Геометрической прогрессией называется последовательность отличных от нуля чисел, каждый член которой, начиная со второго, равен предыдущему, умноженному на одно и то же число.
Другими словами, последовательность (bn) – геометрическая последовательность, если для натурального n выполняются условия:
bn+1= bn×q,
где q некоторое число, которое называется знаменатель прогрессии, и bn≠0
Примером такой последовательности может быть ряд чисел 2; 10; 50; 250;…., откуда видно, что каждое последующее больше предыдущего в пять раз, значит, каждый член равен предыдущему, умноженному на одно и то же число 5. Или, например, ряд чисел 20; -2; 0,2; -0,02……, где видно, что каждое последующее умножали на одно и то же число (-0,1).
Так как по определению геометрической прогрессии мы имеем одно и то же число, то это и есть число q. Оно называется «знаменатель» геометрической прогрессии. Он находится путем деления соседних членов – последующего на предыдущий, то есть q=bn+1bn. Знаменатель не может быть равным нулю!
Для того чтобы задать геометрическую прогрессию, надо знать ее первый член и знаменатель. Например, если b1=4, q=3, то получим прогрессию: 4; 12; 36; ….и так далее. Ну, а зная первый член и знаменатель, можно найти любой член геометрической прогрессии: b2=b1q; b3=(b1q)q=b1q2; b4==((b1q)q)q=b1q3. Так можно продолжать и дальше, но из этих записей видно, что можно найти n-ый член геометрической последовательности, если умножить первый член на знаменатель, степень которого на 1 меньше порядкового номера искомого члена, то есть bn=b1 qn−1 . Мы получили формулу n-ого члена геометрической прогрессии.
Формула n-ого члена геометрической прогрессии
bn=b1 ×qn−1
Рассмотри на примерах применение формулы bn=b1 qn−1 для указанного члена геометрической прогрессии.
Пример №1. Найти четвертый член геометрической прогрессии, если известно, что b1=6, q=3. Составляем формулу для b4:
b4=b1 q4−1=b1 q3
Подставляем в формулу значения, указанные в задании и вычисляем результат: b4=6×33=162.
Найти шестой член геометрической прогрессии 2; -6;……. Здесь для нахождения b6 надо знать знаменатель q. Для его нахождения надо -6 разделить на 2, получим -3, то есть q=-3. Теперь составляем формулу для b6, подставляем значения и вычисляем ответ:
b6=b1 q6−1=b1 q5=2×(−3)5=−486
Свойство геометрической прогрессии
Квадрат любого члена геометрической прогрессии, начиная со второго, равен произведению предыдущего и последующего ее членов. Формула:
b2n=bn−1×bn+1
Верным является и утверждение, обратное данному: если в последовательности чисел, отличных от нуля, квадрат каждого члена, начиная со второго, равен произведению предыдущего и последующего членов, то эта последовательность чисел является геометрической прогрессией.
Другими словами, с помощью данной формулы можно найти неизвестный член геометрической прогрессии, соседние члены которого известны. Рассмотрим применение данного свойства на примерах.
Пример №2. Найти b5, если задана геометрическая прогрессия, в которой b4=32, b6=128. Составляем формулу, подставляем в нее значения и вычисляем:
b25=b5−1×b5+1=b4 ×b6 =32×128=4096
Этим действием мы нашли квадрат пятого члена геометрической прогрессии, поэтому извлекаем квадратный корень из числа 4096 для нахождения значения b5: b5=√4096=64
Найти у, если дана геометрическая прогрессия …..24; у; 96. Видим, что у находится между соседними известными числами 24 и 96. Поэтому, следуя свойству, умножаем данные числа и извлекаем квадратный корень из полученного числа: у=√24×96=√2304=48.
Формула суммы n первых членов геометрической прогрессии
Формула суммы членов геометрической прогрессии с известными членами
Sn=bnq−b1q−1 , где q≠1
Для нахождения суммы по данной формуле нужно знать первый и последний член геометрической прогрессии, а также ее знаменатель.
Также есть вторая формула, по которой можно находить сумму нескольких первых членов прогрессии, зная только первый ее член и знаменатель:
Формула суммы членов геометрической прогрессии с известным первым членом и знаменателем
Sn=b1(qn−1)q−1, где q≠1
Рассмотрим применение данных формул на примере, решив его двумя способами.
Пример №3. Найти сумму пяти первых членов геометрической прогрессии, если известно, что b1=2; b5=162; q=-3.
Способ №1 (первая формула). Составим формулу для нахождения S5:
S5=b5q−b1q−1
Подставим значения b1=2; b5=162 и найдем результат:
S5=162(−3)−2−3−1=−486−2−4=−488−4=122
Способ №2 (вторая формула).
Sn=b1(qn−1)q−1
Для решения нам нужен первый член и знаменатель: b1=2; q=-3. Составим формулу:
S5=b1(q5−1)q−1
Подставим в формулу данные значения и вычислим сумму:
S5=2((−3)5−1)−3−1=2(−243−1)−4=−488−4=122
Таким образом, мы увидели, что у нас получился один и тот же результат 122 в обоих способах решения. Выбор формулы зависит от данных в условии задачи.
Задание OM1420222
У Кати есть попрыгунчик (каучуковый шарик). Она со всей силы бросила его об асфальт. После первого отскока попрыгунчик подлетел на высоту 400 см, а после каждого следующего отскока от асфальта подлетал на высоту в 2 раза меньше предыдущей. После какого по счету отскока высота, на которую подлетит попрыгунчик, станет меньше 20 см?
Определим, к какой последовательности относится наша задача. По условию имеем, что после каждого следующего отскока от асфальта подлетал на высоту в 2 раза меньше предыдущей. Это геометрическая прогрессия. Теперь выпишем, что известно по условию и определим, что надо найти: первый член прогрессии b1=400, знаменатель q=12, n – количество отскоков, значит, найти надо n при bn<20.
Подставим в формулу n-ого члена геометрической прогрессии наши данные:
bn=b1qn-1=400∙(12)n−1<20
Разделим обе части неравенства на 400: (12)n−1<120
Будем рассматривать случаи, начиная с n=3: (12)3−1<120; (12)2<120; (14)<120 неверно
При n=4: (12)4−1<120; (12)3<120; (18)<120 неверно
При n=5: (12)5−1<120; (12)4<120; (116)<120 неверно
При n=6: (12)6−1<120; (12)5<120; (132)<120 верно. Следовательно, после 6 отскока высота, на которую подлетит попрыгунчик, станет меньше 20 см.
К данной задаче можно сделать проверку, а также она является простейшим способом для её решения. Рассмотрим этот способ:
1 отскок – 400 см
2 отскок – 200 см (разделили на 2, так как по условию сказано, что с каждым отскоком высота уменьшалась в 2 раза)
3 отскок – 100 см
4 отскок – 50 см
5 отскок – 25 см
6 отскок – 12,5 см, а это меньше, чем 20 см, как требуется в условии. Поэтому пишем в ответ число 6.
Ответ: 6
pазбирался: Даниил Романович | обсудить разбор
Даниил Романович | Просмотров: 6.3k
Геометрическая прогрессия
Допустим, у нас есть числовая последовательность:
2; 4; 6;8;10;………………..
Ты сразу же ответишь, что это легко и имя такой последовательности — арифметическая прогрессия с разностью ее членов d = 2. А как на счет такого:
Если ты будешь вычитать из последующего числа предыдущее, то ты увидишь, что каждый раз получается новая разница
(9;90;900 и т.д.), но последовательность определенно существует и ее несложно заметить – каждое следующие число в 10 раз больше предыдущего!
Такой вид числовой последовательности называется геометрической прогрессией и обозначается bn
.
Определение:
Геометрическая прогрессия {bn } — это числовая последовательность, первый член которой отличен от нуля, а каждый член, начиная со второго, равен предыдущему, умноженному на одно и то же число q ≠ 0. Это число называют знаменателем геометрической прогрессии.
Ограничения, что первый член {b1} не равен 0 и q ≠ 0 не случайны. Допустим, что их нет, и первый член все же равен 0, а q равно, хм.. пусть 2, тогда получается:
b1=0
b1=0⋅2=0...... и так далее.
Согласись, что это уже никакая не прогрессия.
Как ты понимаешь, те же самые результаты мы получим, если b1 будет каким-либо числом, отличным от нуля, а q=0. В этих случаях прогрессии просто не будет, так как весь числовой ряд будут либо все нули, либо одно число, а все остальные нули.
Теперь поговорим поподробнее о знаменателе геометрической прогрессии, то есть q.
Повторим: q – это число, во сколько раз изменяется каждый последующий член геометрической прогрессии.
Как ты думаешь, каким может быть q? Правильно, положительным и отрицательным, но не нулем (мы говорили об этом чуть выше).
1 случай: ЕСЛИ q > 0.
Допустим, что q у нас положительное. Пусть в нашем случае q=3, а b1=4. Чему равен второй член b2 и b3? Ты без труда ответишь, что:
b2=4⋅3=12
b3=12⋅3=36
b4 = 36 ⋅3=108
………………………………………. и т.д.
Все верно. Соответственно, если q>0, то все последующие члены прогрессии имеют одинаковый знак – они положительны.
2 случай: ЕСЛИ q < 0.
А что если q отрицательное? Например, q=−3, а b1=4. Чему равен второй член b2 и b3?
Это уже совсем другая история
b2=4⋅−3=−12
b3=−12⋅(−3)=36
b4=36⋅(−3)= — 108
………………………………………. и т.д.
Попробуй посчитать 45 член данной прогрессии. Сколько у тебя получилось?
ВЫВОДЫ о числе q:
Таким образом, если q<0, то знаки членов геометрической прогрессии чередуются. То есть, если ты увидишь прогрессию, с чередующимися знаками у ее членов, значит ее знаменатель на 100% отрицательный. Это знание может помочь тебе проверять себя при решении задач на эту тему.
Теперь немного потренируемся: попробуй определить, какие числовые последовательности являются геометрической прогрессией, а какие арифметической:
- 3; 6; 12; 24; 48; 96… Ответ: 3; 3⋅2; 6⋅2; 12⋅2; 24⋅2; 48⋅2… Это геометрическая последовательность. Знаменатель: q=2.
- 1; 12; 23; 34; 45 … Ответ: 1; 1+11; 12+11; 23+11; 34+11… Это арифметическая прогрессия. Разность: d=11.
- −99; 33; −11… Ответ: -99; -99:(-3); 33:(-3);… Это геометрическая последовательность. Знаменатель: q=-3.
- 5; 7; 9; 11; 13… Ответ: 5; 5+2; 7+2; 9+2; 11+2… Это арифметическая прогрессия. Разность: d=2.
- −6; 5; 17; 28; 39… Ответ: −6; -6+12; 5+12; 17+12=29, но не 28 Это просто какая-то последовательность чисел.
- 64; 16; 4; 1… Ответ: 64; 64:(4); 16:(4); 4:(… Это геометрическая последовательность. Знаменатель: q=-3.
- 2; 4; 8; 18… Ответ: 2; 2⋅2; 4⋅2; 8⋅2=16, но не 18 Это просто какая-то последовательность чисел.
Разобрался? Сравним наши ответы:
Как ты уже догадываешься, сейчас ты сам выведешь формулу, которая поможет найти тебе любой член геометрической прогрессии. Или ты ее уже вывел для себя, расписывая, как поэтапно находить 6-ой член? Если так, то проверь правильность твоих рассуждений.
Пример № 1. Дано:
Пусть в нашем случае q=3, а b1=4. Найти 4 элемент последовательности.Проиллюстрируем это на примере нахождения 4-го члена данной прогрессии:
Свойство геометрической прогрессии
Помнишь свойство членов арифметической прогрессии? Да, да, как найти значение определенного числа прогрессии, когда есть предыдущее и последующее значения членов данной прогрессии. Вспомнил? Вот это:
Возьмем еще одну простую геометрическую прогрессию, в которой нам известны. Теперь перед нами стоит точно такой же вопрос для членов геометрической прогрессии. Чтобы вывести подобную формулу, давай начнем рисовать и рассуждать. Вот увидишь, это очень легко, и если ты забудешь, то сможешь вывести ее самостоятельно.
Пример № 3. Свойство геометрической прогрессии.
Пусть q=3, а b1=2. Тогда последовательность представима в следующем виде:
2; 6; 18; 54; 162; 486……..
Абстрагируемся от чисел, которые у нас даны, сосредоточимся только на их выражении через формулу. Нам необходимо найти значение, выделенное оранжевым цветом, зная соседствующие с ним члены. Попробуем произвести с ними различные действия, в результате которых мы сможем получить b3= b1⋅q2
Теперь посчитаем, чему же равно b3: СТР 231 ( ДОКА-ВО). У МЕНЯ ОНО ВЫШЕ.
Для того, чтобы проверить, существует ли такая геометрическая прогрессия или нет, необходимо посмотреть, одинаковое ли q между всеми ее заданными членами? Рассчитай q для первого и второго случая.
Видишь, почему мы должны писать два ответа? Потому что знак у искомого члена зависит от того, какой
q – положительный или отрицательный! А так как мы не знаем, какой он, нам необходимо писать оба ответа и с плюсом, и с минусом. Так как q>0, то оставляем ответ 18.
Обязательно посмотрите материал видео:
Видео YouTube
Домашняя работа по теме «Геометрическая прогрессия».
17.04.2020. Разбираете теорию и решение заданий на сайте. Смотрите в учебнике разбор теории стр 229-233. Обязательно смотрите видео. Еще выложу видео в вк. Делаете задания из учебника: № 818, 820, 822, 823. ДЗ можно не присылать. Разобраться самостоятельно, сделать упражнения в тетрадь. В случае вопроса, можете мне написать в соц сетях, я проконсультирую. Удачи.
18.04.2020. Разбираете теорию и решение заданий на сайте. Смотрите в учебнике разбор теории стр 229-233. Обязательно смотрите видео. Еще выложу видео в вк.
Домашняя работа: ОТВЕТЫ С РЕШЕНИЕМ НА ПОЧТУ: kda05@mail.ru
Не забыть подписать листки, иначе гадать, кто прислал, не буду! ФИО и класс!
Я подобрал для вас задачи из ОГЭ 2020 года. Такого плана задачи ждут вас на экзамене.
1) В геометрической прогрессии известно, что
. Найти пятый член этой прогрессии.
2) Геометрическая прогрессия задана формулой
— го члена
. Укажите четвертый член этой прогрессии.
3) Геометрическая прогрессия задана условием Найдите первые 4 ее члена.
4) Выписаны первые несколько членов геометрической прогрессии: 17, 68, 272, … Найдите её четвёртый член.
5) Выписано несколько последовательных членов геометрической прогрессии: … ; 150 ; x ; 6 ; 1,2 ; … Найдите член прогрессии, обозначенный буквой x.
6) Выписаны первые несколько членов геометрической прогрессии: −1024; −256; −64; … Найдите сумму первых 5 её членов. Пока формулу не знаете, но найдите два оставшихся и сложите вручную.
7) Выписано несколько последовательных членов геометрической прогрессии: … ; 1,75; x; 28 ; −112; … Найдите член прогрессии, обозначенный буквой x.
Дана геометрическая прогрессия (bn), знаменатель которой равен 2, а b1 = 16. Найдите b4.
9) Дана геометрическая прогрессия (bn), для которой b3 = , b6 = -196. Найдите знаменатель прогрессии.
10) Геометрическая прогрессия задана условием b1 = −3, bn + 1 = 6bn. Найдите первые 5 элементов этой прогрессии.
11) Выписано несколько последовательных членов геометрической прогрессии: … ; -12 ; x ; -3 ; 1,5 ; … Найдите член прогрессии, обозначенный буквой x.
запиши периодическую дробь (0,(8)) обыкновенной дробью.
Решение.
Достаточно очевидно, что (0,(8)=0,8+0,08+0,008+…) Слагаемые в правой части равенства образуют бесконечно убывающую геометрическую прогрессию, первый член которой равен (0,8), знаменатель равен (0,1). Найдём сумму по формуле:
.
Осталось выполнить нужные действия с десятичными дробями:
.
Таким образом, бесконечная периодическая десятичная дробь (0,(8)) обращается в обыкновенную дробь (8/9).
Ответ: (0,(8)=8/9).
Калькулятор онлайн.
Решение геометрической прогрессии.
Дано: b1, q, n
Найти: bn и первых n членов.
Эта математическая программа находит ( b_n ) и первых ( n ) членов
геометрической прогрессии, исходя из заданных пользователем чисел ( b_1, q ) и ( n ).
Числа ( b_1) и ( q ) можно задать не только целые, но и дробные. Причём, дробное число можно ввести в виде десятичной
дроби ( ( 2,5 ) ) и в виде обыкновенной дроби ( ( -5frac{2}{7} ) ).
Программа не только даёт ответ задачи, но и отображает процесс нахождения решения.
Этот калькулятор онлайн может быть полезен учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и
экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре.
А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее
сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным
решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень
образования в области решаемых задач повышается.
Если вы не знакомы с правилами ввода чисел, рекомендуем с ними ознакомиться.
Правила ввода чисел
Числа ( b_1) и ( q ) можно задать не только целые, но и дробные.
Число ( n) может быть только целое положительное.
Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так 2.5 или так 2,5
Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Ввод:
Результат: ( -frac{2}{3} )
Целая часть отделяется от дроби знаком амперсанд: &
Ввод:
Результат: ( -1frac{2}{3} )
Введите числа b1, q, n
Наши игры, головоломки, эмуляторы:
Немного теории.
Числовая последовательность
В повседневной практике часто используется нумерация различных предметов, чтобы указать порядок их расположения. Например,
дома на каждой улице нумеруются. В библиотеке нумеруются читательские абонементы и затем располагаются в порядке присвоенных
номеров в специальных картотеках.
В сберегательном банке по номеру лицевого счёта вкладчика можно легко найти этот счёт и посмотреть, какой вклад на нём лежит.
Пусть на счёте № 1 лежит вклад а1 рублей, на счёте № 2 лежит вклад а2 рублей и т. д. Получается числовая последовательность
a1, a2, a3, …, aN
где N — число всех счетов. Здесь каждому натуральному числу n от 1 до N поставлено в соответствие число an.
В математике также изучаются бесконечные числовые последовательности:
a1, a2, a3, …, an, … .
Число a1 называют первым членом последовательности, число a2 — вторым членом последовательности,
число a3 — третьим членом последовательности и т. д.
Число an называют n-м (энным) членом последовательности, а натуральное число n — его номером.
Например, в последовательности квадратов натуральных чисел 1, 4, 9, 16, 25, …, n2, (n + 1)2, …
а1 = 1 — первый член последовательности; аn = n2 является n-м членом последовательности;
an+1= (n + 1)2 является (n + 1)-м (эн плюс первым) членом последовательности.
Часто последовательность можно задать формулой её n-го члена.
Например, формулой ( a_n=frac{1}{n}, ; n in mathbb{N} ) задана последовательность
( 1, ; frac{1}{2} , ; frac{1}{3} , ; frac{1}{4} , dots,frac{1}{n} , dots )
Геометрическая прогрессия
Рассмотрим равносторонний треугольник со стороной 4 см. Построим треугольник, вершинами которого являются середины сторон данного
треугольника. По свойству средней линии треугольника сторона второго треугольника равна 2 см. Продолжая аналогичные построения,
получим треугольники со сторонами ( 1, ; frac{1}{2}, ; frac{1}{4} ) см и т.д. Запишем последовательность длин сторон этих
треугольников: ( 4, ; 2, ; 1, ; frac{1}{2}, ; frac{1}{4}, ; frac{1}{8}, dots )
В этой последовательности каждый её член, начиная со второго, равен предыдущему, умноженному на одно и то же число ( frac{1}{2} )
Определение.
Числовая последовательность
b1, b2, b3, …, bn, …
называется геометрической прогрессией если для всех натуральных n выполняется равенство
bn+1 = bnq,
где ( b_n neq 0 ), q — некоторое число, не равное нулю.
Из этой формулы следует, что ( frac{ b_{n+1}}{b_n}=q ). Число q называется знаменателем геометрической прогрессии.
По определению геометрической прогрессии
( b_{n+1} = b_n q, quad b_{n-1}=frac{b_n}{q}, )
откуда
( b_n^2 = b_{n-1}b_{n+1}, quad n>1 )
Если все члены геометрической прогрессии положительны, то ( b_n=sqrt{b_{n-1}b_{n+1}} ), т.е. каждый член прогрессии, начиная
со второго, равен среднему геометрическому двух соседних с ним членов. Этим объясняется название «геометрическая» прогрессия.
Отметим, что если b1 и q заданы, то остальные члены геометрической прогрессии можно вычислить по рекуррентной формуле
bn+1 = bnq. Однако для больших n это трудоёмко. Обычно пользуются формулой n-го члена.
По определению геометрической прогрессии
b2 = b1q,
b3 = b2q = b1q2,
b4 = b3q = b1q3 и т.д.
Вообще,
( b_n = b_1q^{n-1} )
так как n-й член геометрической прогрессии получается из первого члена умножением (n-1) раз на число q.
Эту формулу называют формулой n-го члена геометрической прогрессии.
Также не сложно получить формулу для нахождения n-ого члена геометрической прогрессии зная m-ый член.
Запишем формулы n-го члена геометрической прогрессии и m-го члена:
( b_n = b_1q^{n-1} )
$$ b_m = b_1q^{m-1} Rightarrow b_1 = frac{b_m}{q^{m-1}} $$
Подставляя b1 в первое равенство получим:
$$ b_n = frac{b_m}{q^{m-1}} cdot q^{n-1} = b_m cdot q^{n-1-(m-1)} = b_m cdot q^{n-m} $$
Таким образом мы получили формулу для нахождения n-ого члена геометрической прогрессии зная m-ый член:
( b_n = b_m cdot q^{n-m} )
Сумма n первых членов геометрической прогрессии
Найдем сумму
S = 1 + 3 + 32 + 33 + 34 + 35.
Умножим обе части равенства на 3:
3S = 3 + 3 + 32 + 33 + 34 + 35 + 36.
Перепишем эти два равенства так:
S = 1 + (3 + 32 + 33 + 34 + 35),
3S = (3 + 3 + 32 + 33 + 34 + 35) + 36.
Выражения, стоящие в скобках, одинаковы. Поэтому, вычитая из нижнего равенства верхнее, получаем:
3S — S = 36 — 1, 2S = 36 — 1,
$$ S=frac{3^6 — 1}{2} = frac{729 — 1}{2} = 364 $$
Рассмотрим теперь произвольную геометрическую прогрессию ( b_1, ; b_1q, ; dots, ; b_1q^n, ; dots ) знаменатель
которой ( q neq 1 ).
Пусть Sn — сумма n первых членов этой прогрессии:
( S_n = b_1 + b_1q + b_1q^2 + … + b_1q^{n-1} )
Тогда сумма n первых членов геометрической прогрессии со знаменателем ( q neq 1 ) равна
$$ S_n = frac{b_1(q^n-1)}{q-1} $$
Можно получить ещё одну формулу для нахождения суммы n первых членов геометрической прогрессии:
$$ S_n = frac{b_1(q^n-1)}{q-1} = frac{b_1q^n — b_1}{q-1} = frac{b_1q^{n-1} cdot q — b_1}{q-1} $$
Так как ( b_n=b_1q^{n-1} ), то можно подставить ( b_n ) в предыдущее выражение:
$$ S_n = frac{b_n q — b_1}{q-1} $$
Геометрическая прогрессия — это числовая последовательность, в которой все ее члены расположены в порядке, подчиняющемся определенной закономерности. Формула геометрической прогрессии определяет, что каждое следующее число будет получено умножением предыдущего на знаменатель прогрессии — постоянное число, не меняющее свое значение в пределах одной последовательности.
bn=b1 q(n-1)
В зависимости от знаменателя прогрессии, выписанные члены геометрической прогрессии могут давать различный вид ряда. Если знаменатель является числом положительным, больше 1 (k > 1), тогда он будет увеличивать значение каждого следующего числа. Такая прогрессия будет монотонно возрастать на протяжении всего ряда. Если знаменатель — положительный, но находится между 0 и 1 (0 < k < 1), тогда он будет каждый раз уменьшать значение следующего члена, и такая прогрессия будет называться бесконечно убывающая геометрическая прогрессия.
Если для все возрастающей последовательности, можно только найти сумму первых членов геометрической прогрессии, то сумма членов бесконечно убывающей прогрессии будет равна вполне конкретному числовому значению, которое может рассчитать калькулятор. Третий случай представлен отрицательным знаменателем (k < 0), тогда прогрессия становится знакочередующейся, то есть первые члены геометрической прогрессии определяют порядок знаков для всей последовательности чисел. Как знаменатель геометрической прогрессии, так и первый член геометрической прогрессии по определению не могут быть равны нулю.
Существует всего несколько формул геометрической прогрессии, из которых можно вывести все необходимые для решения конкретных задач:
• Формула первого члена геометрической прогрессии;
• Формула n члена геометрической прогрессии;
• Формула суммы первых членов геометрической прогрессии;
• Формула суммы бесконечно убывающей геометрической прогрессии;
• Формула знаменателя геометрической прогрессии.
Таким образом, если условиями задана геометрическая прогрессия с хотя бы двумя параметрами из всех выше представленных, для нее можно будет найти любую из всех прочих переменных.