионизированная вода. Из анодного пространства вытекает поток обеднённого анолита, содержащего также примеси гипохлорит- и хлорат-ионов и хлор, а из катодного — щёлока и водород, практически не содержащие примесей и близкие к товарной концентрации, что уменьшает затраты энергии на их упаривание и очистку.

Щёлочь, получаемая с помощью мембранного электролиза, практически не уступает по качеству получаемой при помощи метода с использованием ртутного катода и постепенно заменяет щёлочь, получаемую ртутным методом.

Однако, питающий раствор соли (как свежий, так и оборотный) и вода предварительно максимально очищается от любых примесей. Такая тщательная очистка объясняется высокой стоимостью полимерных катионообменных мембран и их уязвимостью к примесям в питающем растворе.

Кроме того, ограниченная геометрическая форма а также низкая механическая прочность и термическая стойкость ионообменных мембран во многом определяют сравнительно сложные конструкции установок мембранного электролиза. По той же причине мембранные установки требуют наиболее сложных систем автоматического контроля и управления.

Ртутный метод с жидким катодом

В ряду электрохимических методов получения щёлоков самым эффективным способом является электролиз с ртутным катодом. Щёлоки, полученные при электролизе с жидким ртутным катодом, значительно чище полученных диафрагменным способом (для некоторых производств это критично). Например, в производстве искусственных волокон можно применять только высокочистый каустик), а по сравнению с мембранным методом организация процесса при получении щёлочи ртутным методом гораздо проще.

Установка для ртутного электролиза состоит из электролизёра, разлагателя амальгамы и ртутного насоса, объединённых между собой ртутепроводящими коммуникациями.

Катодом электролизёра служит поток ртути, прокачиваемой насосом. Аноды — графитовые, угольные или малоизнашивающиеся (ОРТА, ТДМА или другие). Вместе с ртутью через электролизёр непрерывно течёт поток питающего поваренной соли.

На аноде происходит окисление ионов хлора из электролита, и выделяется хлор:

 2Cl → Cl2 + 2e  — основной процесс
 2H2O → O2 + 4H+ + 4e
 6ClO3− + 3H2O → 2ClO3 + 4Cl + 1,5O2 + 6H+ + 6e

Хлор и анолит отводится из электролизёра. Анолит, выходящий из электролизёра, донасыщают свежим галитом, извлекают из него примеси, внесённые с ним, а также вымываемые из анодов и конструкционных материалов, и возвращают на электролиз. Перед донасыщением из анолита извлекают растворённый в нём хлор.

На катоде восстанавливаются ионы натрия, которые образуют слабый раствор натрия в ртути (амальгаму натрия):

 Na+ + eHg NaHg

Амальгама непрерывно перетекает из электролизёра в разлагатель амальгамы. В разлагатель также непрерывно подаётся высоко очищенная вода. В нём амальгама натрия в результате самопроизвольного химического процесса почти полностью разлагается водой с образованием ртути, раствора каустика и водорода:

 2NaHg + 2H2O →−Hg 2NaOH + H2

Полученный таким образом раствор каустика, являющийся товарным продуктом, практически не содержит примесей. Ртуть почти полностью освобождается от натрия и возвращается в электролизер. Водород отводится на очистку.

Растущие требования к экологической безопасности производств и дороговизна металлической ртути ведут к постепенному вытеснению ртутного метода методами получения щёлочи с твёрдым катодом, в особенности мембранным методом.

Лабораторные методы получения

В лаборатории гидроксид натрия иногда получают химическими способами, но чаще используется небольшой электролизёр диафрагменного или мембранного типа.

Гидроксид натрия гранулы

Рынок каустической соды

В России, согласно ГОСТ 2263-79, производятся следующие марки натра едкого:

  • ТР — твёрдый ртутный (чешуированный);
  • ТД — твёрдый диафрагменный (плавленый);
  • РР — раствор ртутный;
  • РХ — раствор химический;
  • РД — раствор диафрагменный.
 

Наименование показателя ТР ОКП 21 3211 0400 ТД ОКП 21 3212 0200 РР ОКП 21 3211 0100 РХ 1 сорт ОКП 21 3221 0530 РХ 2 сорт ОКП 21 3221 0540 РД Высший сорт ОКП 21 3212 0320 РД Первый сорт ОКП 21 3212 0330
Внешний вид Чешуированная масса белого цвета. Допускается слабая окраска Плавленая масса белого цвета. Допускается слабая окраска Бесцветная прозрачная жидкость Бесцветная или окрашенная жидкость. Допускается выкристалл
изованный осадок
Бесцветная или окрашенная жидкость. Допускается выкристалли
зованный осадок
Бесцветная или окрашенная жидкость. Допускается выкристалли
зованный осадок
Бесцветная или окрашенная жидкость. Допускается выкристалли
зованный осадок
Массовая доля гидроксида натрия, %, не менее 98,5 94,0 42,0 45,5 43,0 46,0 44,0

Применение

Едкий натр применяется во множестве отраслей промышленности и для бытовых нужд:

  • Каустик применяется в целлюлозно-бумажной промышленности для делигнификации (сульфатный процесс) целлюлозы, в производстве бумаги, картона, искусственных волокон, древесно-волоконных плит.
  • Для омыления жиров при производстве мыла, шампуня и других моющих средств. В древности во время стирки в воду добавляли золу, и, по-видимому, хозяйки обратили внимание, что если зола содержит жир, попавший в очаг во время приготовления пищи, то посуда хорошо моется. О профессии мыловара (сапонариуса) впервые упоминает примерно в 385 году нашей эры Теодор Присцианус. Арабы варили мыло из масел и соды с VII века, сегодня мыла производятся тем же способом, что и 10 веков назад. В настоящее время продукты на основе гидроксида натрия (с добавлением гидроксида калия), нагретые до +50…+60 °C, применяются в сфере промышленной мойки для очистки изделий из нержавеющей стали от жира и других масляных веществ, а также остатков механической обработки.
  • В химических отраслях промышленности — для нейтрализации кислот и кислотных оксидов, как реагент или катализатор в химических реакциях, в химическом анализе для титрования, для травления алюминия и в производстве чистых металлов, в нефтепереработке — для производства масел.
  • Для изготовления биодизельного топлива — получаемого из растительных масел и используемого для замены обычного дизельного топлива. Для получения биодизеля к девяти массовым единицам растительного масла добавляется одна массовая единица спирта (то есть соблюдается соотношение 9:1), а также щелочной катализатор (NaOH). Полученный эфир (главным образом линолевой кислоты) отличается хорошей воспламеняемостью, обеспечиваемой высоким цетановым числом. Цетановое число — условная количественная характеристика самовоспламеняемости дизельных топлив в цилиндре двигателя (аналог октанового числа для бензинов). Если для минерального дизтоплива характерен показатель в 50-52 %, то метиловый эфир уже изначально соответствует 56-58 % цетана. Сырьём для производства биодизеля могут быть различные растительные масла: рапсовое, соевое и другие, кроме тех, в составе которых высокое содержание пальмитиновой кислоты (пальмовое масло). При его производстве в процессе этерификации также образуется глицерин, который используется в пищевой, косметической и бумажной промышленности, либо перерабатывается в эпихлоргидрин по методу Solvay.
  • В качестве агента для растворения засоров канализационных труб, в виде сухих гранул или в составе гелей (наряду с гидроксидом калия). Гидроксид натрия дезагрегирует засор и способствует лёгкому продвижению его далее по трубе.
  • В гражданской обороне для дегазации и нейтрализации отравляющих веществ, в том числе зарина, в ребризерах (изолирующих дыхательных аппаратах (ИДА), для очистки выдыхаемого воздуха от углекислого газа.
  • В текстильной промышленности — для мерсеризации хлопка и шерсти. При кратковременной обработке едким натром с последующей промывкой волокно приобретает прочность и шелковистый блеск.
  • Гидроксид натрия также используется для мойки пресс-форм автопокрышек.
  • В приготовлении пищи: для мытья и очистки фруктов и овощей от кожицы, в производстве шоколада и какао, напитков, мороженого, окрашивания карамели, для размягчения маслин и придания им чёрной окраски, при производстве хлебобулочных изделий. Зарегистрирован в качестве пищевой добавки E-524. Некоторые блюда готовятся с применением каустика:
    • лютефиск — скандинавское блюдо из рыбы — сушёная треска вымачивается 5-6 дней в едкой щёлочи и приобретает мягкую, желеобразную консистенцию.
    • брецель — немецкие крендели — перед выпечкой их обрабатывают в растворе едкой щёлочи, которая способствует образованию уникальной хрустящей корочки.
  • В косметологии для удаления ороговевших участков кожи, бородавок, папиллом.
  • В фотографии — как ускоряющее вещество в проявителях для высокоскоростной обработки фотографических материалов.

Меры предосторожности при обращении с гидроксидом натрия

Химический ожог в результате действия раствора гидроксида натрия. Фотография сделана через 44 часа после воздействия

Гидроксид натрия — едкое, токсическое и коррозионно-активное вещество. Оно относится к веществам второго класса опасности. Поэтому при работе с ним требуется соблюдать осторожность. При попадании на кожу, слизистые оболочки и в глаза образуются серьёзные химические ожоги. Попадание в глаза вызывает необратимые изменения зрительного нерва (атрофию) и, как следствие, потерю зрения. При контакте слизистых поверхностей с едкой щёлочью необходимо промыть поражённый участок струёй воды, а при попадании на кожу — слабым раствором уксусной или борной кислоты. При попадании едкого натра в глаза следует немедленно промыть их сначала слабым раствором борной кислоты, а затем водой.

При работе с едким натром рекомендуется следующие защитные средства: химические брызгозащитные очки для защиты глаз, резиновые перчатки или перчатки с прорезиненной поверхностью для защиты рук, для защиты тела — химически стойкая одежда, пропитанная винилом или прорезиненные костюмы.

Предельно допустимая концентрация гидроксида натрия в воздухе 0,5 мг/м³.

Гидроксид натрия, характеристика, свойства и получение, химические реакции.

Гидроксид натрия – неорганическое вещество, имеет химическую формулу NaOH.

Краткая характеристика гидроксида натрия

Модификации гидроксида натрия

Физические свойства гидроксида натрия

Получение гидроксида натрия

Химические свойства гидроксида натрия

Химические реакции гидроксида натрия

Применение и использование гидроксида натрия

Краткая характеристика гидроксида натрия:

Гидроксид натрия – неорганическое вещество белого цвета.

Химическая формула гидроксида натрия NaOН.

Обладает высокой гигроскопичностью. На воздухе «расплывается», активно поглощая пары воды из воздуха.

Хорошо растворяется в воде, при этом выделяя большое количество тепловой энергии. Раствор едкого натра мылок на ощупь.

Гидроксид натрия – самая распространённая щёлочь. В год в мире производится и потребляется около 57 миллионов тонн едкого натра.

Гидроксид натрия – едкое, токсическое и коррозионно-активное вещество. Оно относится к веществам второго класса опасности. Поэтому при работе с ним требуется соблюдать осторожность. При попадании на кожу, слизистые оболочки и в глаза образуются серьёзные химические ожоги.

Модификации гидроксида натрия:

До 299 оС гидроксид натрия имеет устойчивую ромбическую модификацию (a = 0,33994 нм, c = 1,1377 нм), выше 299 оС – моноклинную.

Физические свойства гидроксида натрия:

Наименование параметра: Значение:
Химическая формула NaOН
Синонимы и названия иностранном языке sodium hydroxide (англ.)

едкий натр (рус.)

натрия гидроокись (рус.)

сода каустическая (рус.)

Тип вещества неорганическое
Внешний вид бесцветные ромбические кристаллы
Цвет белый, бесцветный
Вкус —*
Запах
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) твердое вещество
Плотность (состояние вещества – твердое вещество, при 20 °C), кг/м3 2130
Плотность (состояние вещества – твердое вещество, при 20 °C), г/см3 2,13
Температура кипения, °C 1403
Температура плавления, °C 323
Гигроскопичность высокая гигроскопичность
Молярная масса, г/моль 39,997

* Примечание:

— нет данных.

Получение гидроксида натрия:

Гидроксид натрия получается в результате следующих химических реакций:

  1. 1. из оксида натрия (т.н. пиролитический метод):

Пиролитический метод получения гидроксида натрия является наиболее древним и начинается с получения оксида натрия Na2О путём прокаливания карбоната натрия при температуре 1000 °C либо нагревания до 200 °C гидрокарбоната натрия в целях получения карбоната натрия:

Na2CO3 → Na2O + CO2 (t  = 1000 oC),

2NaHCO3 → Na2CO3 + CO2 + H2O (t  = 200 oC), после чего проводят первую химическую реакцию.

Полученный оксид натрия охлаждают и очень осторожно (реакция происходит с выделением большого количества тепла) добавляют в воду:

Na2O + H2O → 2NaOH.

  1. 2. путем взаимодействия раствора соды с гашеной известью (т.н. известковый метод, каустификация соды):

Na2CO3 + Ca(OH)2 → CaCO3 + 2NaOH (t  = 80 oC).

Карбонат кальция отделяется от раствора фильтрацией, затем раствор упаривается до получения расплавленного продукта, содержащего около 92 % масс. NaOH.

  1. 3. ферритным методом:

Fe2O3 + Na2CO3 → 2NaFeO2 + CO2 (t  = 1100-1200 oC).

Реакционную смесь спекают.

2NaFeO2 + (n+1)H2O → Fe2O3•nH2O + 2NaOH.

Реакция протекает медленно.

Fe2O3•nH2O выпадает в осадок, который после отделения его от раствора возвращается в процесс в первую реакцию.

  1. 4. электролизом:

2NaCl + 2H2O → 2Na2O + H2 + Cl2.

Одновременно получаются также водород и хлор.

Гидроксид натрия, водород и хлор вырабатываются тремя электрохимическими методами. Два из них – электролиз с твёрдым катодом (диафрагменный и мембранный методы), третий – электролиз с жидким ртутным катодом (ртутный метод).

Химические свойства гидроксида натрия. Химические реакции гидроксида натрия:

Гидроксид натрия – химически активное вещество, сильное химическое основание.

Водные растворы NaOH имеют сильную щелочную реакцию (pH 1%-раствора = 13,4).

Химические свойства гидроксида натрия аналогичны свойствам гидроксидов других щелочных металлов. Поэтому для него характерны следующие химические реакции:

1. реакция гидроксида натрия с серой:

3S + 6NaOH → 2Na2S + Na2SO3 + 3H2O (t = 50-60 °C).

В результате реакции образуются сульфид натрия, сульфит натрия и вода. При этом гидроксид натрия в качестве исходного вещества используется в виде разбавленного раствора.

2. реакция гидроксида натрия с хлором:

2NaOH + Cl2 → NaCl + NaClO + H2O.

В результате реакции образуются хлорид натрия, гипохлорит натрия и вода. При этом гидроксид натрия в качестве исходного вещества используется в виде холодного разбавленного раствора.

Аналогично проходят реакции гидроксида натрия и с другими галогенами.

3. реакция гидроксида натрия с алюминием:

2Al + 6NaOH → 2NaAlO2 + 3H2 + 2Na2O (t = 450 °C).

В результате реакции образуются алюминат натрия, водород и оксид натрия.

4. реакция гидроксида натрия с алюминием и водой:

2Al + 2NaOH + 6H2O → 2Na[Al(OH)4] + 3H2.

В результате реакции образуются тетрагидроксоалюминат натрия и водород. При этом гидроксид натрия в качестве исходного вещества используется в виде концентрированного раствора.

Эта реакция использовалась в первой половине XX века в воздухоплавании: для заполнения водородом аэростатов и дирижаблей в полевых условиях, так как данная реакция не требует источников электроэнергии, а исходные реагенты для неё могут легко транспортироваться.

5. реакция гидроксида натрия с цинком:

Zn + 2NaOH → Na2ZnO2 + H2 (t = 550 °C).

В результате реакции образуются цинкат натрия и водород.

6. реакция гидроксида натрия с цинком и водой:

Zn + 2NaOH + 2H2O → Na2[Zn(OH)4] + H2.

В результате реакции образуются тетрагидроксоцинкат натрия и водород. При этом гидроксид натрия в качестве исходного вещества используется в виде концентрированного раствора.

7. реакция гидроксида натрия с ортофосфорной кислотой:

H3PO4 + NaOH → NaH2PO4 + H2O.

В результате реакции образуются дигидроортофосфат натрия и вода. При этом в качестве исходных веществ используются: фосфорная кислота в виде концентрированного раствора, гидроксид натрия в виде разбавленного раствора.

8. реакция гидроксида натрия с азотной кислотой:

NaOH + HNO3 → NaNO3 + H2O.

В результате реакции образуются нитрат натрия и вода. При этом азотная кислота в качестве исходного вещества используется в виде разбавленного раствора.

9. реакция гидроксида натрия с азотной кислотой:

NaOH + HNO3 → NaNO3 + H2O.

В результате реакции образуются нитрат натрия и вода. При этом азотная кислота в качестве исходного вещества используется в виде разбавленного раствора.

Аналогично проходят реакции гидроксида натрия и с другими кислотами.

10. реакция гидроксида натрия с сероводородом:

H2S + 2NaOH → Na2S + 2H2O,

H2S + NaOH → NaHS + H2O.

В результате реакции образуются в первом случае – сульфид натрия и вода, во втором – гидросульфид натрия и вода. При этом гидроксид натрия в первом случае в качестве исходного вещества используется в виде концентрированного раствора, во втором случае – в виде разбавленного раствора.

11. реакция гидроксида натрия с фтороводородом:

HF + NaOH → NaF + H2O,

2HF + NaOH → NaHF2 + H2O.

В результате реакции образуются в первом случае – фторид натрия и вода, во втором – гидрофторид натрия и вода. При этом гидроксид натрия и фтороводород в первом случае в качестве исходного вещества используются в виде разбавленного раствора, во втором случае фтороводород используется в виде в виде концентрированного раствора.

12. реакция гидроксида натрия с бромоводородом:

HBr + NaOH → NaBr + H2O.

В результате реакции образуются бромид натрия и вода. При этом гидроксид натрия и бромоводород в качестве исходного вещества используются в виде разбавленного раствора.

13. реакция гидроксида натрия с йодоводородом:

HI + NaOH → NaI + H2O.

В результате реакции образуются йодид натрия и вода. При этом гидроксид натрия в качестве исходного вещества используется в виде разбавленного раствора.

14. реакция гидроксида натрия с оксидом цинка:

ZnO + 2NaOH → Na2ZnO2 + H2O (t = 500-600 °C).

Оксид цинка является амфотерным оксидом. В результате реакции образуются цинкат натрия и вода.

15. реакция гидроксида натрия с оксидом цинка и водой:

ZnO + NaOH + H2O → Na[Zn(OH)3] (t = 100 °C),

ZnO + 2NaOH + H2O → Na2[Zn(OH)4] (t = 90 °C).

Оксид цинка является амфотерным оксидом. В результате реакции образуется в первом случае – тригидроксоцинкат натрия и вода, во втором случае – тетрагидроксоцинкат натрия. При этом гидроксид натрия в качестве исходного вещества используется в первом случае в виде 40 % разбавленного раствора, во втором – в виде 60 % разбавленного раствора.

16. реакция гидроксида натрия с оксидом алюминия:

Al2O3 + 2NaOH → 2NaAlO2 + H2O (t = 900-1100 °C).

Оксид алюминия является амфотерным оксидом. В результате реакции образуются алюминат натрия и вода.

17. реакция гидроксида натрия с оксидом алюминия и водой:

Al2O3 + 6NaOH + 3H2O → 2Na3[Al(OH)6],

Al2O3 + 2NaOH + 3H2O → 2Na[Al(OH)4].

Оксид алюминия является амфотерным оксидом. В результате реакции образуется в первом случае – гексагидроксоалюминат натрия, во втором случае – тетрагидроксоалюминат натрия. При этом гидроксид натрия в качестве исходного вещества используется во втором случае в виде концентрированного горячего  раствора.

18. реакция гидроксида натрия с оксидом железа:

Fe2O3 + 2NaOH → 2NaFeO2 + H2O (t = 600 °C, р).

Оксид железа является амфотерным оксидом. В результате реакции образуются феррит натрия и вода. Реакция происходит при сплавлении исходных веществ.

Аналогично проходят реакции гидроксида натрия и с другими амфотерными оксидами.

19. реакция гидроксида натрия с оксидом углерода (углекислым газом):

NaOH + CO2 → NaHCO3.

В результате реакции образуется гидрокарбонат натрия.

20. реакция гидроксида натрия с оксидом серы:

SO2 + NaOH → NaHSO3.

В результате реакции образуется гидросульфит натрия. При этом гидроксид натрия в качестве исходного вещества используется в виде разбавленного раствора.

21. реакция гидроксида натрия с оксидом кремния:

2NaOH + SiO2 → Na2SiO3 + H2O (t = 900-1000 °C),

4NaOH + SiO2 → Na4SiO4 + 2H2O.

В результате реакции образуется в первом случае – силикат натрия и вода, во втором случае – ортосиликат натрия и вода. При этом гидроксид натрия в качестве исходного вещества используется во втором случае в виде концентрированного раствора.

22. реакция гидроксида натрия с гидроксидом алюминия:

Al(OH)3 + NaOH → NaAlO2 + 2H2O (t = 1000 °C),

Al(OH)3 + NaOH → Na[Al(OH)4].

Гидроксид алюминия является амфотерным основанием. В результате реакции образуются в первом случае – алюминат натрия и вода, во втором случае – тетрагидроксоалюминат натрия.  При этом гидроксид натрия в качестве исходного вещества используется во втором случае в виде концентрированного раствора.

23. реакция гидроксида натрия с гидроксидом цинка:

Zn(OH)2 + 2NaOH → Na2[Zn(OH)4].

Гидроксид цинка является амфотерным основанием. В результате реакции образуется тетрагидроксоцинкат натрия.  При этом гидроксид натрия в качестве исходного вещества используется в виде концентрированного раствора.

24. реакция гидроксида натрия с гидроксидом железа:

Fe(OH)3 + 3NaOH ⇄ Na3[Fe(OH)6].

Гидроксид железа является амфотерным основанием. В результате реакции образуется гексагидроксоферрат натрия.

Аналогично проходят реакции гидроксида натрия и с другими амфотерными гидроксидами.

25. реакция гидроксида натрия с сульфатом железа:

FeSO4 + 2NaOH → Fe(OH)2 + Na2SO4 (kat = N2).

В результате реакции образуются гидроксид железа и сульфат натрия.

26. реакция гидроксида натрия с хлоридом меди:

CuCl2 + 2NaOH → Cu(OH)2 + 2NaCl.

В результате реакции образуются гидроксид меди и хлорид натрия.  При этом гидроксид натрия в качестве исходного вещества используется в виде разбавленного раствора.

27. реакция гидроксида натрия с нитратом свинца:

Pb(NO3)2 + 2NaOH → Pb(OH)2 + 2NaNO3.

В результате реакции образуются гидроксид свинца и нитрат натрия.  При этом гидроксид натрия в качестве исходного вещества используется в виде разбавленного раствора.

28. реакция гидроксида натрия с хлоридом алюминия:

AlCl3 + 3NaOH → Al(OH)3 + 3NaCl.

В результате реакции образуются гидроксид алюминия и хлорид натрия.  При этом гидроксид натрия в качестве исходного вещества используется в виде разбавленного раствора.

Аналогично проходят реакции гидроксида натрия и с другими солями. 

Применение и использование гидроксида натрия:

Гидроксид натрия используется во множестве отраслей промышленности и для бытовых нужд:

– в целлюлозно-бумажной промышленности для делигнификации(сульфатный процесс) целлюлозы, в производстве бумаги, картона, искусственных волокон, древесно-волоконных плит;

– для омыления жиров при производстве мыла, шампуня и других моющих средств;

– в химических отраслях промышленности – для нейтрализации кислот и кислотных оксидов, как реагент или катализатор в химических реакциях, в химическом анализе для титрования, для травления алюминия и в производстве чистых металлов, в нефтепереработке – для производства масел;

– для изготовления биодизельного топлива – получаемого из растительных масел и используемого для замены обычного дизельного топлива.

Для получения биодизеля к девяти массовым единицам растительного масла добавляется одна массовая единица спирта (то есть соблюдается соотношение 9:1), а также щелочной катализатор (NaOH). Полученный эфир (главным образом линолевой кислоты) отличается хорошей воспламеняемостью, обеспечиваемой высоким цетановым числом. Цетановое число – условная количественная характеристика самовоспламеняемости дизельныхтоплив в цилиндре двигателя (аналог октанового числа для бензинов). Если для минерального дизтоплива характерен показатель в 50-52 %, то метиловый эфир уже изначально соответствует 56-58 % цетана. Сырьём для производства биодизеля могут быть различные растительные масла: рапсовое, соевое и другие, кроме тех, в составе которых высокое содержание пальмитиновой кислоты (пальмовое масло). При его производстве в процессе этерификации также образуется глицерин который используется в пищевой, косметической и бумажной промышленности;

– в качестве агента для растворения засоров канализационных труб, в виде сухих гранул или в составе гелей. Гидроксид натрия дезагрегирует засор и способствует лёгкому продвижению его далее по трубе;

– в текстильной промышленности – для мерсеризации хлопка и шерсти. При кратковременной обработке едким натром с последующей промывкой волокно приобретает прочность и шелковистый блеск;

– в приготовлении пищи: для мытья и очистки фруктов и овощей от кожицы, в производстве шоколада и какао, напитков, мороженого, окрашивания карамели, для размягчения маслин и придания им чёрной окраски, при производстве хлебобулочных изделий. Зарегистрирован в качестве пищевой добавки E-524;

– в фотографии – как ускоряющее вещество в проявителях для высокоскоростной обработки фотографических материалов.

Примечание: © Фото //www.pexels.com, //pixabay.com

Коэффициент востребованности
15 275

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Адрес как найти экстрасенсов
  • Что означает ошибка 80010017 на ps3 как исправить
  • Как найти размеры одной молекулы
  • Как найти свое кпп
  • Как найти тангенс если известно его значение

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии