Как найти где встретятся тела

Задачи на движение навстречу друг другу (встречное движение) — один из трех основных видов задач на движение.

Если два объекта движутся навстречу друг другу, то они сближаются:

dvizhenie navstrechu drug drugu

Чтобы найти скорость сближения двух объектов, движущихся навстречу друг другу, надо сложить их скорости:  

    [{v_c} = {v_1} + {v_2}]

Скорость сближения больше, чем скорость каждого из них.

Скорость, время и расстояние связаны между собой формулой пути:

    [s = v cdot t]

Рассмотрим некоторые задачи на встречное движение.

Задача 1

Два велосипедиста выехали навстречу друг другу. Скорость одного из низ 12 км/ч, а другого — 10 км/ч. Через 3 часа они встретились. Какое расстояние было между ними в начале пути?

Решение:

zadachi na dvizhenie navstrechu drug drugu v 4 klasse

Условие задач на движение удобно оформлять в виде таблицы:

v, км/ч

t, ч

s, км

I велосипедист

12

3

?

II велосипедист

10

3

?

1) 12+10=22 (км/ч) скорость сближения велосипедистов

2) 22∙3=66 (км) было между велосипедистами в начале пути.

Ответ: 66 км.

Задача 2

Два поезда идут навстречу друг другу. Скорость одного из них 50 км/ч, скорость другого —  60 км/ч. Сейчас между ними 440 км. Через сколько часов они встретятся?

Решение:

zadachi na dvizhenie navstrechu drug drugu

v, км/ч

t, ч

s, км

I поезд

60

?

?

II поезд

50

?

?

1) 60+50=110 (км/ч) скорость сближения поездов

2) 440:110=4 (ч) время, через которое поезда встретятся.

Ответ: через 4 ч.

Задача 3.

Два пешехода находились на расстоянии 20 км друг от друга. Они вышли одновременно навстречу друг другу и встретились через 2 часа. Скорость одного пешехода 6 км/ч. Найти скорость другого пешехода.

dvizhenie navstrechu drug drugu 4 klass

v, км/ч

t, ч

s, км

I пешеход

6

2

?

II пешеход

?

2

?

1) 20:2=10 (км/ч) скорость сближения пешеходов

2) 10-6=4 (км/ч) скорость другого пешехода.

Ответ: 4 км/ч.

Теперь, когда мы с вами научились описывать движение тел, применим паши знания для решения практических задач. Начнем с одной из самых важных и распространенных в природе и технике задач – задачи о встрече тел. Наверняка вы неоднократно слышали о стыковках космических аппаратов, видели, как встречные поезда одновременно подъезжают к промежуточной станции, выпущенная из лука стрела попадает в цель и т. п. Все эти ситуации можно представить как движение двух точечных тел навстречу друг другу. Задача заключается в том, чтобы определить, где произойдет их встреча и когда, т. е. через какое время после начала движения тел, она состоится.

Считается, что два тела встретились, если в некоторый момент времени их положения в пространстве совпали. Иначе говоря, в этот момент времени их координаты в какой-либо системе отсчета сравнялись. Поэтому для решения задачи нам понадобится ввести систему отсчета, в которой необходимо будет описать движение этих тел (в графическом или аналитическом виде). Только таким образом мы сможем грамотно решить данную задачу.

Рассмотрим простой пример. Пусть по прямолинейной дороге навстречу друг другу одновременно начинают двигаться пешеход и велосипедист. Расстояние между ними в момент начала движения составляет l = 20 м. При этом они движутся равномерно относительно дороги навстречу друг другу со скоростями, модули которых |vп| = 1 м/с и |vв| = 3 м/с соответственно. (Мы поставили знаки модуля у скоростей движущихся тел. Это связано с тем, что, пока не выбрана система отсчета. мы не можем сказать, у кого из них значение скорости будет положительным, а у кого – отрицательным. Другими словами, мы не можем определить, будут увеличиваться или уменьшаться их координаты в процессе движения.)

Ответим на два вопроса. Где произойдет встреча пешехода и велосипедиста? Когда (через какое время после начала движения) она состоится?

Рассмотрим каждый шаг решения задачи.

Шаг 1. Введем систему отсчета (рис. 20). В качестве тела отсчета выберем землю, а началом отсчета – место, где растет дерево, от которого начинает свое движение пешеход. Координатную ось направим вдоль дороги в направлении движения пешехода. В качестве единицы длины выберем 1 м. Будем считать пешехода и велосипедиста точечными телами. Координата каждого из тел будет численно равна расстоянию от дерева до этого тела в заданный момент времени. Часы (секундомер) включим в тот момент, когда начинается движение.

Изменение координат пешехода и велосипедиста, движущихся навстречу друг другу, с течением времени

Шаг 2. Определим значение координа пешехода и велосипедиста в момент включения секундомера. Ясно, что начальная координата пешехода xп0 (читается «икс пэ нулевое») равна 0, а велосипедиста xв0 = 20 м.

Шаг 3. Найдем значения скоростей равномерного движения тел. Из рисунка видно, что в выбранной нами системе отсчета координата пешехода в процессе движения будет увеличиваться. Следовательно, значение скорости пешехода положительно: vп = 1 м/с. Напротив, велосипедист в выбранной системе отсчета движется так, что его координата со временем уменьшается. Поэтому значение его скорости отрицательно: vв = -3 м/с.

После того как определены начальные координаты и значения скоростей движения тел, можно переходить к описанию их движения. Для этого у нас есть несколько способов. Начнем с графического.

Шаг 4 (графический). Построим систему координат, состоящую из оси времени t и оси координаты X. Отметим начальные координаты пешехода и велосипедиста (рис. 21).

Графики движения велосипедиста и пешехода. Точка пересечения графиков — их место встречи

Шаг 5 (графический). Теперь от точки xп0 проведем прямую линию, описывающую зависимость координаты пешехода от времени. Поскольку по условию задачи координата пешехода за каждую секунду увеличиваются на 1 м, то это будет «поднимающаяся» прямая линия, проходящая через точки с координатами (1; 1), (2; 2), (3; 3), (4;4), (5; 5) и т.д.

График зависимости от времени координаты велосипедиста – это тоже прямая, но она исходит из точки xв0 = 20 м, расположенной на оси координаты. Координата велосипедиста со временем уменьшается на 3 м за каждую секунду. Поэтому линия, описывающая зависимость этой координаты от времени, «опускается» за каждую секунду на 3 м, т. е. эта линия проходит через точки с координатами (0; 20), (1; 17), (2; 14), (3; 11), (4; 8), (5; 5) и т. д.

Из рис. 21 следует, что прямые, описывающие зависимости координат пешехода и велосипедиста от времени, пересекаются в точке (tвстр = 5 с, xвстр = 5 м). Это означает, что через 5 секунд после начала движения координаты пешехода и велосипедиста становятся равными: xп = xв = xвстр = 5 м. Иначе говоря, в этот момент времени положения тел в пространстве совпадут, и, таким образом, в момент tвстр = 5 с в точке с координатой xвстр = 5 м произойдет встречи пешехода и велосипедиста.

Итоги

Встречей двух тел считают совпадение их положений в пространстве (равенство их координат в одной и той же системе отсчета) в некоторый момент времени.

При графическом способе решения задачи о встрече движущихся тел необходимо: ввести систему отсчета; определить начальные координаты и значения скоростей тел; построить графики движения тел; найти точку пересечения этих графиков.

Вопросы

  1. Приведите примеры встречи двух тел. Что означает в кинематике, что два тела встретились?
  2. Перечислите шаги решения задачи «встреча».

Упражнения

  1. Определите графическим способом время и место встречи двух равномерно движущихся навстречу друг другу школьников, если в момент включения часов: а) расстояние между ними l = 30 м, а модули их скоростей |v1| = 3 м/с, |v2| = 3 м/с; б) расстояние между ними l = 30 м, |v1| = 1 м/с, |v2| = 4 м/с.
  2. Сформулируйте условие задачи, решение которой дано на рис. 22.
  3. Определите место встречи (город) двух равномерно движущихся поездов, которые одновременно выезжают навстречу друг другу из Москвы (|v1| = 100 км/ч) и Санкт-Петербурга (|v2| = 50 км/ч) (рис. 23). Расстояние между Москвой и Санкт-Петербургом – 600 км.

Определить место встречи движущихся навстречу друг другу тел

Пример №1

Допустим, из точки ( displaystyle A) и из точки ( displaystyle B) навстречу друг другу выехали две машины. Скорость одной машины – ( displaystyle 60) км/ч, а скорость ( displaystyle 2) машины – ( displaystyle 40) км/ч. Они встретились через ( displaystyle 1,2) часа.

Какое расстояние между пунктами ( displaystyle A) и ( displaystyle B)?

1 вариант решения

Можно рассуждать так: машины встретились, значит расстояние между городами – это сумма расстояния, которая прошла первая машина, и расстояния, которое прошла вторая.

( displaystyle 60cdot 1,2text{ }=text{ }72) (км) – путь, который проехала первая машина

( displaystyle 40cdot 1,2text{ }=text{ }48) (км) – путь, который проехала вторая машина

( displaystyle 72 + 48 = 120) (км) – расстояние, которое проехали обе машины, то есть, расстояние между пунктами ( displaystyle A) и ( displaystyle B).

2 вариант решения (более рациональный)

А можно просто воспользоваться очень логичной формулой о сложении скоростей.

Проверим, работает ли она:

( displaystyle 60 + 40 = 100) (км/ч) – скорость сближения машин

( displaystyle 100cdot 1,2text{ }=text{ }120) (км) – расстояние, которые проехали машины, то есть, расстояние между пунктами ( displaystyle A) и ( displaystyle B).

Оба решения являются верными. Второе просто более рациональное.

Пример №3

Итак, задача:

Из пункта ( displaystyle A) и пункта ( displaystyle B) машины движутся навстречу друг другу со скоростями ( displaystyle 50) км/ч и ( displaystyle 80) км/ч. Расстояние между пунктами – ( displaystyle 195) км.

Через сколько времени машины встретятся?

1 вариант решения

Пусть ( displaystyle x) – время, которое едут машины, тогда путь первой машины – ( displaystyle 50x), а путь второй машины – ( displaystyle 80x).

Их сумма и будет равна расстоянию между пунктами ( A) и ( B) – ( displaystyle 50x+80x=195).

Решим уравнение:

( displaystyle 50x+80x=195)

( displaystyle 130x=195)

( displaystyle x=1,5) (ч) – время, через которое встретились машины.

2 вариант решения (более рациональный)

( displaystyle 50 + 80 = 130) (км/ч) – скорость сближения машин;

( displaystyle 195:130 = 1,5) (ч) – время, которое машины были в пути.

Задача решена.

Пример №4

Из пунктов A и B одновременно навстречу друг другу выехали два автомобиля со скоростями ( displaystyle 60) км/ч и ( displaystyle 40) км/ч. Через сколько минут они встретятся. Если расстояние между пунктами ( displaystyle 100) км?

2 способа решения:

I способ

Относительная скорость автомобилей ( displaystyle 60+40=100) км/ч. Это значит, что если мы сидим в первом автомобиле, то он нам кажется неподвижным, но второй автомобиль приближается к нам со скоростью ( displaystyle 100) км/ч. Так как между автомобилями изначально расстояние ( displaystyle 100) км, время, через которое второй автомобиль проедет мимо первого:

( displaystyle t=frac{100}{100}=1 час=60 минут).

II способ

Время от начала движения до встречи у автомобилей, очевидно, одинаковое. Обозначим его ( displaystyle t). Тогда первый автомобиль проехал путь ( displaystyle 60t), а второй – ( displaystyle 40t).

В сумме они проехали все ( displaystyle 100) км. Значит,

( displaystyle 60t+40t=100Rightarrow t=1 час=60 минут).

Из пункта ( displaystyle A) в пункт ( displaystyle B), расстояние между которыми ( displaystyle 30) км, одновременно выехал велосипедист и мотоциклист. Известно, что в час мотоциклист проезжает на ( displaystyle 65) км больше, чем велосипедист.

Определите скорость велосипедиста, если известно, что он прибыл в пункт ( displaystyle B) на ( displaystyle 156) минут позже, чем мотоциклист.

Вот такая вот задача. Соберись, и прочитай ее несколько раз. Прочитал? Начинай рисовать – прямая, пункт ( displaystyle A), пункт ( displaystyle B), две стрелочки…

В общем рисуй, и сейчас сравним, что у тебя получилось.

Пустовато как-то, правда? Рисуем таблицу.

Как ты помнишь, все задачи на движения состоят из ( displaystyle 3) компонентов: скорость, время и путь. Именно из этих граф и будет состоять любая таблица в подобных задачах.

Правда, мы добавим еще один столбец – имя, про кого мы пишем информацию – мотоциклист и велосипедист.

Так же в шапке укажи размерность, в какой ты будешь вписывать туда величины. Ты же помнишь, как это важно, правда?

У тебя получилась вот такая таблица?

Скорость,
км/ч
Время t,
часов
Путь S,
км
велосипедист
мотоциклист

Теперь давай анализировать все, что у нас есть, и параллельно заносить данные в таблицу и на рисунок.

Первое, что мы имеем – это путь, который проделали велосипедист и мотоциклист. Он одинаков и равен ( displaystyle 30) км. Вносим!

Скорость,
км/ч
Время t,
часов
Путь S,
км
велосипедист ( displaystyle 30)
мотоциклист ( displaystyle 30)

Рассуждаем дальше. Мы знаем, что мотоциклист проезжает на ( displaystyle 65) км/ч больше, чем велосипедист, да и в задаче нужно найти скорость велосипедиста…

Возьмем скорость велосипедиста за ( displaystyle x), тогда скорость мотоциклиста будет ( displaystyle x+65)…

Если с такой переменной решение задачи не пойдет – ничего страшного, возьмем другую, пока не дойдем до победного. Такое бывает, главное не нервничать!

Скорость,
км/ч
Время t,
часов
Путь S,
км
велосипедист ( displaystyle x) ( displaystyle 30)
мотоциклист ( displaystyle x+65) ( displaystyle 30)

Таблица преобразилась. У нас осталась не заполнена только одна графа – время. Как найти время, когда есть путь и скорость?

Правильно, разделить путь на скорость. Вноси это в таблицу.

Скорость,
км/ч
Время t,
часов
Путь S,
км
велосипедист ( displaystyle x) ( displaystyle frac{30}{x}) ( displaystyle 30)
мотоциклист ( displaystyle x+65) ( displaystyle frac{30}{65+x}) ( displaystyle 30)

Вот и заполнилась наша таблица, теперь можно внести данные на рисунок.

Что мы можем на нем отразить?

Молодец. Скорость передвижения мотоциклиста и велосипедиста.

Еще раз перечитаем задачу, посмотрим на рисунок и заполненную таблицу.

Какие данные не отражены ни в таблице, ни на рисунке?

Верно. Время, на которое мотоциклист приехал раньше, чем велосипедист. Мы знаем, что разница во времени – ( displaystyle 156) минут.

Что мы должны сделать следующим шагом? Правильно, перевести данное нам время из минут в часы, ведь скорость дана нам в км/ч.

( displaystyle 156) минут / ( displaystyle 60) минут = ( displaystyle 2,6) часа.

И что дальше, спросишь ты? А дальше числовая магия!

Взгляни на свою таблицу, на последнее условие, которое в нее не вошло и подумай, зависимость между чем и чем мы можем вынести в уравнение?

Правильно. Мы можем составить уравнение, основываясь на разнице во времени!

( displaystyle frac{30}{x}-frac{30}{65+x}=2,6)

Логично? Велосипедист ехал больше, если мы из его времени вычтем время движения мотоциклиста, мы как раз получим данную нам разницу.

Это уравнение – рациональное. Если не знаешь, что это такое, прочти тему «Рациональные уравнения».

Приводим слагаемые к общему знаменателю:

( displaystyle frac{30cdot left( 65+x right)}{xcdot left( 65+x right)}-frac{30x}{xcdot left( 65+x right)}=2,6)

Раскроем скобки и приведем подобные слагаемые: Уф! Усвоил? Попробуй свои силы на следующей задаче.

( displaystyle frac{1950}{xcdot left( 65+x right)}=2,6)

Из этого уравнения мы получаем следующее:

( displaystyle 2,6cdot xcdot left( 65+x right)=1950)

( displaystyle xcdot left( 65+x right)=frac{1950}{2,6})

( displaystyle xcdot left( 65+x right)=750)

Раскроем скобки и перенесем все в левую часть уравнения:

( displaystyle {{x}^{2}}+65{x}-750=0)

Вуаля! У нас простое квадратное уравнение. Решаем!

( displaystyle {{x}^{2}}+65{x}-750=0)

( displaystyle D={{b}^{2}}-4ac)

( displaystyle D={{65}^{2}}-4cdot 1cdot left( -750 right)=4225+3000=7225)

( displaystyle sqrt{D}=sqrt{7225}=85)

( displaystyle {{x}_{1,2}}=frac{-bpm sqrt{D}}{2a})

( displaystyle {{x}_{1}}=frac{-65+85}{2}=10)

( displaystyle {{x}_{2}}=frac{-65-85}{2}=-75)

Мы получили два варианта ответа. Смотрим, что мы взяли за ( displaystyle x)? Правильно, скорость велосипедиста.

Вспоминаем правило «3Р», конкретнее «разумность». Понимаешь, о чем я? Именно! Скорость не может быть отрицательной, следовательно, наш ответ – ( displaystyle 10) км/ч.

Пример №9

Два велосипедиста одновременно отправились в ( displaystyle 165)-километровый пробег. Первый ехал со скоростью, на ( displaystyle 5) км/ч большей, чем скорость второго, и прибыл к финишу на ( displaystyle 5,5) часов раньше второго.

Найти скорость велосипедиста, пришедшего к финишу вторым. Ответ дайте в км/ч.

Напоминаю:

  • Прочитай задачу пару раз – усвой все-все детали. Усвоил?
  • Начинай рисовать рисунок – в каком направлении они двигаются? какое расстояние они прошли? Нарисовал?
  • Проверь, все ли величины у тебя одинаковой размерности, и начинай выписывать кратко условие задачи, составляя табличку (ты же помнишь, какие там графы?).
  • Пока все это пишешь, думай, что взять за ( displaystyle x)? Выбрал? Записывай в таблицу!
  • Ну а теперь просто: составляем уравнение и решаем. Да, и напоследок – помни о «3Р»!

Все сделал? Молодец! У меня получилось, что скорость велосипедиста – ( displaystyle 10) км/ч.

Пример №10

Из пункта ( displaystyle A) круговой трассы выехал велосипедист. Через ( displaystyle 40) минут он еще не вернулся в пункт ( displaystyle A) и из пункта ( displaystyle A) следом за ним отправился мотоциклист.

Через ( displaystyle 20) минут после отправления он догнал велосипедиста в первый раз, а еще через ( displaystyle 40) минут после этого догнал его во второй раз.

Найдите скорость велосипедиста, если длина трассы равна ( displaystyle 50) км. Ответ дайте в км/ч.

Попробуй нарисовать рисунок к этой задаче и заполнить для нее таблицу. Вот что получилось у меня:

Пусть скорость велосипедиста будет ( displaystyle x), а мотоциклиста – ( displaystyle y). До момента первой встречи велосипедист был в пути ( displaystyle 60) минут, а мотоциклист – ( displaystyle 20).

При этом они проехали равные расстояния:

( displaystyle 60x=20y (1))

Между встречами велосипедист проехал расстояние ( displaystyle 40x), а мотоциклист – ( displaystyle 40y).

Но при этом мотоциклист проехал ровно на один круг больше, это видно из рисунка:

(Надеюсь, ты понимаешь, что по спирали они на самом деле не ездили – спираль просто схематически показывает, что они ездят по кругу, несколько раз проезжая одни и те же точки трассы.)

Значит,

( displaystyle 40x+50=40y (2))

Полученные уравнения решаем в системе:

( displaystyle left{ begin{array}{l}60x=20y\40x+50=40yend{array} right.Leftrightarrow left{ begin{array}{l}y=3x\4x+5=4yend{array} right.Rightarrow text{4}x+5=12xRightarrow )

( displaystyle Rightarrow x=frac{5}{8}=0,625frac{text{км}}{мин}=0,625cdot 60frac{text{км}}{text{ч}}=37,5frac{text{км}}{text{ч}})

Ответ: ( displaystyle 37,5).

Разобрался? Попробуй решить самостоятельно следующие задачи:

Представь, что у тебя есть плот, и ты спустил его в озеро. Что с ним происходит? Правильно. Он стоит, потому что озеро, пруд, лужа, в конце концов, – это стоячая вода.

Скорость течения в озере равна ( displaystyle 0).

Плот поедет, только если ты сам начнешь грести. Та скорость, которую он приобретет, будет собственной скоростью плота. Неважно куда ты поплывешь – налево, направо, плот будет двигаться с той скоростью, с которой ты будешь грести.

Это понятно? Логично же.

А сейчас представь, что ты спускаешь плот на реку, отворачиваешься, чтобы взять веревку…, поворачиваешься, а он … уплыл…

Это происходит потому что у реки есть скорость течения, которая относит твой плот по направлению течения.

Его скорость при этом равна нулю (ты же стоишь в шоке на берегу и не гребешь) – он движется со скоростью течения.

Разобрался? Тогда ответь вот на какой вопрос – «С какой скоростью будет плыть плот по реке, если ты сидишь и гребешь?» Задумался?

Здесь возможно два случая:

1 случай – ты плывешь по течению, и тогда ты плывешь с собственной скоростью + скорость течения. Течение как бы помогает тебе двигаться вперед.

2 случай – ты плывешь против течения. Тяжело? Правильно, потому что течение пытается «откинуть» тебя назад. Ты прилагаешь все больше усилий, чтобы проплыть хотя бы ( displaystyle 100) метров, соответственно скорость, с которой ты передвигаешься, равна собственная скорость – скорость течения.

Кинематика

1

Из пунктов A и B, расстояние между которыми равно l, одновременно навстречу друг другу начали двигаться два тела: первое со скоростью v1, второе — v2. Определить, через сколько времени они встретятся и расстояние от точки A до места их встречи. Решить задачу также графически.

Решение

1-й способ:

Зависимость координат тел от времени:

.

В момент встречи координаты тел совпадут, т. е. . Значит, встреча произойдет через время от начала движения тел. Найдем расстояние от пункта A до места встречи как .

2-й способ:

Графики зависимости координат тел от времени изображены на рисунке.

Скорости тел равны тангенсу угла наклона соответствующего графика зависимости координаты от времени, т. е. , . Моменту встречи соответствует точка C пересечения графиков.

2

Через какое время и где встретились бы тела (см. задачу 1), если бы они двигались в одном и том же направлении AB, причем из точки B тело начало двигаться через t0 секунд после начала движения его из точки A?

Решение

Графики зависимости координат тел от времени изображены на рисунке.

Составим на основе рисунка систему уравнений:

Решив систему относительно tC получим:

Тогда расстояние от пункта A до места встречи:

.

3

Моторная лодка проходит расстояние между двумя пунктами A и B по течению реки за время t1 = 3 ч, а плот — за время t = 12 ч. Сколько времени t2 затратит моторная лодка на обратный путь?

Решение

Пусть s — расстояние между пунктами A и B, v — скорость лодки относительно воды, а u — скорость течения. Выразив расстояние s трижды — для плота, для лодки, движущейся по течению, и для лодки, движущейся против течения, получим систему уравнений:

Решив систему, получим:

4

Эскалатор метро спускает идущего по нему вниз человека за 1 мин. Если человек будет идти вдвое быстрее, то он спустится за 45 с. Сколько времени спускается человек, стоящий на эскалаторе?

Решение

Обозначим буквой l длину эскалатора; t1 — время спуска человека, идущего со скоростью v; t2 — время спуска человека, идущего со скоростью 2v; t — время спуска стоящего на эскалаторе человека. Тогда, рассчитав длину эскалатора для трех различных случаев (человек идет со скоростью v, со скоростью 2v и стоит на эскалаторе неподвижно), получим систему уравнений:

Решив эту систему уравнений, получим:

5

Человек бежит по эскалатору. В первый раз он насчитал n1 = 50 ступенек, во второй раз, двигаясь в ту же сторону со скоростью втрое большей, он насчитал n2 = 75 ступенек. Сколько ступенек он насчитал бы на неподвижном эскалаторе?

Решение

Поскольку при увеличении скорости человек насчитал большее количество супенек, значит направления скоростей эскалатора и человека совпадают. Пусть v — скорость человека относительно эскалатора, u — скорость эскалатора, l — длина эскалатора, n — число ступенек на неподвижном эскалаторе. Число ступенек, умещающихся в единице длины эскалатора, равно n/l. Тогда время пребывания человека на эскалаторе при его движении относительно эскалатора со скоростью v равно l/(v+u), а путь, пройденный по эскалатору, равен vl/(v+u). Тогда количество ступенек, насчитываемых на этом пути, равно . Аналогично, для случая, когда скорость человека относительно эскалатора 3v, получим .

Таким образом, мы можем составить систему уравнений:

Или:

Исключив отношение u/v, получим:

6

Между двумя пунктами, расположенными на реке на расстоянии s = 100 км один от другого, курсирует катер, который, идя по течению, проходит это расстояние за время t1 = 4 ч, а против течения, — за время t2 = 10 ч. Определить скорость течения реки u и скорость катера v относительно воды.

Решение

Выразив расстояние s дважды, — для катера, идущего по течению, и катера, идущего против течения, — получим систему уравнений:

Решив эту систему, получим v = 17,5 км/ч, u = 7,5 км/ч.

7

Мимо пристани проходит плот. В этот момент в поселок, находящийся на расстоянии s1 = 15 км от пристани, вниз по реке отправляется моторная лодка. Она дошла до поселка за время t = 3/4 ч и, повернув обратно, встретила плот на расстоянии s2 = 9 км от поселка. Каковы скорость течения реки и скорость лодки относительно воды?

Решение

Пусть v — скорость моторной лодки, u — скорость течения реки. Поскольку от момента отправления моторной лодки от пристани до момента встречи моторной лодки с плотом, очевидно, пройдет одинаковое время и для плота, и для моторной лодки, то можно составить следующее уравнение:

где слева — это выражение времени, прошедшего до момента встречи, для плота, а справа — для моторной лодки. Запишем уравнение для времени, которое затратила моторная лодка на преодоление пути s1 от пристани до поселка: t=s1/(v+u). Таким образом, получаем систему уравнений:

Откуда получим v = 16 км/ч, u = 4 км/ч.

8

Колонна войск во время похода движется со скоростью v1 = 5 км/ч, растянувшись по дороге на расстояние l = 400 м. Командир, находящийся в хвосте колонны, посылает велосипедиста с поручением головному отряду. Велосипедист отправляется и едет со скоростью v2 = 25 км/ч и, на ходу выполнив поручение, сразу же возвращается обратно с той же скоростью. Через сколько времени t после получения поручения он вернулся обратно?

Решение

В системе отсчета, связанной с колонной, скорость велосипедиста при движении к головному отряду равна v2v1, а при движении обратно v2+v1. Поэтому:

Упростив и подставив числовые значения, получим:

.

9

Вагон шириной d = 2,4 м, движущийся со скоростью v = 15 м/с, был пробит пулей, летевшей перпендикулярно движению вагона. Смещение отверстий в стенках вагона относительно друг друга равно l = 6 см. Какова скорость движения пули?

Решение

Обозначим буквой u скорость пули. Время полета пули от стенки до стенки вагона равно времени, за которое вагон проходит расстояние l. Таким образом, можно составить уравнение:

Отсюда находим u:

.

10

Какова скорость капель v2 отвесно падающего дождя, если шофер легкового автомобиля заметил, что капли дождя не оставляют следа на заднем стекле, наклоненном вперед под углом α = 60° к горизонту, когда скорость автомобиля v1 больше 30 км/ч?

Решение

Как видно из рисунка,

чтобы капли дождя не оставляли следа на заднем стекле, наобходимо, чтобы время прохождения каплей расстояния h было равно времени, за которое автомобиль пройдет расстояние l:

Или, выразив отсюда v2:

.

11

На улице идет дождь. В каком случае ведро, стоящее в кузове грузового автомобиля, наполнится быстрее водой: когда автомобиль движется или когда он стоит?

Ответ

12

С какой скоростью v и по какому курсу должен лететь самолет, чтобы за время t = 2 ч пролететь точно на Север путь s = 300 км, если во время полета дует северо-западный ветер под углом α = 30° к меридиану со скоростью u = 27 км/ч?

Решение

Запишем систему уравнений по рисунку.

Поскольку самолет должен лететь строго на север, проекция его скорости на ось Oy vy равна y-составляющей скорости ветра uy.

Или:

Решив эту систему, найдем, что самолет должен держать курс на северо-запад под углом 4°27′ к меридиану, а его скорость должна быть равна 174 км/ч.

13

По гладкому горизонтальному столу движется со скоростью v черная доска. Какой формы след оставит на этой доске мел, брошенный горизонтально со скоростью u перпендикулярно направлению движения доски, если: а) трение между мелом и доской пренебрежимо мало; б) трение велико?

Решение

Мел оставит на доске след, представляющий собой прямую линию, составляющую угол arctg(u/v) с направлением движения доски, т. е. совпадает с направлением суммы векторов скорости доски и мела. Это справедливо и для случая а) и для случая б), т. к. сила трения не влияет на направление движения мела, поскольку лежит на одной прямой с вектором скорости, то она лишь уменьшает скорость мела, поэтому траектория в случае б) может не доходить до края доски.

14

Корабль выходит из пункта A и идет со скоростью v, составляющей угол α с линией AB.

Под каким углом β к линии AB следовало бы выпустить из пункта B торпеду, чтобы она поразила корабль? Торпеду нужно выпустить в тот момент, когда корабль находился в пункте A. Скорость торпеды равна u.

Решение

Точка C на рисунке — это место встречи корабля и торпеды.

AC = vt, BC = ut, где t — время от старта до момента встречи. Согласно теореме синусов

или:

.

Отсюда находим β:

.

15

К ползуну, который может перемещаться по направляющей рейке,

прикреплен шнур, продетый через кольцо. Шнур выбирают со скоростью v. С какой скоростью u движется ползун в момент, когда шнур составляет с направляющей угол α?

Ответ и решение

u = v/cosα.

За очень малый промежуток времени Δt ползун перемещается на расстояние AB = Δl.

Шнур за этот же промежуток времени выбирают на длину AC = Δlcosα (угол ∠ACB можно считать прямым, поскольку угол Δα очень мал). Поэтому можно записать: Δl/u = Δlcosα/v, откуда u = v/cosα, что означает, что скорость выбирания веревки равна проекции скорости ползуна на направление веревки.

16

Рабочие, поднимающие груз,

тянут канаты с одинаковой скоростью v. Какую скорость u имеет груз в тот момент, когда угол между канатами, к которым он прикреплен, равен 2α?

Ответ и решение

u = v/cosα.

Проекция скорости груза u на направление веревки равна скорости веревки v (см. задачу 15), т. е.

ucosα = v,

откуда

u = v/cosα.

17

Стержень длиной l = 1 м шарнирно соединен с муфтами A и B, которые перемещаются по двум взаимно перпендикулярным рейкам.

Муфта A движется с постоянной скоростью vA = 30 см/с. Найти скорость vB муфты B в момент, когда угол OAB = 60°. Приняв за начало отсчета времени момент, когда муфта A находилась в точке O, определить расстояние OB и скорость муфты B в функции времени.

Ответ и решение

vB = vActgα = 17,3 см/с; , .

В любой момент времени проекции скоростей vA и vB концов стержня

на ось стержня равны между собой, так как иначе стержень должен был бы укорачиваться или удлиняться. Значит, можно записать: vAcosα = vBsinα. Откуда vB = vActgα.

В любой момент времени для треугольника OAB справедлива теорема Пифагора: l2 = OA2(t) + OB2(t). Найдем отсюда OB(t): . Поскольку OA(t) = vAt, тогда окончательно запишем выражение для OB(t) так: .

Поскольку ctgα в любой момент времени равен OA(t)/OB(t), то можно записать выражение для зависимости vB от времени: .

18

Танк движется со скоростью 72 км/ч. С какой скоростью движутся относительно Земли: а) верхняя часть гусеницы; б) нижняя часть гусеницы; в) точка гусеницы, которая в данный момент движется вертикально по отношению к танку?

Ответ и решение

а) 40 м/с; б) 0 м/с; в) ≈28,2 м/с.

Пусть v — скорость скорость танка относительно Земли. Тогда скорость любой точки гусеницы относительно танка также равна v. Скорость любой точки гусеницы относительно Земли есть сумма векторов скорости танка относительно Земли и скорости точки гусеницы относительно танка. Тогда для случая а) скорость будет равна 2v, для б) 0, а для в) v.

19

1. Автомобиль проехал первую половину пути со скоростью v1 = 40 км/ч, вторую — со скоростью v2 = 60 км/ч. Найти среднюю скорость на всем пройденном пути.

2. Автомобиль проехал половину пути со скоростью v1 = 60 км/ч, оставшуюся часть пути он половину времени шел со скоростью v2 = 15 км/ч, а последний участок — со скоростью v3 = 45 км/ч. Найти среднюю скорость автомобиля на всем пути.

Ответ и решение

1. vср=48 км/ч; 2. vср=40 км/ч.

1. Пусть s — весь путь, t — время, затраченное на преодоление всего пути. Тогда средняя скорости на всем пути равна s/t. Время t состоит из суммы промежутков времени, затраченных на преодоление 1-й и 2-й половин пути:

.

Подставив это время в выражение для средней скорости, получим:

.(1)

2. Решение этой задачи можно свести к решению (1.), если сначала определить среднюю скорость на второй половине пути. Обозначим эту скорость vср2, тогда можно записать:

,

где t2 — время, затраченное на преодоление 2-й половины пути. Путь, пройденный за это время, состоит из пути, пройденного со скоростью v2, и пути, пройденного со скоростью v3:

.

Подставив это в выражение для vср2, получим:

.

Далее, подставив это значение в (1) вместо v2, получим:

.

20

Поезд первую половину пути шел со скоростью в n=1,5 раза большей, чем вторую половину пути. Средняя скорость поезда на всем пути vcp = 43,2 км/ч. Каковы скорости поезда на первой (v1) и второй (v2) половинах пути?

Ответ и решение

v1=54 км/ч, v2=36 км/ч.

Пусть t1 и t2 — время прохождения поездом соответственно первой и второй половин пути, s — весь путь, пройденный поездом.

Составим систему уравнений — первое уравнение представляет собой выражение для первой половины пути, второе — для второй половины пути, а третье — для всего пути, пройденного поездом:

Сделав подстановку v1=nv2 и решив получившуюся систему уравнений, получим v2.

21

Два шарика начали одновременно и с одинаковой скоростью двигаться по поверхностям, имеющим форму, изображенную на рисунке.

Как будут отличаться скорости и времена движения шариков к моменту их прибытия в точку B? Трением пренебречь.

Ответ и решение

Скорости будут одинаковы. Время движения первого шарика будет больше.

На рисунке изображены приблизительные графики движения шариков.

Т.к. пути, пройденные шариками, равны, то площади заштрихованных фигур также равны (площадь заштрихованной фигуры численно равна пройденному пути), поэтому, как видно из рисунка, t1>t2.

22

Самолет летит из пункта A в пункт B и возвращается назад в пункт A. Скорость самолета в безветренную погоду равна v. Найти отношение средних скоростей всего перелета для двух случаев, когда во время перелета ветер дует: а) вдоль линии AB; б) перпендикулярно линии AB. Скорость ветра равна u.

Ответ и решение

.

Время полета самолета из пункта A в пункт B и обратно в случае, когда ветер дует вдоль линии AB:

.

Тогда средняя скорость в этом случае:

.

В случае, если ветер дует перпендикулярно линии AB, вектор скорости самолета должен быть направлен под углом к линии AB так, чтобы скомпенсировать влияние ветра:

Время полета «туда-обратно» в этом случае составит:

.

Скорости полета самолета в пункт B и обратно одинаковы и равны:

.

Теперь можно найти отношение средних скоростей, полученных для рассмотренных случаев:

.

23

Расстояние между двумя станциями s = 3 км поезд метро проходит со средней скоростью vср = 54 км/ч. При этом на разгон он затрачивает время t1 = 20 с, затем идет равномерно некоторое время t2 и на замедление до полной остановки тратит время t3 = 10 с. Построить график скорости движения поезда и определить наибольшую скорость поезда vмакс.

Ответ и решение

≈ 16,2 м/с.

На рисунке изображен график скорости движения поезда.

Пройденный поездом путь численно равен площади фигуры, ограниченной графиком и осью времени t, поэтому можно записать систему уравнений:

Из первого уравнения выражаем t2:

,

тогда из второго уравнения системы найдем vмакс:

.

24

От движущегося поезда отцепляют последний вагон. Поезд продолжает двигаться с той же скоростью v0. Как будут относиться пути, пройденные поездом и вагоном к моменту остановки вагона? Считать, что вагон двигался равнозамедленно. Решить задачу также графически.

Ответ

25

В момент, когда тронулся поезд, провожающий начал равномерно бежать по ходу поезда со скоростью v0=3,5 м/с. Принимая движение поезда равноускоренным, определить скорость поезда v в тот момент, когда провожаемый поравняется с провожающим.

Ответ

26

График зависимости скорости некоторого тела от времени изображен на рисунке.

Начертить графики зависимости ускорения и координаты тела, а также пройденного им пути от времени.

Ответ

Графики зависимости ускорения, координаты тела, а также пройденного им пути от времени изображены на рисунке.

27

График зависимости ускорения тела от времени имеет форму, изображенную на рисунке.

Начертить графики зависимости скорости, смещения и пути, пройденного телом, от времени. Начальная скорость тела равна нулю (на участке разрыва ускорение равно нулю).

28

Тело начинает двигаться из точки A со скоростью v0 и через некоторое время попадает в точку B.

Какой путь прошло тело, если оно двигалось равноускоренно с ускорением, численно равным a? Расстояние между точками A и B равно l. Найти среднюю скорость тела.

29

На рисунке дан график зависимости координаты тела от времени.

После момента t=t1 кривая графика — парабола. Что за движение изображено на этом графике? Построить график зависимости скорости тела от времени.

Решение

На участке от 0 до t1: равномерное движение со скоростью v1 = tgα;

на участке от t1 до t2: равнозамедленное движение;

на участке от t2 до t3: равноускоренное движение в противоположную сторону.

На рисунке изображен график зависимости скорости тела от времени.

30

На рисунке даны графики скоростей для двух точек, движущихся по одной прямой от одного и того же начального положения.

Известны моменты времени t1 и t2. В какой момент времени t3 точки встретятся? Построить графики движения.

31

За какую секунду от начала движения путь, пройденный телом в равноускоренном движении, втрое больше пути, пройденного в предыдущую секунду, если движение происходит без начальной скорости?

Ответ и решение

За вторую секунду.

Проще всего эту задачу решить графически. Т.к. пройденный телом путь численно равен площади фигуры под линией графика скорости, то из рисунка очевидно, что путь, пройденный за вторую секунду (площать под соответствующим участком графика равна площади трех треугольников), в 3 раза больше пути, пройденного на первую секунду (площадь равна площади одного треугольника).

32

Вагонетка должна перевезти груз в кратчайший срок с одного места на другое, находящееся на расстоянии L. Она может ускорять или замедлять свое движение только с одинаковым по величине и постоянным ускорением a, переходя затем в равномерное движение или останавливаясь. Какой наибольшей скорости v должна достичь вагонетка, чтобы выполнить указанное выше требование?

Ответ и решение

.

Очевидно, что вагонетка перевезет груз за минимальное время, если она будет первую половину пути двигаться с ускорением +a, а оставшуюся половину с ускорением —a.

Тогда можно записать следующие выражения: L = ½·vt1; v = ½·at1,

откуда находим максимальную скорость:

.

33

Реактивный самолет летит со скоростью v0=720 км/ч. С некоторого момента самолет движется с ускорением в течение t=10 с и в последнюю секунду проходит путь s=295 м. Определить ускорение a и конечную скорость v самолета.

Ответ и решение

a=10 м/с2, v=300 м/с.

Изобразим график скорости самолета на рисунке.

Скорость самолета в момент времени t1 равна v1 = v0 + a(t1t0). Тогда путь, пройденный самолетом за время от t1 до t2 равен s = v1(t2t1) + a(t2t1)/2. Отсюда можно выразить искомую величину ускорения a и, подставив значения из условия задачи (t1t0 = 9 с; t2t1 = 1 с; v0 = 200 м/с; s = 295 м), получим ускорение a = 10 м/с2. Конечная скорость самолета v = v2 = v0 + a(t2t0) = 300 м/с.

34

Первый вагон поезда прошел мимо наблюдателя, стоящего на платформе, за t1=1 с, а второй — за t2=1,5 с. Длина вагона l=12 м. Найти ускорение a поезда и его скорость v0 в начале наблюдения. Движение поезда считать равнопеременным.

Ответ и решение

a=3,2 м/с2, v0≈13,6 м/с.

Путь, пройденный поездом к моменту времени t1 равен:

,

а путь к моменту времени t1 + t2:

.

Из первого уравнения найдем v0:

.

Подставив полученное выражение во второе уравнение, получим ускорение a:

.

35

Шарик, пущенный вверх по наклонной плоскости, проходит последовательно два равных отрезка длиной l каждый и продолжает двигаться дальше. Первый отрезок шарик прошел за t секунд, второй — за 3t секунд. Найти скорость v шарика в конце первого отрезка пути.

Ответ и решение

.

Поскольку рассматриваемое движение шарика обратимо, целесообразно выбрать началом отсчета общую точку двух отрезков. При этом ускорение при движении на первом отрезке будет положительным, а при движении на втором отрезке — отрицательным. Начальная скорость в обоих случаях равна v. Теперь запишем систему уравнений движения для путей, пройденных шариком:

Исключив ускорение a, получим искомую скорость v:

.

36

Доска, разделенная на пять равных отрезков, начинает скользить по наклонной плоскости. Первый отрезок прошел мимо отметки, сделанной на наклонной плоскости в том месте, где находился передний край доски в начале движения, за τ=2 с. За какое время пройдет мимо этой отметки последний отрезок доски? Движение доски считать равноускоренным.

Ответ и решение

τп=0,48 с.

Найдем длину первого отрезка:

.

Теперь запишем уравнения движения для точек начала (момент времени t1) и конца (момент времени t2) пятого отрезка:

.

Или:

.

Выполнив подстановку найденной выше длины первого отрезка вместо l и найдя разность (t2t1), получим ответ.

37

Пуля, летящая со скоростью 400 м/с, ударяет в земляной вал и проникает в него на глубину 36 см. Сколько времени двигалась она внутри вала? С каким ускорением? Какова была ее скорость на глубине 18 см? На какой глубине скорость пули уменьшилась в три раза? Движение считать равнопеременным. Чему будет равна скорость пули к моменту, когда пуля пройдет 99% своего пути?

Ответ и решение

t = 1,8·10-3 с; a ≈ 2,21·105 м/с2; v ≈ 282 м/с; s = 32 см; v1 = 40 м/с.

Время движения пули внутри вала найдем из формулы h = vt/2, где h — полная глубина погружения пули, откуда t = 2h/v. Ускорение a = v/t.

38

По наклонной доске пустили катиться снизу вверх шарик. На расстоянии l = 30 см от начала пути шарик побывал дважды: через t1 = 1 с и через t2 = 2 с после начала движения. Определить начальную скорость v0 и ускорение a движения шарика, считая его постоянным.

Ответ и решение

v0 = 0,45 м/с; a = 0,3 м/с2.

Зависимость скорости шарика от времени выражается формулой v = v0at. В момент времени t = t1 и t = t2 шарик имел одинаковые по величине и противоположные по направлению скорости: v1 = — v2. Но v1 = v0at1 и v2 = v0at2, поэтому

v0at1 = — v0 + at2, или 2v0 = a(t1 + t2).

Т.к. шарик движется равноускоренно, то расстояние l можно выразить следующим образом:

.

Теперь можно составить систему из двух уравнений:

,

решив которую, получим:

; .

39

Тело падает с высоты 100 м без начальной скорости. За какое время тело проходит первый и последний метры своего пути? Какой путь проходит тело за первую, за последнюю секунду своего движения?

Ответ

t1 ≈ 0,45 с; t2 ≈ 0,023 с; s1 ≈ 4,9 м; s2 ≈ 40 м.

40

Определить время открытого положения фотографического затвора τ, если при фотографировании шарика, падающего вдоль вертикальной сантиметровой шкалы от нулевой отметки без начальной скорости, на негативе была получена полоска, простирающаяся от n1 до n2 делений шкалы?

Ответ

.

41

Свободно падающее тело прошло последние 30 м за время 0,5 с. Найти высоту падения.

Ответ

42

Свободно падающее тело за последнюю секунду падения прошло 1/3 своего пути. Найти время падения и высоту, с которой упало тело.

Ответ

43

С какой начальной скоростью v0 надо бросить вниз мяч с высоты h, чтобы он подпрыгнул на высоту 2h? Трением о воздух и другими потерями механической энергии пренебречь.

Ответ

.

44

С каким промежутком времени оторвались от карниза крыши две капли, если спустя две секунды после начала падения второй капли расстояние между каплями было 25 м? Трением о воздух пренебречь.

Ответ

45

Тело бросают вертикально вверх. Наблюдатель замечает промежуток времени t0 между двумя моментами, когда тело проходит точку B, находящуюся на высоте h. Найти начальную скорость бросания v0 и время всего движения тела t.

Ответ

; .

46

Из точек A и B, расположенных по вертикали (точка A выше) на расстоянии l = 100 м друг от друга, бросают одновременно два тела с одинаковой скоростью 10 м/с: из A — вертикально вниз, из B — вертикально вверх. Через сколько времени и в каком месте они встретятся?

Ответ

t = 5 с; на 75 м ниже точки B.

47

Тело брошено вертикально вверх с начальной скоростью v0. Когда оно достигло высшей точки пути, из того же начального пункта с той же скоростью v0 брошено второе тело. На какой высоте h от начального пункта они встретятся?

Ответ

.

48

Два тела брошены вертикально вверх из одной и той же точки с одинаковой начальной скоростью v0 = 19,6 м/с с промежутком времени τ = 0,5 с. Через какое время t после бросания второго тела и на какой высоте h встретятся тела?

Ответ

49

Аэростат поднимается с Земли вертикально вверх с ускорением a = 2 м/с2. Через τ = 5 с от начала его движения из него выпал предмет. Через сколько времени t этот предмет упадет на Землю?

Ответ

50

С аэростата, опускающегося со скоростью u, бросают вверх тело со скоростью v0 относительно Земли. Какое будет расстояние l между аэростатом и телом к моменту наивысшего подъема тела относительно Земли? Каково наибольшее расстояние lмакс между телом и аэростатом? Через какое время τ от момента бросания тело поравняется с аэростатом?

Ответ

l = v02 + 2uv0/(2g);

lмакс = (u + v0)2/(2g);

τ = 2(v0 + u)/g.

51

Тело, находящееся в точке B на высоте H = 45 м от Земли, начинает свободно падать. Одновременно из точки A, расположенной на расстоянии h = 21 м ниже точки B, бросают другое тело вертикально вверх. Определить начальную скорость v0 второго тела, если известно, что оба тела упадут на Землю одновременно. Сопротивлением воздуха пренебречь. Принять g = 10 м/с2.

Ответ

52

Тело свободно падает с высоты h. В тот же момент другое тело брошено с высоты H (H > h) вертикально вниз. Оба тела упали на землю одновременно. Определить начальную скорость v0 второго тела. Проверить правильность решения на численном примере: h = 10 м, H = 20 м. Принять g = 10 м/с2.

Ответ

53

Камень бросают горизонтально с вершины горы, имеющей уклон α. С какой скоростью v0 должен быть брошен камень, чтобы он упал на гору на расстоянии L от вершины?

Ответ

.

54

Двое играют в мяч, бросая его друг другу. Какой наибольшей высоты достигает мяч во время игры, если он от одного игрока к другому летит 2 с?

Ответ

55

Самолет летит на постоянной высоте h по прямой со скоростью v. Летчик должен сбросить бомбу в цель, лежащую впереди самолета. Под каким углом к вертикали он должен видеть цель в момент сбрасывания бомбы? Каково в этот момент расстояние от цели до точки, над которой находится самолет? Сопротивление воздуха движению бомбы не учитывать.

Ответ

; .

56

Два тела падают с одной и той же высоты. На пути одного тела находится расположенная под углом 45° к горизонту площадка, от которой это тело упруго отражается. Как различаются времена и скорости падения этих тел?

Ответ

Время падения тела, на пути которого находилась площадка, больше, поскольку вектор набранной к моменту сооударения скорости изменил свое направление на горизонтальное (при упругом соударении меняется направление скорости, но не его величина), значит вертикальная составляющая вектора скорости стала равна нулю, в то время как у другого тела вектор скорости не изменялся.

Скорости падения тел равны до момента столкновения одного из тел с площадкой.

57

Лифт поднимается с ускорением 2 м/с2. В тот момент, когда его скорость стала равна 2,4 м/с, с потолка лифта начал падать болт. Высота лифта 2,47 м. Вычислить время падения болта и расстояние, пройденное болтом относительно шахты.

Ответ

58

На некоторой высоте одновременно из одной точки брошены два тела под углом 45° к вертикали со скоростью 20 м/с: одно вниз, другое вверх. Определить разность высот Δh, на которых будут тела через 2 с. Как движутся эти тела друг относительно друга?

Ответ

Δh ≈ 56,4 м; тела отдаляются друг от друга с постоянной скоростью.

59

Доказать, что при свободном движении тел вблизи поверхности Земли их относительная скорость постоянна.

60

Из точки A свободно падает тело. Одновременно из точки B под углом α к горизонту бросают другое тело так, чтобы оба тела столкнулись в воздухе.

Показать, что угол α не зависит от начальной скорости v0 тела, брошенного из точки B, и определить этот угол, если . Сопротивлением воздуха пренебречь.

Ответ

61

Тело брошено под углом α к горизонту со скоростью v0. Определить скорость v этого тела на высоте h над горизонтом. Зависит ли эта скорость от угла бросания? Сопротивление воздуха не учитывать.

62

Под углом α=60° к горизонту брошено тело с начальной скоростью v=20 м/с. Через сколько времени t оно будет двигаться под углом β=45° к горизонту? Трение отсутствует.

63

Из трех труб, расположенных на земле, с одинаковой скоростью бьют струи воды: под углом 60, 45 и 30° к горизонту. Найти отношения наибольших высот h подъема струй воды, вытекающих из каждой трубы, и дальностей падения l воды на землю. Сопротивление воздуха движению водяных струй не учитывать.

64

Из точки, лежащей на верхнем конце вертикального диаметра d некоторой окружности, по желобам, установленным вдоль различных хорд этой окружности, одновременно начинают скользить без трения грузы.

Определить, через какой промежуток времени t грузы достигнут окружности. Как это время зависит от угла наклона хорды к вертикали?

65

Начальная скорость брошенного камня v0=10 м/с, а спустя t=0,5 с скорость камня v=7 м/с. На какую максимальную высоту над начальным уровнем поднимется камень?

Ответ

66

На некоторой высоте одновременно из одной точки с одинаковыми скоростями выбрасываются по всевозможным направлениям шарики. Что будет представлять собой геометрическое место точек нахождения шариков в любой момент времени? Сопротивлением воздуха пренебречь.

Ответ

Геометрическим местом точек нахождения шариков в любой момент времени будет сфера, радиус которой v0t, а ее центр расположен ниже начальной точки на величину gt2/2.

67

Цель, находящаяся на холме, видна с места расположения орудия под углом α к горизонту. Дистанция (расстояние по горизонтали от орудия до цели) равна L. Стрельба по цели производится при угле возвышения β.

Определить начальную скорость v0 снаряда, попадающего в цель. Сопротивление воздуха не учитывать. При каком угле возвышения β0 дальность стрельбы вдоль склона будет максимальной?

Ответ и решение

, .

Выберем систему координат xOy таким образом, чтобы точка отсчета совпала с орудием. Теперь запишем кинематические уравнения движения снаряда:

Заменив x и y на координаты цели (x = L, y = Ltgα) и исключив t, получим:

Дальность l полета снаряда вдоль склона l = L/cosα. Поэтому формулу, которую мы получили, можно переписать так:

.

Отсюда

,

это выражение максимально при максимальном значении произведения

.

Поэтому l максимально при максимальном значении = 1 или

.

При α = 0 мы получаем ответ β0 = π/4 = 45°.

68

Упругое тело падает с высоты h на наклонную плоскость. Определить, через сколько времени t после отражения тело упадет на наклонную плоскость. Как время зависит от угла наклонной плоскости?

Ответ

, от угла наклонной плоскости не зависит.

69

С высоты H на наклонную плоскость, образующую с горизонтом угол α=45°, свободно падает мяч и упруго отражается с той же скоростью. Найти расстояние от места первого удара до второго, затем от второго до третьего и т. д. Решить задачу в общем виде (для любого угла α).

Ответ

; s1 = 8Hsinα; s1:s2:s3 = 1:2:3.

70

Расстояние до горы определяют по времени между выстрелом и его эхом. Какова может быть погрешность τ в определении моментов выстрела и прихода эха, если расстояние до горы не менее 1 км, а его нужно определить с точностью 3%? Скорость звука в воздухе c=330 м/с.

Ответ

71

Глубину колодца хотят измерить с точностью 5%, бросая камень и замечая время τ, через которое будет слышен всплеск. Начиная с каких значений τ необходимо учитывать время прохождения звука? Скорость звука в воздухе c=330 м/с.

Ответ

Как найти место встречи двух тел

x = -3 + 2 * t – уравнение движение второго тела.

Необходимо найти время t и место встречи тел.

Для того, чтобы найти время встречи тел, приравняем оба уравнения (так как в месте встречи координаты х обоих тел будут одинаковы):

5 – 8 * t = -3 + 2 * t

2 * t + 8 * t = 5 + 3

Теперь найдем координату:

х = 5 – 8 * t = 5 – 8 * 0,8 = 5 – 6,4 = -1.4

Ответ: время встречи t = 0,8 секунд, место встречи х = -1,4.

  • 10 – 11 классы
  • Физика
  • 6 баллов

Найти место и время встречи двух тел 2 способами (графич. и аналит.)

  • Попроси больше объяснений
  • Следить
  • Отметить нарушение

Ответ

Проверено экспертом

по графику видно: на расстоянии 16 метров через 4 секунды

Вопрос по физике:

Найти место и время
встречи двух тел 2 способами (графич. и аналит.)

Ответы и объяснения 2

Привет на это задаче 16 и 1000

Дано:
S1=2500м
S2=6000м
t1=40с
t2=20с
Найти место и время встречи двух тел.
решение:
Первое тело двигалось в правильном направлении по графику, второе тело двигалось в неправильном направлении по графику. Так первое тело проехало путь 2500м за 40с. Второе тело прошло путь 6000м за 20с. По графику видно, что они встретились в точке, где путь равен 1000м.
так навреное!

Знаете ответ? Поделитесь им!
Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
  • Использовать мат – это неуважительно по отношению к пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Физика.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи – смело задавайте вопросы!

Физика — область естествознания: естественная наука о простейших и вместе с тем наиболее общих законах природы, о материи, её структуре и движении.

Уравнение координаты при равноускоренном прямолинейном движении

Материальная точка движется прямолинейно с постоянным ускорением. График зависимости её координаты от времени x=x(t) изображён на рисунке.

В момент времени t=0 проекции её скорости υx и ускорения ax на ось Ох удовлетворяют соотношениям:

а)

б)

в)

г)

По уравнениям движения двух тел х1 = 20t и х2 = 250 — 5t определите: а) место и время встречи этих тел;

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти скрытую переписку в кейт мобайл
  • Как найти амплитуду силы тока в катушке
  • Как найти мерсера фрея скайриме
  • Как найти массажистку для мужчины
  • Как найти старого знакомого в москве

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии