Парабола — это график функции описанный определённой формулой. Чтобы построить параболу нужно следовать формуле, определениям и уравнениям.
Парабола
Парабола – это множество точек плоскости, которые равноотделённые от заданной точки, что называется фокусом и заданной прямой под названием директриса.
Чтобы получить каноническое уравнение параболы, расположим директрису перпендикулярно оси , а фокус
на оси
так, чтобы начало координат
помещался на одинаковом расстоянии от них (см. рис. 1). Обозначим через
расстояние от фокуса к директрисе, тогда у фокуса будут координаты
,
.
Для произвольной точки параболы расстояний
, а расстояние к директрисе
. По определению
из рис. 1 видим, что
, а
и поэтому:
Рис. 1
(1)
– каноническое уравнение параболы.
Нужна помощь в написании работы?
Мы — биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.
Цена работы
Что такое вершина параболы
Вершина параболы – это парабола, которая проходит через точки . Если точка
принадлежит параболе, то и
тоже принадлежит параболе, так как из:
.
Значит, парабола симметрична относительно оси , её график достаточно построить в первой четверти, где из канонического уравнения параболы получается, что:
Чтобы найти вершину параболы, необходимо знать формулу: .
Давайте посмотрим, как данная формула действует, допустим дано уравнение:
Тогда:
,
,
. Чтобы найти величины
,
и
, в квадратном уравнении коэффициент при
, при
, постоянная (коэффициент без переменной) =
. Если взять тот же пример,
, получается, что:
,
,
.
Форма и характеристики параболы
Исследуем за каноническим уравнением форму и расположение параболы:
1. В уравнении переменная входит в парной степени откуда получается, что парабола симметрична относительно оси
. Ось
– это ось, которая симметрична параболе.
2. Так как , тогда
, откуда получается, что парабола расположена справа от оси
.
3. При мы имеем
, то есть парабола проходит через начало координат. Точка
– это вершина параболы.
4. При увеличении значений переменной модуль
тоже возрастает. Изобразим параболу на рисунке:
Рис. 2
5. В полярной системе координат, у канонического уравнения параболы такой вид:
6. Уравнение ,
,
, тоже описывают параболы:
Рис. 3
Оптическое свойство параболы
У параболы “оптическое” свойство, если: в фокусе параболы поместить источник света, тогда отбитые от параболы лучи будут параллельными оси . Это свойство учитывают при изготовлении прожекторов, зеркальных телескопов, теле- и радио антенн.
При положительном уравнении:
описывают параболу симметричную относительно с вершиной в точке
, ветви которой направлены влево (рис. 3 (а)).
Аналогично изложенному, уравнение и
описывают параболы с вершиной в точке
симметрично относительно
, ветви которой направлены соответственно вверх и вниз (см. рис. 3 (б) и (в)). Если например, уравнение
решить относительно
и обозначить
, тогда получим известное со школьного курса уравнение параболы
. Теперь её фокусное расстояние
.
Примеры решения
Задача
Найти координаты фокуса и составить уравнение директрисы параболы .
Решение
Сравнивая каноническое уравнение и данное
, получим
,
, тогда
. Так как уравнение директрисы
, тогда в данном случае
.
Ответ
координаты фокуса: , а уравнение директрисы параболы:
.
Задача
Составить каноническое уравнение параболы:
а) с фокусом в точке ;
б) с фокусом в точке .
Решение
а). Так как фокус на положительной полуоси
, тогда парабола симметрична относительно
с вершиной в точке
и
, поэтому
и согласно формуле (1)
.
б). Фокус лежит на отрицательной полуоси
с вершиной в точке
, ветви направлены вниз, каноническое уравнение следует искать в виде
. Фокусное расстояние параболы
и уравнение запишется
.
Ответ
а) каноническое уравнение параболы с фокусом в точке :
;
б) каноническое уравнение с фокусом в точке :
.
Задача
Показать путём выделения полного квадрата, что уравнение – это уравнение параболы. Привести его к каноническому виду. Найти вершину, фокус, ось и директрису этой параболы.
Решение
Выделим относительно переменной полный квадрат
=
=
=
=
=
=
.
Обозначим ,
. Тогда в результате параллельного переноса координатных осей в новое начало, то есть в точку
, получим каноническое уравнение параболы
.
Ветви этой параболы направлены вниз симметрично относительно оси ,
,
– фокусное расстояние. В новой системе координат фокус находится в точке
, уравнение директрисы в новой системе
.
Повернёмся к старым координатам при помощи замены ,
. Уравнение оси в новой системе
, а в старой
– уравнение оси параболы.
Уравнение директрисы в новой системе координат , а в старой
.
В новой системе для фокуса
,
, а в старой системе
,
, то есть
.
Ответ
Каноническое уравнение параболы – ;
вершина – ветви параболы направлены вниз;
,
,
– фокусное расстояние, а фокус находится в точке
;
уравнение оси ;
уравнение директрисы .
Что такое парабола знают, пожалуй, все. А вот как ее правильно, грамотно использовать при решении различных практических задач, разберемся ниже.
Оглавление:
- Что такое парабола и как она выглядит
- Каноническое уравнение параболы
- Свойства и график квадратичной функции
- Как определить, куда направлены ветви параболы
- Как найти вершину параболы по формуле
- Смещение параболы
- Как строить параболу по квадратному уравнению
- Директриса, эксцентриситет, фокус параболы
- Заключение
Сначала обозначим основные понятия, которые дает этому термину алгебра и геометрия. Рассмотрим все возможные виды этого графика.
Узнаем все основные характеристики этой функции. Поймем основы построения кривой (геометрия). Научимся находить вершину, другие основные величины графика данного типа.
Узнаем: как правильно строится искомая кривая по уравнению, на что надо обратить внимание. Посмотрим основное практическое применение этой уникальной величины в жизни человека.
Что такое парабола и как она выглядит
Алгебра: под этим термином понимается график квадратичной функции.
Геометрия: это кривая второго порядка, имеющая ряд определенных особенностей:
- Любая прямая пересекает на плоскости искомую линию в 2-х точках – так называемые, «нули» (кроме основного экстремума графика).
- Множество точек плоскости ХОY (М), расстояние FM которых до F = расстоянию MN до прямой Где F – фокус, AN – директриса. Эти понятия рассмотрим ниже.
Каноническое уравнение параболы
На рисунке изображена прямоугольная система координат (XOY), экстремум, направление ветвей чертежа функции вдоль оси абсцисс.
Каноническое уравнение имеет вид:
y2 = 2 * p * x,
где коэффициент p – фокальный параметр параболы (AF).
В алгебре оно запишется иначе:
y = a x2 + b x + c (узнаваемый шаблон: y = x2).
Свойства и график квадратичной функции
Функция обладает осью симметрии и центром (экстремум). Область определения – все значения оси абсцисс.
Область значений функции – (-∞, М) или (М, +∞) зависит от направления ветвей кривой. Параметр М тут означает величину функции в вершине линии.
Как определить, куда направлены ветви параболы
Чтобы найти направление кривой такого типа из выражения, нужно определить знак перед первым параметром алгебраического выражения. Если а ˃ 0, то они направлены вверх. Если наоборот – вниз.
Как найти вершину параболы по формуле
Нахождение экстремума является основным этапом при решении множества практических задач. Конечно, можно открыть специальные онлайн калькуляторы, но лучше это уметь делать самому.
Как же ее определить? Есть специальная формула. Когда b не равно 0, надо искать координаты этой точки.
Формулы нахождения вершины:
- x0 = -b / (2 * a);
- y0 = y (x0).
Пример.
Имеется функция у = 4 * x2 + 16 * x – 25. Найдём вершины этой функции.
Для такой линии:
- х = -16 / (2 * 4) = -2;
- y = 4 * 4 — 16 * 2 — 25 = 16 — 32 — 25 = -41.
Получаем координаты вершины (-2, -41).
Смещение параболы
Классический случай, когда в квадратичной функции y = a x2 + b x + c, второй и третий параметры равны 0, а = 1 – вершина находится в точке (0; 0).
Движение по осям абсцисс или ординат обусловлено изменением параметров b и c соответственно. Сдвиг линии на плоскости будет осуществляться ровно на то количество единиц, чему равно значение параметра.
Пример.
Имеем: b = 2, c = 3.
Это означает, что классический вид кривой сдвинется на 2 единичных отрезка по оси абсцисс и на 3 — по оси ординат.
Как строить параболу по квадратному уравнению
Школьникам важно усвоить, как правильно начертить параболу по заданным параметрам.
Анализируя выражения и уравнения, можно увидеть следующее:
- Точка пересечения искомой линии с вектором ординат будет иметь значение, равное величине с.
- Все точки графика (по оси абсцисс) будут симметричны относительно основного экстремума функции.
Кроме того, места пересечения с ОХ можно найти, зная дискриминант (D) такой функции:
D = (b2 — 4 * a * c).
Для этого нужно приравнять выражение к нулю.
Наличие корней параболы зависит от результата:
- D ˃ 0, то х1, 2 = (-b ± D0,5) / (2 * a);
- D = 0, то х1, 2 = -b / (2 * a);
- D ˂ 0, то нет точек пересечения с вектором ОХ.
Получаем алгоритм построения параболы:
- определить направление ветвей;
- найти координаты вершины;
- найти пересечение с осью ординат;
- найти пересечение с осью абсцисс.
Пример 1.
Дана функция у = х2 — 5 * х + 4. Необходимо построить параболу. Действуем по алгоритму:
- а = 1, следовательно, ветви направлены вверх;
- координаты экстремума: х = — (-5) / 2 = 5/2; y = (5/2)2 — 5 * (5/2) + 4 = -15/4;
- с осью ординат пересекается в значении у = 4;
- найдем дискриминант: D = 25 — 16 = 9;
- ищем корни:
- Х1 = (5 + 3) / 2 = 4; (4, 0);
- Х2 = (5 — 3) / 2 = 1; (1, 0).
По полученным точкам можно построить параболу.
Пример 2.
Для функции у = 3 * х2 — 2 * х — 1 нужно построить параболу. Действуем по приведенному алгоритму:
- а = 3, следовательно, ветви направлены вверх;
- координаты экстремума: х = — (-2) / 2 * 3 = 1/3; y = 3 * (1/3)2 — 2 * (1/3) — 1 = -4/3;
- с осью у будет пересекаться в значении у = -1;
- найдем дискриминант: D = 4 + 12 = 16. Значит корни:
- Х1 = (2 + 4) / 6 = 1; (1;0);
- Х2 = (2 — 4) / 6 = -1/3; (-1/3; 0).
По полученным точкам можно построить параболу.
Директриса, эксцентриситет, фокус параболы
Исходя из канонического уравнения, фокус F имеет координаты (p/2, 0).
Прямая АВ – директриса (своего рода хорда параболы определенной длины). Ее уравнение: х = -р/2.
Эксцентриситет (константа) = 1.
Заключение
Мы рассмотрели тему, которую изучают школьники в средней школе. Теперь вы знаете, глядя на квадратичную функцию параболы, как найти её вершину, в какую сторону будут направлены ветви, есть ли смещение по осям, и, имея алгоритм построения, сможете начертить её график.
Download Article
Download Article
If you’ve ever cooked food with a parabolic oven in science class or seen the Death Star’s laser in Star Wars, you have an idea of what the focal point (or focus) of a parabola is. But how do you calculate the focus mathematically? We’ve provided the formulas and equations you need to find the focus of any parabola, and added several helpful sample problems that you might see on your next algebra exam!
Things You Should Know
-
1
Parabola: A parabola can be defined as the graph of a quadratic equation—that is, the curved line you’ll get if you plot the equation on graph paper. Or, if you want to be more technical, it’s a curved line in which all coordinate points
along the line are equidistant from a specific focal point and a specific line called a directrix.[1]
- In practical terms, it’s often easier to recognize parabolas in three dimensions. For example, think of large parabolic satellite dishes, or the clear plastic parabolic microphones you see on the sidelines of football games. Both of these direct waves (radio, sound, etc.) toward a single point—the focal point (or focus).
-
2
Vertex: The vertex is the “turning point” of a parabola—the point along the curve at which it changes direction. So, in a classic “U”-shaped parabola, the vertex is at the very bottom of the “U” shape. You need to know the
coordinates of the vertex in order to find the coordinates of the focus.[2]
Advertisement
-
3
Axis of symmetry: The axis of symmetry is a line that runs through the vertex point and divides the parabola exactly in half. The parabola is a mirror image of itself on either side of the axis of symmetry.[3]
- For our needs, it’s also important that the vertex is always exactly halfway between the focus and the directrix along the axis of symmetry.
-
4
Directrix: The directrix is a straight line that crosses the axis of symmetry and is perpendicular to it. The directrix is always outside of the parabola but closest to the vertex. For example, in a classic “U” parabola, adding the directrix line makes it look like you underlined the «U.»[4]
- The distance between the vertex and the directrix (at the axis of symmetry) is always exactly the same as that between the vertex and the focus.
-
5
Focus: The focus is a point along the axis of symmetry, inside the parabola, that is equal in distance from the vertex as is the directrix. So, if the directrix is 2 units away from the vertex, the focus is also 2 units away (and, as a result, 4 units away from the directrix).[5]
- If you draw a straight line from the focus to any point along the curve of the parabola, and then draw a straight line from that point to intersect at a right angle with the directrix, you’ll find that both of those lines are always equal in length.
Advertisement
-
1
or
. You’ll use one of these “vertex form of a parabola” equations based on the type of parabola you’re dealing with. A “regular” parabola that opens upward or downward (like a right-side up or upside-down “U”) needs to be converted into the form of the first equation, while a “sideways” parabola that opens to the side (like a forwards or backwards “C”) must be converted to the second.[6]
-
2
or
. Once you have determined (or have been given) the coordinates of the parabola’s vertex, you’ll use one of these formulas to determine the coordinates of the focus. Here’s how to know which to use:[7]
Advertisement
-
1
Put the equation into the vertex form of a parabola. Because the
portion of the equation is squared, the correct vertex form is
, meaning this is a “regular” parabola (it opens either up or down).
-
2
-
3
Solve for
to find the focus coordinates.
Advertisement
-
1
-
2
-
3
-
4
Advertisement
Ask a Question
200 characters left
Include your email address to get a message when this question is answered.
Submit
Advertisement
Thanks for submitting a tip for review!
References
About This Article
Thanks to all authors for creating a page that has been read 3,612 times.
Did this article help you?
Координаты фокуса параболы: как найти, формула
Содержание:
- Формулировка параболы в алгебре и геометрии
- Что такое фокус параболы, определение
-
Как найти фокус параболы
- Уравнение расчета
- Чему равны координаты фокуса
- Абсцисса фокуса параболы
- Примеры расчета фокусного расстояния в задачах
Формулировка параболы в алгебре и геометрии
Определение
Парабола — совокупность точек на плоскости, расположенных на одинаковом удалении от фокуса F и директрисы d, в которую точка F не входит.
Парабола является коническим сечением, или коникой. Это значит, что она возникает при пересечении плоскости с поверхностью кругового конуса. Плоскость сечения при этом параллельна одной из касательных плоскостей конуса.
Точка пересечения параболы с ее осью называется вершиной. Она считается началом системы координат, канонической для данной кривой.
Что такое фокус параболы, определение
Определение
Расстояние от точки фокуса до любой точки параболы равняется расстоянию от этой точки к директрисе.
Если в фокус поместить источник света, все исходящие из него световые лучи после отражения от нее пойдут по прямым, параллельным оси симметрии. И наоборот, все световые лучи, идущие параллельно оси, после отражения от «стенок» кривой соберутся в одной точке. Это оптическое свойство широко применяется в конструкциях прожекторов, фар, фонарей, телескопов-рефлекторов.
Как найти фокус параболы
Уравнение расчета
Каноническое уравнение:
(y^2;=;2px)
Если расположить параболу слева от оси ординат, уравнение примет вид:
(y^2;=;-;2px)
Параметр p — расстояние от фокуса до директрисы, которая определяется уравнением:
(х;=;-frac p2)
Чтобы узнать расстояние r от любой точки параболы до фокуса, равное ее расстоянию до директрисы, нужно воспользоваться формулой:
(r;=;frac p2;+;x)
В полярной системе координат с центром в фокусе и направлением вдоль оси фокальный параметр можно найти по формуле:
(p;=;rho;times;(1;+;cosleft(varthetaright)))
Чему равны координаты фокуса
Фокус будет иметь координаты ((frac p2;;0)).
Абсцисса фокуса параболы
Также фокус и параметр p можно искать через так называемую фокальную хорду (Р_1Р_2).
Эта прямая, проходящая через фокус и параллельная директрисе, пересекает параболу в двух точках. Половина длины фокальной хорды будет равна параметру p, являясь абсолютной величиной ординаты любой из точек (Р_1, Р_2).
Абсцисса каждой из этих точек будет равна абсциссе фокуса (frac p2).
Для ординаты y каждой из точек (Р_1, Р_2):
(y^{2;}=;2p;times;frac p2;=;p^2).
Примеры расчета фокусного расстояния в задачах
Пример 1
Определить координаты фокуса параболы (y^{2;}=;4х).
Решение
Находим параметр p:
4 = 2p
p = 2
Координаты (1; 0).
Пример 2
Определить координаты фокуса параболы (y^{2;}=;6х).
Решение
Находим параметр p:
6 = 2p
p = 3
Координаты (1,5; 0).
Насколько полезной была для вас статья?
Рейтинг: 2.02 (Голосов: 47)
Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»
Текст с ошибкой:
Расскажите, что не так
Поиск по содержимому
Евгений Николаевич Беляев
Эксперт по предмету «Математика»
Задать вопрос автору статьи
Определение 1
Парабола — это кривая, образованная геометрическим множеством точек, находящихся на одинаковом расстоянии от некой точки $F$, называемой фокусом и не лежащей ни на этой кривой, ни на прямой $d$.
То есть отношение расстояний от произвольной точки на параболе до фокуса и от этой же точки до директрисы всегда равно единице, это отношение называется эксцентриситетом.
Термин “эксцентриситет” также используется для гипербол и эллипсов.
Основные термины из канонического уравнения параболы
Точка $F$ называется фокусом параболы, а прямая $d$ — её директрисой.
Осью симметрии параболы называется прямая, проходящая через вершину параболы $O$ и её фокус $F$, так, что она образует прямой угол с директрисой $d$.
Вершиной параболы называется точка, расстояние от которой до директрисы минимальное. Эта точка делит расстояние от фокуса до директрисы пополам.
Что из себя представляет каноническое уравнение параболы
Определение 2
Каноническое уравнение параболы довольно простое, его несложно запомнить и оно имеет следующий вид:
$y^2 = 2px$, где число $p$ должно быть больше нуля.
Число $p$ из уравнения носит название «фокальный параметр».
Данное уравнение параболы, вернее именно эта наиболее часто применяемая в высшей математике формула, применимо в том случае, когда ось параболы совпадает с осью $OX$, то есть парабола располагается как будто на боку.
Парабола, описанная уравнением $x^2 = 2py$ — это парабола, ось которой совпадает с осью $OY$, к таким параболам мы привыкли в школе.
А парабола, которая имеет минус перед второй частью уравнения ($y^2 = — 2px$), развёрнута на 180° по отношению к каноничной параболе.
«Каноническое уравнение параболы» 👇
Парабола является частным случаем кривой 2-ого порядка, соответственно, в общем виде уравнение для параболы выглядит точно также как для всех таких кривых и подходит для всех случаев, а не только когда парабола параллельна $OX$.
При этом дискриминант, вычисляющийся по формуле $B^2 – 4AC$ равен нулю, а само уравнение выглядит так:
$Ax^2 + B cdot x cdot y + Ccdot y^2 + Dcdot x + Ecdot y + F = 0$
Вывод с помощью графика канонического уравнения для параболы
Рисунок 1. График и вывод канонического уравнения параболы
Из определения, приведённого выше в данной статье, составим уравнение для параболы с верхушкой, расположенной на пересечении координатных осей.
Используя имеющийся график, определим по нему $x$ и $y$ точки $F$ из определения параболической кривой, данного выше, $x = frac{p}{2}$ и $y = 0$.
Для начала составим уравнение для прямой $d$ и запишем его: $x = — frac{p}{2}$.
Для произвольной точки M, лежащей на нашей кривой, согласно определению, справедливо следующее соотношение:
$FM$ = $ММ_d$ (1), где $М_d$ — точка пересечения перпендикуляра, опущенного из точки $M$ c директрисой $d$.
Икс и игрек для этой точки равны $frac{p}{2}$ $y$ соответственно.
Запишем уравнение (1) в координатной форме:
$sqrt{(x — frac{p}{2})^2 + y^2 }= x + frac{p}{2}$
Теперь для того чтобы избавиться от корня необходимо возвести обе части уравнения в квадрат:
$(x — frac{p}{2})^2 + y^2 = x^2 +px^2 + frac{p^2}{4}$
После упрощения получаем каноническое уравнение параболы:
$y^2 = px$.
Парабола, описываемая с помощью квадратичной функции
Уравнение, описывающее параболу с верхушкой, расположенной где угодно на графике и необязательно совпадающей с пересечением осей координат, выглядит так:
$y = ax^2 + bx + c$.
Чтобы вычислить $x$ и $y$ для вершины такой параболы, необходимо воспользоваться следующими формулами:
$x_A = — frac{b}{2a}$
$y_A = — frac{D}{4a}$, где $D = b^2 – 4ac$.
Пример 1
Пример составления классического уравнения параболы
Задача. Зная расположение фокусной точки, составить каноническое уравнение параболы. Координаты точки фокуса $F$ $(4; 0)$.
Так как мы рассматриваем параболу, график которой задан каноническим уравнением, то её вершина $O$ находится на пересечении осей икс и игрек, следовательно расстояние от фокуса до вершины равно $frac{1}{2}$ фокального параметра $frac{p}{2} = 4$. Путём нехитрых вычислений получим, что сам фокальный параметр $p = 8$.
После подстановки значения $p$ в каноническую форму уравнения, наше уравнение примет вид $y^2 = 16x$.
Как составить уравнение параболы по имеющемуся графику
Пример 2
Рисунок 2. Каноническое уравнение для параболы график и пример для решения
Для начала необходимо выбрать точку $М$, принадлежащую графику нашей функции, и, опустив из неё перпендикуляры на оси $OX$ и $OY$, записать её икс и игрек, в нашем случае точка $M$ это $(2;2)$.
Теперь нужно подставить полученные для этой точки $x$ и $y$ в каноническое уравнение параболы $y^2 = px$, получаем:
$2^2 = 2 cdot 2p$
Сократив, получаем следующее уравнение параболы $y^2 = 2 cdot x$.
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме