Как найти два верных равенства

Равенства 

(знак (=))

(6=6)  —  это верное равенство;

(6=7)  —  неверное равенство, так как (6) не равно (7).

Неравенства

(знаки (<) и (>))

(8>6) и (4<10)  —  это верные неравенства.

(8) больше (6), (4) меньше (10).

(8<7)  —  неверное неравенство,

так как (8) больше (7), а знак стоит — «меньше».

Содержание

  1. Понятие равенства, знак равенства, связанные определения.
  2. Что такое равенство?
  3. Запись равенств, знак равно
  4. Верные и неверные равенства
  5. Свойства равенств
  6. Двойные, тройные равенства и т.д.
  7. Что такое числовые выражения, равенства, неравенства и уравнения
  8. Выражение
  9. Равенство
  10. Неравенство
  11. Уравнение
  12. Понятие равенства, знак равенства, связанные определения
  13. Что такое равенство
  14. Запись равенств, знак равно
  15. Верные и неверные равенства
  16. Свойства равенств
  17. Двойные, тройные и т.д. равенства

Понятие равенства, знак равенства, связанные определения.

В этой статье собрана информация, формирующая представление о равенстве в контексте математики. Здесь мы выясним, что такое равенство с математической точки зрения, и какие они бывают. Также поговорим о записи равенств и знаке равно. Наконец, перечислим основные свойства равенств и для наглядности приведем примеры.

Навигация по странице.

Что такое равенство?

Понятие равенства неразрывно связано со сравнением – сопоставлением свойств и признаков с целью выявлением схожих черт. А сравнение в свою очередь предполагает наличие двух предметов или объектов, один из которых сравнивается с другим. Если, конечно, не проводить сравнение предмета с самим собой, и то, это можно рассматривать как частный случай сравнения двух предметов: самого предмета и его «точной копии».

Из приведенных рассуждений понятно, что равенство не может существовать без наличия, по крайней мере, двух объектов, иначе нам просто нечего будет сравнивать. Понятно, что можно взять три, четыре и большее число объектов для сравнения. Но оно естественным образом сводится к сравнению всевозможных пар, составленных из этих объектов. Иными словами, оно сводится к сравнению двух объектов. Итак, равенство требует два объекта.

Суть понятия равенства в самом общем смысле наиболее отчетливо передается словом «одинаковые». Если взять два одинаковых объекта, то о них можно сказать, что они равные. В качестве примера приведем два равных квадрата и . Отличающиеся объекты, в свою очередь, называют неравными.

Понятие равенства может относиться как объектам в целом, так и к их отдельным свойствам и признакам. Объекты равны в целом, когда они равны по всем присущим им параметрам. В предыдущем примере мы говорили о равенстве объектов в целом – оба объекта квадраты, они одинакового размера, одинакового цвета, и вообще они полностью одинаковые. С другой стороны, объекты могут быть неравными в целом, но могут иметь некоторые равные характеристики. В качестве примера рассмотрим такие объекты и . Очевидно, они равны по форме –они оба являются кругами. А по цвету и по размеру – неравны, один из них синий, а другой – красный, один маленький, а другой — большой.

Из предыдущего примера для себя отметим, что нужно наперед знать, о равенстве чего именно мы говорим.

Все приведенные рассуждения применяются и к равенствам в математике, только здесь равенство относится к математическим объектам. То есть, изучая математику, мы будем говорить о равенстве чисел, равенстве значений выражений, равенстве каких-либо величин, например, длин, площадей, температур, производительностей труда и т.п.

Запись равенств, знак равно

Пришло время остановиться на правилах записи равенств. Для этого используется знак равно (его также называют знаком равенства), который имеет вид =, то есть, представляет собой две одинаковые черточки, расположенные горизонтально одна над другой. Знак равно = считается общепринятым.

При записи равенств записывают равные объекты и между ними ставят знак равно. Например, запись равных чисел 4 и 4 будет выглядеть следующим образом 4=4 , и ее можно прочитать как «четыре равно четырем». Еще пример: равенство площади SABC треугольника ABC семи квадратным метрам запишется как SABC=7 м 2 . По аналогии можно привести другие примеры записи равенств.

Стоит отметить, что в математике рассмотренные записи равенств часто используют как определение равенства.

Записи, в которых используется знак равно, разделяющий два математических объекта (два числа, выражения и т.п.), называют равенствами.

Если письменно требуется обозначить неравенство двух объектов, то используется знак не равно ≠. Мы видим, что он представляет собой перечеркнутый знак равно. В качестве примера приведем запись 1+2≠7 . Ее можно прочитать так: «Сумма единицы и двойки не равна семи». Другой пример |AB|≠5 см. – длина отрезка AB не равна пяти сантиметрам.

Верные и неверные равенства

Записанные равенства могут отвечать смыслу понятия равенства, а могут и противоречить ему. В зависимости от этого равенства подразделяются на верные равенства и неверные равенства. Разберемся с этим на примерах.

Запишем равенство 5=5 . Числа 5 и 5 , вне всякого сомнения, равны, поэтому 5=5 – это верное равенство. А вот равенство 5=2 – неверное, так как числа 5 и 2 не равны.

Свойства равенств

Из того, как вводится понятие равенства, естественным образом вытекают характерные для него результаты – свойства равенств. Основными являются три свойства равенств:

  • Свойство рефлексивности, утверждающее, что объект равен самому себе.
  • Свойство симметричности, утверждающее, что если первый объект равен второму, то второй равен первому.
  • И, наконец, свойство транзитивности, утверждающее, что если первый объект равен второму, а второй – третьему, то первый равен третьему.

Запишем озвученные свойства на языке математики с помощью букв:

  • a=a ;
  • если a=b , то b=a ;
  • если a=b и b=c , то a=c .

Отдельно стоит отметить заслугу второго и третьего свойств равенств – свойств симметричности и транзитивности – в том, что они позволяют говорить о равенстве трех и большего числа объектов через их попарное равенство.

Двойные, тройные равенства и т.д.

Наряду с обычными записями равенств, примеры которых мы привели в предыдущих пунктах, используются так называемые двойные равенства, тройные равенства и так далее, представляющие собой как бы цепочки равенств. Например, запись 1+1+1=2+1=3 является двойным равенством, а |AB|=|BC|=|CD|=|DE|=|EF| — пример четверного равенства.

С помощью двойных, тройных и т.д. равенств удобно записывать равенство трех, четырех и т.д. объектов соответственно. Эти записи по своей сути обозначают равенство любых двух объектов, составляющих исходную цепочку равенств. К примеру, указанное выше двойное равенство 1+1+1=2+1=3 по сути означает равенство 1+1+1=2+1 , и 2+1=3 , и 1+1+1=3 , а в силу свойства симметричности равенств и 2+1=1+1+1 , и 3=2+1 , и 3=1+1+1 .

В виде таких цепочек равенств удобно оформлять пошаговое решение примеров и задач, при этом решение выглядит кратко и видны промежуточные этапы преобразования исходного выражения.

Источник

Что такое числовые выражения, равенства, неравенства и уравнения

Выражение

Числовое выражение — это числа, соединённые знаками арифметических действий: сложение, вычитание, умножение и деление.

Найти значение числового выражения — это значит выполнить все указанные арифметические действия и получить конкретное число.

Кроме арифметических действий выражения могут содержать скобки, которые влияют на порядок действий при решении выражения.

Пример 1:

  • 2 • 5 — 3 — числовое выражение
  • 7 — значение числового выражения.

Равенство

Равенства — это числа или выражения, соединённые знаком = (равно).

Равенство считается верным, если числа или числовые выражения слева и справа от знака =, имеют равное значение.

Равенство считается неверным, если числа или числовые выражения слева и справа от знака =, не равны (≠).

При решении равенств соблюдается следующий порядок действий:

  • надо найти значение выражения слева от знака =, действуя по правилам выполнения действий в числовых выражениях;
  • надо найти значение выражения слева от знака =, действуя по правилам выполнения действий в числовых выражениях;
  • надо сравнить полученные значения и сделать вывод.

Пример 2:

1) 5 = 7 — равенство неверно, так как 5 ≠ 7.

2) 36 : 2 = 6 • 3 — равенство верно, так как:

3) 48 + 9 = 54 — 1 — равенство неверно, так как:

Неравенство

Неравенства — это числа или числовые выражения соединённые знаком > (больше) или (больше), то значение выражения слева должно быть больше, чем значение выражения справа;

  • если поставлен знак (больше), а значение выражения слева меньше или равно, чем значение выражения справа;
  • если поставлен знак , действуя по правилам выполнения действий в числовых выражениях;
  • надо найти значение выражения слева от знака , действуя по правилам выполнения действий в числовых выражениях;
  • надо сравнить полученные значения и сделать вывод.
  • Пример 3:

    1) 5 > 7 — неравенство неверно, так как 5

    3) 4 + 5 • 6 > (4 + 5) • 6 — неравенство неверно, так как:

    • 4 + 5 • 6 = 4 + 30 = 34
    • (4 + 5) • 6 = 9 • 6 = 36
    • 34

    Уравнение

    Уравнение — это равенство, которое содержит неизвестное число, обозначенное какой-либо латинской буквой: x, y, a, b, z, d и т.д.

    Корень уравнения — это число, при подставлении котрого вместо буквы в равенство делает это равенство верным.

    Решить уравнение — это значит найти все возможные корни уравнения.

    Порядок и правила решения уравнений зависят от того, к какому типу они относятся:

    Источник

    Понятие равенства, знак равенства, связанные определения

    Материал статьи позволит ознакомиться с математической трактовкой понятия равенства. Порассуждаем на тему сути равенства; рассмотрим его виды и способы его записи; запишем свойства равенства и проиллюстрируем теорию примерами.

    Что такое равенство

    Само понятие равенства тесно переплетено с понятием сравнения, когда мы сопоставляем свойства и признаки, чтобы выявить схожие черты. Процесс сравнения требует наличия двух объектов, которые и сравниваются между собой. Данные рассуждения наводят на мысль, что понятие равенства не может иметь место, когда нет хотя бы двух объектов, чтобы было что сравнивать. При этом, конечно, может быть взято большее количество объектов: три и более, однако, в конечном, счете, мы так или иначе придем к сравнению пар, собранных из заданных объектов.

    Смысл понятия «равенство» в обобщенном толковании отлично определяется словом «одинаковые». О двух одинаковых объектах можно говорить – «равные». Например, квадраты и . А вот объекты, которые хоть по какому-то признаку отличаются друг от другу, назовем неравными.

    Говоря о равенстве, мы можем иметь в виду как объекты в целом, так и их отдельные свойства или признаки. Объекты являются равными в целом, когда одинаковы по всем характеристикам. Например, когда мы привели в пример равенство квадратов, имели в виду их равенство по всем присущим им свойствам: форме, размеру, цвету. Также объекты могут и не быть равными в целом, но обладать одинаковыми отдельными признаками. Например: и . Указанные объекты равны по форме (оба – круги), но различны (неравны) по цвету и размеру.

    Таким образом, необходимо заранее понимать, равенство какого рода мы имеем в виду.

    Запись равенств, знак равно

    Чтобы произвести запись равенства, используют знак равно (или знак равенства), обозначаемый как = .Такое обозначение является общепринятым.

    Составляя равенство, равные объекты размещают рядом, записывая между ними знак равно. К примеру, равенство чисел 5 и 5 запишем как 5 = 5 . Или, допустим, нам необходимо записать равенство периметра треугольника А В С 6 метрам: P А В С = 6 м.

    Равенство – запись, в которой использован знак равно, разделяющий два математических объекта (или числа, или выражения и т.п.).

    Когда возникает необходимость письменно обозначить неравенство объектов, используют знак не равно, обозначаемый как ≠ , т.е. по сути зачеркнутый знак равно.

    Верные и неверные равенства

    Составленные равенства могут соответствовать сути понятия равенства, а могут и противоречить ему. По этому признаку все равенства классифицируют на верные равенства и неверные равенства. Приведем примеры.

    Составим равенство 7 = 7 . Числа 7 и 7 , конечно, являются равными, а потому 7 = 7 – верное равенство. Равенство 7 = 2 , в свою очередь, является неверным, поскольку числа 7 и 2 не равны.

    Свойства равенств

    Запишем три основных свойства равенств:

    • свойство рефлексивности, гласящее, что объект равен самому себе;
    • свойство симметричности: если первый объект равен второму, то второй равен первому;
    • свойство транзитивности: когда первый объект равен второму, а второй – третьему, тогда первый равен третьему.

    Буквенно сформулированные свойства запишем так:

    Отметим особенную пользу второго и третьего свойств равенств – свойств симметричности и транзитивности – они дают возможность утверждать равенство трех и более объектов через их попарное равенство.

    Двойные, тройные и т.д. равенства

    Совместно со стандартной записью равенства, пример которой мы приводили выше, также часто составляются так называемые двойные равенства, тройные равенства и т.д. Подобные записи представляют собой как бы цепочку равенств. К примеру, запись 2 + 2 + 2 = 4 + 2 = 6 — двойное равенство, а | A B | = | B C | = | C D | = | D E | = | E F | — пример четвертного равенства.

    При помощи таких цепочек равенств оптимально составлять равенство трех и более объектов. Такие записи по своему смыслу являются обозначением равенства любых двух объектов, составляющих исходную цепочку равенств.

    Например, записанное выше двойное равенство 2 + 2 + 2 = 4 + 2 = 6 обозначает равенства: 2 + 2 + 2 = 4 + 2 , и 4 + 2 = 6 , и 2 + 2 + 2 = 6 , а в силу свойства симметричности равенств и 4 + 2 = 2 + 2 + 2 , и 6 = 4 + 2 , и 6 = 2 + 2 + 2 .

    Составляя подобные цепочки, удобно записывать последовательность решения примеров и задач: такое решение становится наглядным и отражает все промежуточные этапы вычислений.

    Источник

    Из двух выражений составить два верных равенства и два неверных неравенства

    65+24:3-16

    65-16+24:3

    65+16-24:3

    65 + (16-24:3)

    Найди верный ответ на вопрос ✅ «Из двух выражений составить два верных равенства и два неверных неравенства 65+24:3-16 65-16+24:3 65+16-24:3 65 + (16-24:3) …» по предмету 📙 Математика, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.

    Искать другие ответы

    Главная » Математика » Из двух выражений составить два верных равенства и два неверных неравенства 65+24:3-16 65-16+24:3 65+16-24:3 65 + (16-24:3)

    Вася Иванов

    Мореплаватель — имя существительное, употребляется в мужском роде. К нему может быть несколько синонимов.
    1. Моряк. Старый моряк смотрел вдаль, думая о предстоящем опасном путешествии;
    2. Аргонавт. На аргонавте были старые потертые штаны, а его рубашка пропиталась запахом моря и соли;
    3. Мореход. Опытный мореход знал, что на этом месте погибло уже много кораблей, ведь под водой скрывались острые скалы;
    4. Морской волк. Старый морской волк был рад, ведь ему предстояло отчалить в долгое плавание.

    Размещено 3 года назад по предмету
    Математика
    от fatimakarbatay

    1. Ответ на вопрос

      Ответ на вопрос дан
      katragorodok

      19-5=5+9
      12+8=26-6
      19-5<26-6
      12+8> 5+9

    2. Ответ на вопрос

      Ответ на вопрос дан
      goritsvet

      19-5=5+9- верное равенство
      12+8=26-6 верное равенство
      19-5=12+8- неверное равенство
      12+8=5+9- неверное равенство

    Не тот ответ на вопрос, который вам нужен?

    Найди верный ответ

    Самые новые вопросы

    Никита081

    Математика — 3 года назад

    Сколько здесь прямоугольников

    Alinashastova

    История — 3 года назад

    Какое управление было в древнейшем риме? как звали первого и последнего из царей рима?

    diankayusupova3

    Литература — 3 года назад

    Уроки французского ответе на вопрос : расскажите о герое по следующему примерному плану: 1.почему мальчик оказался в райцентре ? 2.как он чувствовал себя на новом месте? 3.почему он не убежал в деревню? 4.какие отношения сложились у него с товарищами? 5.почему он ввязался в игру за деньги? 6.как характеризуют его отношения с учительницей ? ответе на эти вопросы пожалуйста ! сочините сочинение пожалуйста

    tegysigalpa2012

    Русский язык — 3 года назад

    Помогите решить тест по русскому языку тест по русскому языку «местоимение. разряды местоимений» для 6 класса
    1. укажите личное местоимение:
    1) некто
    2) вас
    3) ни с кем
    4) собой
    2. укажите относительное местоимение:
    1) кто-либо
    2) некоторый
    3) кто
    4) нам
    3. укажите вопросительное местоимение:
    1) кем-нибудь
    2) кем
    3) себе
    4) никакой
    4. укажите определительное местоимение:
    1) наш
    2) который
    3) некий
    4) каждый
    5. укажите возвратное местоимение:
    1) свой
    2) чей
    3) сам
    4) себя
    6. найдите указательное местоимение:
    1) твой
    2) какой
    3) тот
    4) их
    7. найдите притяжательное местоимение:
    1) самый
    2) моего
    3) иной
    4) ничей
    8. укажите неопределённое местоимение:
    1) весь
    2) какой-нибудь
    3) любой
    4) этот
    9. укажите вопросительное местоимение:
    1) сколько
    2) кое-что
    3) она
    4) нами
    10. в каком варианте ответа выделенное слово является притяжательным местоимением?
    1) увидел их
    2) её нет дома
    3) её тетрадь
    4) их не спросили

    pakhotnov228

    Русский язык — 3 года назад

    Переделай союзное предложение в предложение с бессоюзной связью.
    1. океан с гулом ходил за стеной чёрными горами, и вьюга крепко свистала в отяжелевших снастях, а пароход весь дрожал.
    2. множество темноватых тучек, с неясно обрисованными краями, расползались по бледно-голубому небу, а довольно крепкий ветер мчался сухой непрерывной струёй, не разгоняя зноя
    3. поезд ушёл быстро, и его огни скоро исчезли, а через минуту уже не было слышно шума

    ggg3288

    Русский язык — 3 года назад

    помогите прошу!перепиши предложения, расставляя недостающие знаки препинания. объясни, что соединяет союз и. если в предложении один союз и, то во втором выпадающем списке отметь «прочерк».пример:«я шёл пешком и,/поражённый прелестью природы/, часто останавливался».союз и соединяет однородные члены.ночь уже ложилась на горы (1) и туман сырой (2) и холодный начал бродить по ущельям.союз и соединяет:1) части сложного предложенияоднородные члены,2) однородные членычасти сложного предложения—.поэт — трубач зовущий войско в битву (1) и прежде всех идущий в битву сам (ю. янонис).союз и соединяет:1) части сложного предложенияоднородные члены,2) ​

    Аккаунт удален

    Физика — 3 года назад

    Вокруг прямого проводника с током (смотри рисунок) существует магнитное поле. определи направление линий этого магнитного поля в точках a и b.обрати внимание, что точки a и b находятся с разных сторон от проводника (точка a — снизу, а точка b — сверху). рисунок ниже выбери и отметь правильный ответ среди предложенных.1. в точке a — «от нас», в точке b — «к нам» 2. в точке a — «к нам», в точке b — «от нас» 3. в обеих точках «от нас»4. в обеих точках «к нам»контрольная работа по физике.прошу,не наугад важно

    Информация

    Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.

    Что ты хочешь узнать?

    Задай вопрос

    Все науки

    Русский яз.

    Литература

    Математика

    Алгебра

    Геометрия

    Английский яз.

    Немецкий яз.

    Українська мова

    Українська література

    Беларуская мова

    Қазақ тiлi

    Французский яз.

    Кыргыз тили

    Оʻzbek tili

    Биология

    Химия

    Физика

    История

    Окружающий мир

    Обществознание

    ОБЖ

    География

    Информатика

    Экономика

    Музыка

    Право

    МХК

    Психология

    Астрономия

    Физкультура и спорт

    Другие предметы

    Сайт znanija.org не имеет отношения к другим сайтам и не является официальным сайтом компании.

    • Сайт
    • Главная страница
    • Напиши свой вопрос
    • Кабинет
    • Вход в личный кабинет
    • Регистрация на сайте

    Понравилась статья? Поделить с друзьями:

    Не пропустите также:

  • Как найти коэффициент гомотетии если
  • Не найдено rtl818x как исправить на виндовс 10
  • Как исправить сколиоз у взрослого в тренажерном зале
  • Как найти код своего модема
  • Как найти онлайн работу в сша

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии