Как найти экстремум интеграла

  1. Экстремумы функций двух и трёх переменных

Определение
1

Точка



называется
точкой максимума
функции

,
если
для любых точек


,
принадлежащих
окрестности точки

,
выполняется неравенство:


.

Определение
2

Точка


называется
точкой минимума
функции

,
если
для любых точек

,
принадлежащих окрестности точки

,
выполняется
неравенство:



.

Определение
3

Точки
максимума и минимума называются
точками
экстремума

функции.

Теорема
1 (необходимое условие экстремума)

Если
точка

является точкой экстремума функции

,
то её частные производные в точке

равны нулю или не существуют.

При
доказательстве теоремы 1 используются
определения частных производных и
теорема о необходимых условиях экстремума
функции одной переменной.

Замечание
1.

Аналогично формулируются определения
1 и 2 и теорема 1 для функции трёх и более
переменных.

Теорема
2

(достаточные
условия экстремума функции двух
переменных)

Если
функция

дважды дифференцируема в критической
точке

и её окрестности и определитель

,
то в точке

есть экстремум. Причём, если

,
то точка

является точкой минимума функции, а
если

,
то точка

является точкой максимума.
Замечание
2.

Если определитель

,
то в точке

нет экстремума, при этом точку

называют седловой точкой. Если

,
то вопрос об экстремуме в точке

остаётся нерешённым, нужны исследования
функции

по её производным более высокого порядка.

Теорема
3

(достаточные
условия экстремума функции трёх
переменных)

Пусть
функция

дважды дифференцируема в
критической точке

и её окрестности. Определитель

имеет все главные диагональные миноры


,


,

положительные, то

–точка минимума функции

.
Если

,

и

, то точка

– точка максимума функции

.

Замечание
3.

Если


критическая точка функции

и

,
но не выполняются условия теоремы 3, то
в точке

нет экстремума, при этом точка

называется седловой точкой. Если все


,
то вопрос об экстремуме в точке

решается с помощью производных более
высокого порядка.

Пример
1.

Найти экстремумы функции:


.

Решение.


;


.

.

Получили
две точки

и


;


;

а)
Исследуем точку

:


;


;

.

Тогда


точка

не является точкой экстремума.

б)
Исследуем точку

:


;


;

.

Тогда


точка

является точкой экстремума. Причём так
как

,
то точка

является точкой минимума функции:

.

Ответ:

  1. Условный экстремум

Пусть
задана функция

на множестве

.
Требуется найти экстремумы функции

,
если

и

связаны некоторым условием

,
называемым уравнением
связи
.

Определение
4.

Точка

называется точкой
условного экстремума

функции

при выполнении дополнительных условий

– уравнений связи.

Для
нахождения точек условного экстремума
существует два метода: метод прямого
отыскания и метод Лагранжа. Прямой
метод состоит в том, что из уравнения
связи

выражается одна из переменных через
другую, и её подставляют в функцию

.
Получают функцию одной переменной, для
которой и решают задачу нахождения
обычного экстремума. Такой метод
применяют тогда, когда удаётся из
уравнения связи выразить одну переменную
через другую.

Пример
2.

Найти условный экстремум функции


при
условии

Решение.
Используем метод прямого отыскания
точек условного экстремума. Из условия

выразим

и подставим его в функцию

.
Тогда

Найдём
для функции

обычный экстремум.


,



– +
x

Следовательно,

– точка минимума функции

.

Подставляем

в функцию

и получим:

.

Ответ:

.

Определение
5.

Функция

называется функцией
Лагранжа
,
а коэффициент λ

множителем
Лагранжа
.

Замечание
4.

Если связи не одно уравнение, а несколько
(например,

),
то функция Лагранжа для функции

записывается с

множителями Лагранжа:

Теорема
4

(необходимое
условие поиска условного экстремума)

Пусть
функции

и

,
дифференцируемые в точке

а

является точкой условного экстремума
функции

при условии

.
Тогда найдется такое число

,
при котором точка

является критической для функции
Лагранжа

.

Метод
Лагранжа

поиска условного экстремума состоит в
следующем:

1)
составляют функцию Лагранжа

;

2)
находят её частные производные по

;

3)
приравнять частные производные к нулю
и решают систему уравнений


;

4)
исследуют найденную в результате решения
системы точку

при найденном значении

и решают задачу обычного экстремума
для

.

Теорема
5 (достаточное условие поиска условного
экстремума для случая одного уравнения
связи)

Пусть
точка

и

найдены из решения системы

.

Пусть
определитель

.

Если


,
то функция

имеет в точке

условный максимум.

Если

,
то функция

имеет в точке

условный минимум.

Пример
3.

Методом Лагранжа найти условный экстремум
для функции

при условии

.
Решение.
Составим функцию Лагранжа

.

Найдём
её частные производные по

:


при

.

Выясним
характер точки

по теореме 5:


;


;


;


;


.

Составим
определитель:


.

Так
как

,
то

– точка условного минимума.

.

Ответ:

.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

НАЙТИ ТОЧКИ ЭКСТРЕМУМА И ТОЧКИ ПЕРЕГИБА ФУНКЦИИ
Представим исходный интеграл, как сумму табличных интегралов и найдем функцию:
EQ i(;;f(t3;3)+t2)dt=i(;;f(t3;3))dx+i(;;t2)dt = EQ f(t4;12)+f(t3;3)+C

Подставим значения интеграла 0 и X, получим функцию
F(x) = EQ f(x4+4 x3;12)
Найдем точки экстремума
Необходимое условие экстремума функции одной переменной.
Уравнение f’0(x*) = 0 – это необходимое условие экстремума функции одной переменной, т.е. в точке x* первая производная функции должна обращаться в нуль. Оно выделяет стационарные точки xс, в которых функция не возрастает и не убывает.
Достаточное условие экстремума функции одной переменной.
Пусть f0(x) дважды дифференцируемая по x, принадлежащему множеству D. Если в точке x* выполняется условие:
f’0(x*) = 0
f”0(x*) > 0
то точка x* является точкой локального (глобального) минимума функции.
Если в точке x* выполняется условие:
f’0(x*) = 0
f”0(x*) < 0
то точка x* – локальный (глобальный) максимум.
Решение.
Находим первую производную функции:
EQ yʹ = f(x3;3)+x2
или
EQ yʹ = f(x2·(x+3);3)
Приравниваем ее к нулю:
EQ f(x3;3)+x2 = 0
x1 = 0
x2 = -3
Вычисляем значения функции
f(0) = 0
EQ f(-3) = -f(9;4)

Решение:

EQ fmin = -f(9;4), fmax = 0
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
yʺ = x2+2·x
или
yʺ = x·(x+2)
Вычисляем:
yʺ(0) = 0=0 – значит точка x = 0 точка перегиба функции.
yʺ(-3) = 3>0 – значит точка x = -3 точка минимума функции.

Найдем точки перегиба
1. Находим интервалы возрастания и убывания. Первая производная.
EQ fʹ(x) = f(x3;3)+x2 или EQ fʹ(x)=f(x2·(x+3);3)
Находим нули функции. Для этого приравниваем производную к нулю
x2·(x+3) = 0
Откуда:
x1 = 0
x2 = -3

EQ (-∞ ;-3) EQ (-3; 0) EQ (0; +∞)
f ‘(x) < 0 f ‘(x) > 0 f ‘(x) > 0
функция убывает
функция возрастает
функция возрастает

В окрестности точки x = -3 производная функции меняет знак с (-) на (+). Следовательно, точка x = -3 – точка минимума.

2. Найдем интервалы выпуклости и вогнутости функции. Вторая производная.
EQ fʺ(x) = f(x2;3)+f(2·x·(x+3);3) или fʺ(x) = x·(x+2)
Находим корни уравнения. Для этого полученную функцию приравняем к нулю.
x·(x+2) = 0
Откуда точки перегиба:
x1 = 0
x2 = -2

EQ (-∞ ;-2) EQ (-2; 0) EQ (0; +∞)
f ”(x) > 0 f ”(x) < 0 f ”(x) > 0
функция вогнута
функция выпукла
функция вогнута

математический-анализ — Найти точки экстремума функции

Найти точки экстремума функции заданной как интеграл от 0 до x от функции f(t)=(t(t+2))/((t+1)^(1/3)).

1 ответ

$%(int_0^xfrac{t(t+2)}{(t+1)^{1/3}}dt)’_x=frac{x(x+2)}{(x+1)^{1/3}}.$% Теперь тривиально определяются нули и участки знакопостоянства производной, что позволяет найти экстремумы: $%x=0 -$% минимум, $%$%x=-2-$% минимум.

Здравствуйте

Математика — это совместно редактируемый форум вопросов и ответов для начинающих и опытных математиков, с особенным акцентом на компьютерные науки.

Присоединяйтесь!

Связанные исследования

Связанные вопросы

Отслеживать вопрос

по почте:

Зарегистрировавшись, вы сможете подписаться на любые обновления

по RSS:

Ответы

Ответы и Комментарии

Экстремум функции двух переменных

Назначение сервиса. Онлайн-калькулятор используется для нахождения в онлайн режиме наибольшего и наименьшего значения функции двух переменных (см. пример). Решение оформляется в формате Word.

  • Решение онлайн
  • Видеоинструкция
  • Оформление Word

Для функции трех переменных можно использовать матрицу Гессе.

Алгоритм исследования функции двух переменных на экстремум

Функция z = f(x,y) имеет максимум в точке M0(x0;y0), если f(x0;y0) > f(x;y) для всех точек (x;y), достаточно близких к точке (x0;y0) и отличных от неё. Функция z = f(x,y) имеет минимум в точке M0(x0;y0), если f(x0;y0) < f(x;y) для всех точек (x;y), достаточно близких к точке (x0;y0) и отличных от неё. Максимум и минимум функции называются экстремумами функции.

Исследование функции двух переменных на экстремум проводят по следующей схеме.

1. Находят частные производные dz/dx и dz/dy.

2. Решают систему уравнений:

и таким образом находят критические точки функции.

3. Находят частные производные второго порядка:

4. Вычисляют значения этих частных производных второго порядка в каждой из найденных в п.2 критических точках M(x0;y0).

5. Делаю вывод о наличии экстремумов:

а) если AC – B2 > 0 и A < 0 , то в точке M имеется максимум;

б) если AC – B2 > 0 и A > 0 , то в точке M имеется минимум;

в) если AC – B2 < 0, то экстремума нет;

г) если AC – B2 = 0, то вопрос о наличии экстремума остается открытым;

Пример №1. Найти экстремумы функции f(x,y)=x3+xy2+x2+y2 и определить по критерию Сильвестра их тип.

Решение.

1. Найдем первые частные производные.





2. Решим систему уравнений.

3x2+2x+y2=0

2xy+2y=0

Получим:

а) Из первого уравнения выражаем x и подставляем во второе уравнение:

x = -1

y2+1=0

Данная система уравнений не имеет решения.

б) Из первого уравнения выражаем y и подставляем во второе уравнение:





или





или

Откуда x1 = -2/3; x2 = 0; x3 = -2/3; x4 = 0

Данные значения x подставляем в выражение для y. Получаем: y1 = 0; y2 = 0; y3 = 0; y4 = 0

Количество критических точек равно 2: M1(-2/3;0), M2(0;0)

3. Найдем частные производные второго порядка.







4. Вычислим значение этих частных производных второго порядка в критических точках M(x0;y0).

Вычисляем значения для точки M1(-2/3;0)







AC — B2 = -4/3 < 0, то глобального экстремума нет.

Вычисляем значения для точки M2(0;0)







AC — B2 = 4 > 0 и A > 0 , то в точке M2(0;0) имеется минимум z(0;0) = 0

Вывод: В точке M2(0;0) имеется минимум z(0;0) = 0

Пример №2. Исследовать функцию на экстремум классическим методом: Z=8x2+2xy-5x+6.

Задать свои вопросы или оставить замечания можно внизу страницы в разделе Disqus.
Можно также оставить заявку на помощь в решении своих задач у наших проверенных партнеров (здесь или здесь).

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти песню share
  • Как составить интонацию к литературному произведению
  • Как найти количество работников отработавших весь год
  • Как составить вопросительное предложение на английском языке present simple
  • Ищу друга как найти

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии