Как найти двойной интеграл ограниченный линиями

(схема 40)

Для функции двух переменных имеет место обобщение определенного интеграла — двойной интеграл, относящийся к кратным интегралам. 

Рассмотрим в плоскости x0y замкнутую
область с границей L. Пусть непрерывная функция  f(x,y) определена
 в области D. Произвольными линиями разобьем область D на конечное число n частей
– площадок: 
. Одновременно будем обозначать через  не только названия
соответствующих площадок, но и их площади.
В каждой из
Si (внутри или на границе) возь­мем точку Pi;
получим n точек: 
, значения функции в которых    Составим
сумму произве­
дений вида 
:

                                                               (6.1)

   Эта 
сумма называется интегральной  суммой для функции  f(x,y) в
области D. Если f   0 в области D, то каждое
слагаемое  
  геометрически представляет собой объем малого цилиндра с основанием Si и высотой  f(Pi).
 Сумма всех Vi  есть сумма объемов указанных элементарных цилинд­ров, геометрически  объем некоторого «ступенчатого» тела. 

Рассмотрим произвольную
последовательность интегральных сумм, составленных с помощью функции  f(x,y) для данной области  D:
                                                                           

                                                                                                                                                           (6.2)

при  
различных   способах   разбиения 
области   D  на
части Si. Очевидно, 
при  n→∞ максимальный диаметр
площадок
Si стремится к нулю.

Теорема
6.1.
 
Если функция  f(x,y) непрерывна в замкнутой области D, то
существует предел последовательности
(6.2) инте­гральных сумм (6.1) при условии, что максимальный диаметр площадок Si стремится к нулю, а n→∞.  Этот предел один и тот же
для любой последовательности вида (6.2), то есть  он не зависит ни от способов разбиения
области  D на площадки Si, ни от
выбора  точек Pi  внутри площадок  S

Этот предел                                                                                             (6.3)  называется двойным интегралом от функции f(x,y) по области  D и обозначается 

 .  

Область D при этом называется
областью интегрирования.

1. Вычисление двойного интеграла в декартовой система
координат

Рассмотрим область D, лежащую в плоскости x0y и являющуюся  правильной в направлении оси 0y. Это означает, что всякая прямая, параллельная оси 0y и проходящая через
внутреннюю точку области, пересекает границу области в двух точках N1 и N2.

Мы 
предположим, что в рассматриваемом случае область D
ограничена   линиями: 
 причем , а функции φ1(x) и φ2(x) непрерывны
на отрезке [
a;b]. Аналогично определяется
область
D, правильная
в направлении оси
0
x.

Если область является  правильной как в направлении оси 0x, так и в нап­равлении оси  0y, то
она  называется просто правильной областью.

Пусть функция f(x,y)  непрерывна в области  D. Рассмотрим
выражение

,                                                                                                                                                    (6.4)

которое назовем двукратным
интегралом
от функции f(x,y) по
обла­сти D. В этом
выражении сначала вы­числяется внутренний интеграл, стоящий в скобках, причем
интегрирование производится по y, а x
считается постоянной величиной. В
результате инте­грирования получится непрерывная функция  от x:

.

Эту функцию мы интегрируем по x
в пределах от a
до b:

.

В результате получается некоторое постоянное число.

Теорема
6.2.
Двойной интеграл от непрерывной функции f(x,y) по
правильной области D равен двукратному
интегралу от этой функции по области,  то
есть

                                                                                                                               (6.5)

Пусть правильная в направлении оси 0x область D
ограничена линиями  
, причем .

Очевидно, что в этом случае

.                                                                                                                                    (6.6)

Таким образом, для вычисления двойного
интеграла его надо представить в виде двукратного, в зависимости от вида
области D или
подынтегральной функции, либо с помощью формулы (6.5), либо (6.6) .     

Пример
6.1.
 Вычислить 
, если область  D – прямоугольник,
определяемый неравенствами   и

.                                              

Решение.  Применим
формулу (6.5), считая внутренний интеграл по переменной y:    

Если область D является правильной в направлении обеих осей
координат, то применимы обе формулы (6.5) и (6.6), следовательно, 

.  

Таким образом, повторное интегрирование не
зависит от порядка интегрирования.
Поэтому при вычислении двойного
интеграла следует пользоваться той из двух формул, которая приводит к менее трудоемким
выкладкам. Полезно для упражнения в вычислении повторного интегрирования  рассматривать задачу о замене порядка
интегрирования в двойном интеграле 
.  При этом выполняется следующая
последовательность действий:

1) чертят область интегрирования D, которая
находится в полосе между прямыми x=a и x=b, при этом ограничена снизу линией  y1(x), а сверху
– линией y2(x);

2) область D проектируют на ось 0y и находят уравнения
прямых  y=c и y=d, ограничивающих снизу и
сверху полосу, в которой расположена область
D;

3) находят
левую  x=ψ1(y) и правую x=ψ2(y) границу области  D.  

Аналогичные выкладки производят при
необходимости замены порядка интегрирования в двойном интеграле  : 

1) чертят область интегрирования D, которая находится в полосе между прямыми y=c и y=d, при этом ограничена слева линией  x=ψ1(y), а справа
– линией x=ψ2(y);

2) область D проектируют на ось 0x и находят уравнения
прямых  x=a и x=b, ограничивающих слева и
справа полосу, в которой расположена область
D;

3) находят нижнюю y1(x) и
верхнюю  y2(x) границу области  D.

Примечание. В случае, когда какая-либо из этих границ состоит из
двух или большего числа линий, записанных разными уравнениями, то область  D разбивается на части, а интеграл – на сумму
интегралов по этим частям

Пример 6.2.  Изменить
порядок интегрирования 
.

Решение. Область D расположена в плоскости x0y между прямыми x=0 и x=1 (рис. 6.1). Ее нижняя граница  y=x,
верхняя  –
. Спроектируем область D на ось 0y. В результате получим отрезок . Левой границей
области является прямая x=0, правой на участке
– прямая  y=x, а на
участке
– дуга окружности . Поэтому область D следует разбить на две части  D1 и D2, а интеграл на сумму двух интегралов: 


2. Вычисление двойного интеграла в полярной системе
координат

Пусть область D задана в полярной системе координат (рис. 6.2). Если ее полюс O совпадает с  началом 
координат декартовой системы, а полярная ось совпадает с осью 0x, то формулы перехода имеют
вид:

, где (r) ­– координаты точки области D, ds – элемент площади в
полярной системе. Тогда

 .                                                                 (6.7)

 Для вычисления
такого двойного интеграла применяют то же правило сведения его к двукратному
интегралу. Так, если область D имеет
вид, изображенный на рисунке 6.2 (ограничена лучами φ=α  и φ=β,
где α < β, и кривыми  
, т. е. является правильной:
луч, выходящий из полюса, пересекает ее границу
L не более чем в двух точках), то правую часть формулы
(6.7) можно записать в виде:

    .                                                                                            (6.8)

Внутренний интеграл берется при
постоянном φ и переменной r, при
вычислении внешнего интеграла φ
становится переменной.

Если полюс O лежит внутри области D, то каждый полярный радиус
пересекает контур L в одной точке. При этом следует рассматривать  
 .

Пример 6.3. Вычислить двойной интеграл , где область D есть
полукруг с центром в точке (3;0) и с радиусом, равным 3 (рис. 6.3).

Решение. Перейдём к полярной
системе координат. Пусть полюс
 совпадает
с началом координат, а полярная ось совпадает с положительным направлением оси 0
x. Чтобы найти
уравнение полуокружности АМО в полярной системе координат, выберем на ней
произвольную точку 
M(r) и определим
зависимость между полярными координатами 
r и φ. Как видно, при любом выборе точки M угол АМО будет прямым. Следовательно, r=OAcos φ или r=6cos φ  (так как AO=6). Таким образом, в
заданной области 
D полярный радиус  r меняется от 0 
до 6cos φ, а полярный угол φ
от 0 до
.

Переходя к полярной системе координат с помощью (6.8),
получаем:

Примечание. Переход к полярным координатам полезен, когда подынтегральная
функция имеет вид 
; область D есть  круг, кольцо или часть таковых. Уравнения
линий, ограничивающих область D, также преобразуются к полярным координа­там

Двойные интегралы используют в математике, механике, физике. С его помощью можно решить огромное количество непростых задач. Ниже приведено 10 примеров на двойные и тройные интегралы, которые в значительной степени облегчат подготовку к контрольной работе или экзамену. Примеры взяты из индивидуальной работы по высшей математики.

ВАРИАНТ — 12

Двойной интеграл

ЗАДАНИЕ 1.18 Изменить порядок интегрирования в двойном интеграле:
двойной интеграл
Решение: Сначала записываем область интегрирования, которая ограничена границами
область интегрирования
где y=2/x — гипербола.
y=-x2-4x-3 — парабола с вершиной в точке S (-2;1), ветками вниз.
Чтобы знать, как расставить пределы интегрирования при изменении порядка интегрирования изобразим область интегрирования на плоскости
двойной интегралВыражаем полученные функции через переменную y: 
y=2/x
, отсюда x=2/y; y=-x2-4x-3, отсюда , перед радикалом стоит знак «+» поскольку часть параболы находится в правой (положительной по x=-2) части полуплоскости.
Из рисунка видим, что при изменении порядка интегрирования область необходимо разделить на три части: D=D1+D2+D3.
Расставим пределы интегрирования в каждой области:
предела интегрирования
Изменяем порядок интегрирования функции
изменение порядка интегрированияКак видите ничего сложного нет, главное представлять график функции и иметь точки их пересечения — пределы интегрирования.

ЗАДАНИЕ 2.19 Найти площадь плоской фигуры, заданной следующими условиями, : y=2x, y=5, 2x-2y+3=0.
Решение: Прежде всего выполняем построение всех кривых, чтобы видеть как будут изменяться пределы интегрирования
Площадь фигурыДальше найдем точки пересечения графиков заданных функций :
1 и 2
пересечение функций
отсюда

Дальше точки пересечения 2 и 3 функций
точки пересечения
отсюда

Напоследок пересечение 1 и 3 ф-й
точки пересечения
отсюда

Заданную область будем разбивать на две области: D=D1+D2.
Расставим пределы для каждой из областей:
область интегрирования
Через двойной интеграл находим площадь фигуры которая  ограничена заданными кривыми, :
двойной интегралФункции не тяжелые для интегрирования, поэтому в предпоследнем выражении подставьте пределы самостоятельно.
При округлении площадь криволинейной трапеции равна 2,037 единиц квадратных.

ЗАДАНИЕ 3.20 Найти двойной интеграл по области D, ограниченной указанными линиями: D: y=x2-1, y=3.
Решение: Найдем точки пересечения графиков заданных функций: y=x2-1 и y=3:
3=x2-1, x2-4=0, (x-2)(x+2)=0, x=-2; x=2.
Параболу и прямую изобразим графически
область интегрирования Расставим пределы интегрирования в заданной области D:
предела интегрирования
Вычислим двойной интеграл по области которая ограничена параболой и прямой:
двойной интеграл Определенный интеграл равен I=224/15=14,9 (3).

ЗАДАНИЕ 4.21 Найти двойной интеграл, используя полярные координаты:

Решение: Построим область интегрирования, которая ограничена кривыми

где y=R2— x2, x2+y2=R2

Получили круг с центром в точке O (0;0) и радиусом R (нижняя половина).
переход к полярной СК Используя замену переменных

перейдем к полярной системе координат (СК).
При этом подынтегральную функцию следует умножить на якобиан перехода, который находим через определитель из производных:
якобіан

Перепишем подинтегральную функцию в полярной СК :

Пределы интегрирования при переходе к полярной системе координат изменятся на следующие:

Вычислим двойной интеграл:
двойной интеграл Он равен I=Pi/4*sin (R2).

ЗАДАНИЕ 5.22 Вычислить площадь области D, ограниченной указанными линиями: D: x3=3y, y2=3x.
Решение: Найдем точку пересечения двух графиков : x1=0, y1=0; x2=3, y2=3.
Графики кривой в декартовой системе координат имеет вид
площадь криволинейной трапеции Расставим пределы интегрирования в области D:
область интегрирования
Найдем площадь криволинейной трапеции которая ограничена указанными линиями:
двойной интегралПлощадь равна 3 единицы квадратные.

ЗАДАНИЕ 6.23 Используя двойной интеграл, вычислить, перейдя к полярным координатам, площадь плоской фигуры : (x2+y2)3=4a2xy (x2-y2).
Решение: Сначала построим чотирёх лепесток
площадь фигуры

Перейдем к полярной системе координат:

Якобиан перехода из предыдущих примеров равен I=r.
Найдем пределы интегрирования в новой системе координат

Переменные приобретают значение:

Расставляем пределы интегрирования в двойном интеграле, таким образом найдем четверть площади плоской фигуры.
Дальше результат умножим на 4:
площадь фигурыПлощадь равна S=a2 единиц квадратных.

Внимательно проанализируйте как определять пределы интегрирования. Это тяжелее всего, что может быть в подобных задачах.
Как вычислить определенный интеграл, как правило, должны знать все студенты. Здесь лишь расширяется его приложение.

Тройной интеграл

ЗАДАНИЕ 8.25 Расставить пределы интегрирования в тройном интеграле , если область V ограничена указанными поверхностями: V: x=2 y=3x, z=4 (x2+y2).
Нарисовать область интегрирования.

Решение: Уравнение поверхности в пространстве z=4 (x2+y2) — эллиптический параболоид.
График параболоида и проекция в декартовую плоскость тела имеют вид
параболоид Пределы интегрирования расставим следующим образом:
V:
предела интегрирования
Расставляем пределы интегрирования в соответствии с областью
Тройной интеграл

ЗАДАНИЕ 9.6 Вычислить тройные интегралы:

где V:

Решение: Выполним построение области интегрирования
параллелепипедЗаданная область V является параллелепипедом, поэтому без трудностей расставляем пределы интегрирования и от внутреннего к внешнему находим интеграл
тройной интеграл
Вычисления не сложны, поэтому превращение в формуле проанализируйте самостоятельно.

Обобщением определенного интеграла на случай функций двух переменных является так называемый двойной интеграл.

Пусть в замкнутой обласДвойной интегралти D плоскости Оху задана непрерывная функция z = f(x;y). Разобьем область D на п «элементарных областей» Двойной интеграл площади которых обозначим через Двойной интеграл а диаметры (наибольшее расстояние между точками области) — через Двойной интеграл(см. рис. 214).

Двойной интеграл

В каждой области Двойной интеграл выберем произвольную точку Двойной интегралумножим значение Двойной интеграл функции в этой точке на Двойной интеграл и составим сумму всех таких произведений:

Двойной интеграл

Эта сумма называется интегральной суммой функции f(x; у) в области D.

Рассмотрим предел интегральной суммы (53.1), когда п стремится к бесконечности таким образом, что Двойной интеграл Если этот предел существует и не зависит ни от способа разбиения области D на части, ни от выбора точек в них, то он называется двойным интегралом от функции f(x;y) по области D и обозначается

Двойной интеграл

Таким образом, двойной интеграл определяется равенством

Двойной интеграл

В этом случае функция f(x;y) называется интегрируемой в области D; Dобласть интегрирования; х и у — переменные интегрирования; dx dy (или dS) — элемент площади.

Для всякой ли функции f(x; у) существует двойной интеграл? На этот вопрос отвечает следующая теорема, которую мы приведем здесь без доказательства.

Теорема:

Достаточное условие интегрируемости функции. Если функция z = f(x;y) непрерывна в замкнутой области D, то она интегрируема в этой области.

Замечания:

  1. Далее будем рассматривать только функции, непрерывные в области интегрирования, хотя двойной интеграл может существовать не только для непрерывных функций.
  2. Из определения двойного интеграла следует, что для интегрируемой в области D функции предел интегральных сумм существует и не зависит от способа разбиения области. Таким образом, мы можем разбивать область D на площадки прямыми, параллельными координатным осям (см. рис. 215). При этом Двойной интеграл равенство (53.2) можно записать в виде

Двойной интеграл

Двойной интеграл

Геометрический и физический смысл двойного интеграла

Рассмотрим две задачи, приводящие к двойному интегралу. Объем цилиндрического тела

Рассмотрим тело, ограниченное сверху поверхностьюДвойной интеграл, снизу — замкнутой областью D плоскости Оху, с боков — цилиндрической поверхностью, образующая которой параллельна оси Oz, а направляющей служит граница области D (см. рис. 216). Такое тело называется цилиндрическим. Найдем его объем V. Для этого разобьем область D (проекция поверхности z = f(x; у) на плоскость Оху) произвольным образом на п областей Двойной интеграл, площади которых равны AДвойной интеграл Рассмотрим цилиндрические столбики с основаниями ограниченные сверху кусками поверхности z = f(x;y) (на рис. 216 один из них выделен). В своей совокупности они составляют тело V. Обозначив объем столбика с основанием Двойной интеграл через Двойной интеграл, получим

Двойной интеграл

Двойной интеграл

Возьмем на каждой площадке Di произвольную точку Двойной интеграл и заменим каждый столбик прямым цилиндром с тем же основанием Двойной интеграл и высотой Двойной интеграл Объем этого цилиндра приближенно равен объему Двойной интеграл цилиндрического столбика, т. е. Двойной интеграл Тогда получаем:

Двойной интеграл

Это равенство тем точнее, чем больше число п и чем меньше размеры «элементарных областей» Двойной интеграл,. Естественно принять предел суммы (53.3) при условии, что число площадок Двойной интеграл неограниченно увеличивается Двойной интеграл а каждая площадка стягивается в точку Двойной интеграл за объем V цилиндрического тела, т. е.

Двойной интеграл

или, согласно равенству (53.2),

Двойной интеграл

Итак, величина двойного интеграла от неотрицательной функции равна объему цилиндрического тела. В этом состоит геометрический смысл двойного интеграла.

Масса плоской пластинки

Требуется найти массу m плоской пластинки D. зная, что ее поверхностная плотность Двойной интеграл есть непрерывная функция координат точки (х; у). Разобьем пластинку D на п элементарных частей Двойной интеграл площади которых обозначим через Двойной интеграл. В каждой области Двойной интеграл возьмем произвольную точку Двойной интеграл и вычислим плотность в ней: Двойной интеграл

Если области D, достаточно малы, то плотность в каждой точке Двойной интеграл мало отличается от значения Двойной интегралСчитая приближенно плотность в каждой точке области Двойной интеграл постоянной, равной Двойной интеграл, можно найти ее массу Двойной интеграл Так как масса m всей пластинки D равна Двойной интеграл Для ее вычисления имеем приближенное равенство

Двойной интеграл

Точное значение массы получим как предел суммы (53.5) при условии Двойной интеграл

Двойной интеграл

или, согласно равенству (53.2),

Двойной интеграл

Итак, двойной интеграл от функции Двойной интеграл численно равен массе пластинки, если подынтегральную функцию Двойной интеграл считать плотностью этой пластинки в точке (х; у). В этом состоит физический смысл двойного интеграла.

Основные свойства двойного интеграла

Можно заметить, что процесс построения интеграла в области D дословно повторяет уже знакомую нам процедуру определения интеграла функции одной переменной на отрезке (см. § 35). Аналогичны и свойства этих интегралов и их доказательства (см. § 38). Поэтому перечислим основные свойства двойного интеграла, считая подынтегральные функции интегрируемыми.

Двойной интеграл

3.Если область D разбить линией на две области Двойной интеграл такие, что Двойной интеграла пересечение Двойной интеграл состоит лишь из линии, их разделяющей (см. рис. 217), то

Двойной интеграл

Двойной интеграл

4.Если в области D имеет место неравенство Двойной интеграл то иДвойной интеграл Если в области D функции f(x;y) и Двойной интеграл удовлетворяют неравенству Двойной интеграл то и

Двойной интеграл

6.Если функция f(x;y) непрерывна в замкнутой области D, площадь которой Двойной интеграл— соответственно наименьшее и наибольшее значения подынтегральной функции в области D.

7.Если функция f(x;y) непрерывна в замкнутой области D, площадь которой S, то в этой области существует такая точкаДвойной интеграл, что Двойной интеграл Величину

Двойной интеграл

называют средним значением функции f(x; у) в области D.

Вычисление двойного интеграла в декартовых координатах

Покажем, что вычисление двойного интеграла сводится к последовательному вычислению двух определенных интегралов.

Пусть требуется вычислить двойной интеграл Двойной интеграл где функция Двойной интеграл непрерывна в области D. Тогда, как это было показано в п. 53.2, двойной интеграл выражает объем цилиндрического тела, ограниченного сверху поверхностью z = f(x;y). Найдем этот объем, используя метод параллельных сечений. Ранее (см. (41.6)) было показано, что

Двойной интеграл

Двойной интеграл

где S(x) — площадь сечения плоскостью, перпендикулярной оси Ох, а х = а, х = b — уравнения плоскостей, ограничивающих данное тело.

Положим сначала, что область D представляет собой криволинейную трапецию, ограниченную прямыми x = a и x = b и кривымиДвойной интеграл, причем функции Двойной интеграл непрерывны и таковы, что Двойной интеграл для всех Двойной интеграл (см. рис. 218). Такая область называется правильной в направлении оси Оу: любая прямая, параллельная оси Оу, пересекает границу области не более чем в двух точках.

Построим сечение цилиндрического тела плоскостью, перпендикулярной оси Двойной интеграл

Двойной интеграл

В сечении получим криволинейную трапецию ABCD, ограниченную линиями

Двойной интеграл

(см. рис. 219).

Площадь S(x) этой трапеции находим с помощью определенного интеграла

Двойной интеграл

Теперь, согласно методу параллельных сечений, искомый объем цилиндрического тела может быть найден так:

Двойной интеграл

С другой стороны, в п. 53.2 было доказано, что объем цилиндрического тела определяется как двойной интеграл от функции Двойной интегралпо области D. Следовательно,

Двойной интеграл

Это равенство обычно записывается в виде

Двойной интеграл

Формула (53.7) представляет собой способ вычисления двойного интеграла в декартовых координатах. Правую часть формулы (53.7) называют двукратным (или повторным) интегралом от функции f(x;y) по области D. При этом Двойной интеграл называется внутренним интегралом.

Для вычисления двукратного интеграла сначала берем внутренний интеграл, считая х постоянным, затем берем внешний интеграл, т. е. результат первого интегрирования интегрируем по х в пределах от а до b.

Если же область D ограничена прямыми Двойной интеграл кривыми

Двойной интеграл

для всех Двойной интеграл т. е. область Dправильная в направлении оси Ох, то, рассекая тело плоскостью у = const, аналогично получим:

Двойной интеграл

Здесь, при вычислении внутреннего интеграла, считаем у постоянным.

Замечания:

  1. Формулы (53.7) и (53.8) справедливы и в случае, когдаДвойной интеграл
  2. Если область D правильная в обоих направлениях, то двойной интеграл можно вычислять как по формуле (53.7), так и по формуле (53.8).
  3. Если область D не является правильной ни «по x», ни «по у», то для сведения двойного интеграла к повторным ее следует разбить на части, правильные в направлении оси Ох или оси Оу.
  4. Полезно помнить, что внешние пределы в двукратном интеграле всегда постоянны, а внутренние, как правило, переменные.

Пример:

Вычислить Двойной интегралгде область D ограничена линиями уДвойной интеграл

Двойной интеграл

Решение:

На рисунке 220 изображена область интегрирования D. Она правильная в направлении оси Ох. Для вычисления данного двойного интеграла воспользуемся формулой (53.8):

Двойной интеграл

Двойной интеграл

Отметим, что для вычисления данного двойного интеграла можно воспользоваться формулой (53.7). Но для этого область D следует разбить на две области: Двойной интеграл. Получаем:

Двойной интеграл

Двойной интеграл

Ответ, разумеется, один и тот же.

Вычисление двойного интеграла в полярных координатах

Для упрощения вычисления двойного интеграла часто применяют метод подстановки (как это делалось и при вычислении определенного интеграла), т. е. вводят новые переменные под знаком двойного интеграла.

Определим преобразование независимых переменных х и у (замену переменных) как

Двойной интеграл

Если функции (53.9) имеют в некоторой области D* плоскости Ouv непрерывные частные производные первого порядка и отличный от нуля определитель

Двойной интеграл

а функция f(х; у) непрерывна в области D, то справедлива формула замены переменных в двойном интеграле:

Двойной интеграл

Функциональный определитель (53.10) называется определителем Якоби или якобианом (Г. Якоби — немецкий математик). Доказательство формулы (53.11) не приводим.

Рассмотрим частный случай замены переменных, часто используемый при вычислении двойного интеграла, а именно замену декартовых координат х и у полярными координатами Двойной интеграл

В качестве инь возьмем полярные координаты Двойной интегралОни связаны с декартовыми координатами формулами Двойной интеграл (см. п. 9.1).

Правые части в этих равенствах — непрерывно дифференцируемые функции. Якобиан преобразования определяется из (53.10) как

Двойной интеграл

Формула замены переменных (53.11) принимает вид:

Двойной интеграл

где D* — область в полярной системе координат, соответствующая области D в декартовой системе координат.

Для вычисления двойного интеграла в полярных координатах применяют то же правило сведения его к двукратному интегралу. Так, если

область D* имеет вид, изображенный на рисунке 221 (ограничена лучамиДвойной интеграл и кривыми Двойной интеграл где Двойной интеграл т. е. область D* правильная: луч, выходящий из полюса, пересекает ее границу не более чем в двух точках), то правую часть формулы (53.12) можно записать в виде

Двойной интеграл

Внутренний интеграл берется при постоянном Двойной интеграл

Двойной интеграл

Замечания:

  1. Переход к полярным координатам полезен, когда подынтегральная функция имеет вид Двойной интеграл область D есть круг, кольцо или часть таковых.
  2. На практике переход к полярным координатам осуществляется путем замены Двойной интеграл уравнения линий, ограничивающих область D, также преобразуются к полярным координатам. Преобразование области D в область D* не выполняют, а, совместив декартову и полярную системы координат, находят нужные пределы интегрирования по Двойной интеграл (исследуя закон изменения Двойной интегралточки Двойной интеграл при ее отождествлении с точкой (х; у) области D).

Пример:

Вычислить Двойной интеграл где область D — круг Двойной интеграл

Решение: Применив формулу (53.12), перейдем к полярным координатам:

Двойной интеграл

Область D в полярной системе координат определяется неравенствами (см. рис. 222) Двойной интеграл Заметим: область D —круг — преобразуется в область D* — прямоугольник. Поэтому, согласно формуле (53.13), имеем:

Двойной интеграл

Приложения двойного интеграла

Приведем некоторые примеры применения двойного интеграла.

Объем тела

Как уже показано (п. 53.2), объем цилиндрического тела находится по формуле

Двойной интеграл

где z = f(x;y) — уравнение поверхности, ограничивающей тело сверху.

Площадь плоской фигуры

Если положить в формуле (53.4) f(x;y) = 1, то цилиндрическое тело «превратится» в прямой цилиндр с высотой Н = 1. Объем такого цилиндра, как известно, численно равен площади S основания D. Получаем формулу для вычисления площади S области D:

Двойной интеграл

или, в полярных координатах,

Двойной интеграл

Масса плоской фигуры

Как уже показано (п. 53.2), масса плоской пластинки D с переменной плотностью Двойной интеграл находится по формуле

Двойной интеграл

Статические моменты и координаты центра тяжести плоской фигуры

Статические моменты фигуры D относительно осей Ох и Оу (см. п. 41.6) могут быть вычислены по формулам

Двойной интеграл

а координаты центра масс фигуры по формулам

Двойной интеграл

Моменты инерции плоской фигуры

Моментом инерции материальной точки массы m относительно оси l называется произведение массы m на квадрат расстояния d точки до оси, т. е. Двойной интеграл Моменты инерции плоской фигуры относительно осей Ох и Оу могут быть вычислены по формулам:

Двойной интеграл

Момент инерции фигуры относительно начала координат — по формуле Двойной интеграл

Замечание:

Приведенными примерами не исчерпывается применение двойного интеграла. Далее мы встретим приложение двойного интеграла к вычислению площадей поверхностей фигур (п. 57.3).

Пример:

Найти объем тела, ограниченного поверхностями

Двойной интеграл

Решение: Данное тело ограничено двумя параболоидами (см. рис. 223). Решая систему

Двойной интеграл

Двойной интеграл

находим уравнение линии их пересечения:

Двойной интеграл

Искомый объем равен разности объемов двух цилиндрических тел с одним основанием (круг Двойной интеграл) и ограниченных сверху соответственно поверхностями Двойной интегралИспользуя формулу (53.4), имеем

Двойной интеграл

Переходя к полярным координатам, находим:

Двойной интеграл

Пример:

Найти массу, статические моментыДвойной интеграл и координаты центра тяжести фигуры, лежащей в первой четверти, ограниченной эллипсом Двойной интеграл и координатными осями (см. рис. 224). Поверхностная плотность в каждой точке фигуры пропорциональна произведению координат точки.

Двойной интеграл

Решение: По формуле (53.6) находим массу пластинки. По условию, Двойной интеграл — коэффициент пропорциональности.

Двойной интеграл

Находим статические моменты пластинки:

Двойной интеграл

Находим координаты центра тяжести пластинки, используя формулы

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Двойной интеграл

Смотрите также:

Предмет высшая математика

Решение заданий и задач по предметам:

  • Математика
  • Высшая математика
  • Математический анализ
  • Линейная алгебра

Дополнительные лекции по высшей математике:

  1. Тождественные преобразования алгебраических выражений
  2. Функции и графики
  3. Преобразования графиков функций
  4. Квадратная функция и её графики
  5. Алгебраические неравенства
  6. Неравенства
  7. Неравенства с переменными
  8. Прогрессии в математике
  9. Арифметическая прогрессия
  10. Геометрическая прогрессия
  11. Показатели в математике
  12. Логарифмы в математике
  13. Исследование уравнений
  14. Уравнения высших степеней
  15. Уравнения высших степеней с одним неизвестным
  16. Комплексные числа
  17. Непрерывная дробь (цепная дробь)
  18. Алгебраические уравнения
  19. Неопределенные уравнения
  20. Соединения
  21. Бином Ньютона
  22. Число е
  23. Непрерывные дроби
  24. Функция
  25. Исследование функций
  26. Предел
  27. Интеграл
  28. Тройной интеграл
  29. Интегрирование
  30. Неопределённый интеграл
  31. Определенный интеграл
  32. Криволинейные интегралы
  33. Поверхностные интегралы
  34. Несобственные интегралы
  35. Кратные интегралы
  36. Интегралы, зависящие от параметра
  37. Квадратный трехчлен
  38. Производная
  39. Применение производной к исследованию функций
  40. Приложения производной
  41. Дифференциал функции
  42. Дифференцирование в математике
  43. Формулы и правила дифференцирования
  44. Дифференциальное исчисление
  45. Дифференциальные уравнения
  46. Дифференциальные уравнения первого порядка
  47. Дифференциальные уравнения высших порядков
  48. Дифференциальные уравнения в частных производных
  49. Тригонометрические функции
  50. Тригонометрические уравнения и неравенства
  51. Показательная функция
  52. Показательные уравнения
  53. Обобщенная степень
  54. Взаимно обратные функции
  55. Логарифмическая функция
  56. Уравнения и неравенства
  57. Положительные и отрицательные числа
  58. Алгебраические выражения
  59. Иррациональные алгебраические выражения
  60. Преобразование алгебраических выражений
  61. Преобразование дробных алгебраических выражений
  62. Разложение многочленов на множители
  63. Многочлены от одного переменного
  64. Алгебраические дроби
  65. Пропорции
  66. Уравнения
  67. Системы уравнений
  68. Системы уравнений высших степеней
  69. Системы алгебраических уравнений
  70. Системы линейных уравнений
  71. Системы дифференциальных уравнений
  72. Арифметический квадратный корень
  73. Квадратные и кубические корни
  74. Извлечение квадратного корня
  75. Рациональные числа
  76. Иррациональные числа
  77. Арифметический корень
  78. Квадратные уравнения
  79. Иррациональные уравнения
  80. Последовательность
  81. Ряды сходящиеся и расходящиеся
  82. Тригонометрические функции произвольного угла
  83. Тригонометрические формулы
  84. Обратные тригонометрические функции
  85. Теорема Безу
  86. Математическая индукция
  87. Показатель степени
  88. Показательные функции и логарифмы
  89. Множество
  90. Множество действительных чисел
  91. Числовые множества
  92. Преобразование рациональных выражений
  93. Преобразование иррациональных выражений
  94. Геометрия
  95. Действительные числа
  96. Степени и корни
  97. Степень с рациональным показателем
  98. Тригонометрические функции угла
  99. Тригонометрические функции числового аргумента
  100. Тригонометрические выражения и их преобразования
  101. Преобразование тригонометрических выражений
  102. Комбинаторика
  103. Вычислительная математика
  104. Прямая линия на плоскости и ее уравнения
  105. Прямая и плоскость
  106. Линии и уравнения
  107. Прямая линия
  108. Уравнения прямой и плоскости в пространстве
  109. Кривые второго порядка
  110. Кривые и поверхности второго порядка
  111. Числовые ряды
  112. Степенные ряды
  113. Ряды Фурье
  114. Преобразование Фурье
  115. Функциональные ряды
  116. Функции многих переменных
  117. Метод координат
  118. Гармонический анализ
  119. Вещественные числа
  120. Предел последовательности
  121. Аналитическая геометрия
  122. Аналитическая геометрия на плоскости
  123. Аналитическая геометрия в пространстве
  124. Функции одной переменной
  125. Высшая алгебра
  126. Векторная алгебра
  127. Векторный анализ
  128. Векторы
  129. Скалярное произведение векторов
  130. Векторное произведение векторов
  131. Смешанное произведение векторов
  132. Операции над векторами
  133. Непрерывность функций
  134. Предел и непрерывность функций нескольких переменных
  135. Предел и непрерывность функции одной переменной
  136. Производные и дифференциалы функции одной переменной
  137. Частные производные и дифференцируемость функций нескольких переменных
  138. Дифференциальное исчисление функции одной переменной
  139. Матрицы
  140. Линейные и евклидовы пространства
  141. Линейные отображения
  142. Дифференциальные теоремы о среднем
  143. Теория устойчивости дифференциальных уравнений
  144. Функции комплексного переменного
  145. Преобразование Лапласа
  146. Теории поля
  147. Операционное исчисление
  148. Системы координат
  149. Рациональная функция
  150. Интегральное исчисление
  151. Интегральное исчисление функций одной переменной
  152. Дифференциальное исчисление функций нескольких переменных
  153. Отношение в математике
  154. Математическая логика
  155. Графы в математике
  156. Линейные пространства
  157. Первообразная и неопределенный интеграл
  158. Линейная функция
  159. Выпуклые множества точек
  160. Система координат

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти координаты основание высоты пирамиды
  • Как найти турецкого друга
  • Как найти углы параллелограмма вписанного в окружность
  • Как найти свою душу в скайриме
  • Как найти radio record

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии