Как найти дробное число в дробной степени

Дробная степень




Какими свойствами обладает степень с дробным показателем (дробная степень)? Как выполнить возведение числа в дробную степень?

Определение.

1) Степенью числа a (a>0) с рациональным показателем r

    [r = frac{m}{n},]

где m — целое число, n — натуральное число (n>1), называется число

    [{a^{frac{m}{n}}} = sqrt[n]{{{a^m}}}]

2) При a=0 и r>0 

    [{0^r} = 0.]

В частности,

    [{a^{frac{1}{2}}} = sqrt a ]

При a<0 степень с дробным показателем не определяется.

Все свойства степеней из курса алгебры 7 класса выполняются и для степеней с рациональными показателями.

Для упрощения вычислений при возведении числа в дробную степень удобно использовать таблицу степеней и следующее свойство корня:

    [sqrt[n]{{{a^m}}} = {(sqrt[n]{a})^m}]

Примеры.

Выполнить возведение в дробную степень:

    [1){81^{frac{1}{4}}} = sqrt[4]{{81}} = 3;]

    [2){128^{frac{5}{7}}} = sqrt[7]{{{{128}^5}}} = {(sqrt[7]{{128}})^5} = {2^5} = 32;]

Если показатель степени — десятичная дробь, нужно предварительно перевести ее в обыкновенную.

    [3){625^{0,75}} = {625^{frac{3}{4}}} = sqrt[4]{{{{625}^3}}} = {(sqrt[4]{{625}})^3} = ]

    [ = {5^3} = 125;]

    [4){243^{0,4}} = {243^{frac{2}{5}}} = sqrt[5]{{{{243}^2}}} = {left( {sqrt[5]{{243}}} right)^2} = ]

    [ = {3^2} = 9.]

Смешанное число нужно предварительно перевести в неправильную дробь:

    [5){(15frac{5}{8})^{frac{2}{3}}} = {(frac{{125}}{8})^{frac{2}{3}}} = sqrt[3]{{{{(frac{{125}}{8})}^2}}} = {(sqrt[3]{{frac{{125}}{8}}})^2} = ]

    [ = {(frac{5}{2})^2} = frac{{25}}{4} = 6frac{1}{4};]

    [6){(12frac{1}{4})^{1,5}} = {(frac{{49}}{4})^{frac{3}{2}}} = sqrt {{{(frac{{49}}{4})}^3}} = {(sqrt {frac{{49}}{4}} )^3} = ]

    [ = {(frac{7}{2})^3} = frac{{343}}{8} = 42frac{7}{8}.]

А как вычисляется отрицательная дробная степень?

Степень с отрицательным рациональным показателем также определена только для a>0:

    [ a^{ - frac{m}{n}} = frac{1}{{a^{frac{m}{n}} }} = frac{1}{{sqrt[n]{{a^m }}}} = frac{1}{{(sqrt[n]{a})^m }} ]

При возведении обыкновенной дроби в степень с отрицательным показателем удобно использовать формулу:

    [ (frac{a}{b})^{ - n} = (frac{b}{a})^n ]

Примеры.

Выполнить возведение в степень с отрицательным рациональным показателем:

    [ 1)625^{ - frac{3}{4}} = frac{1}{{625^{frac{3}{4}} }} = frac{1}{{(sqrt[4]{{625}})^3 }} = frac{1}{{5^3 }} = frac{1}{{125}}; ]

    [ 2)0,0004^{ - 1,5} = frac{1}{{0,0004^{frac{3}{2}} }} = frac{1}{{(sqrt {0,0004} )^3 }} = ]

    [ = frac{1}{{0,02^3 }} = (frac{1}{{0,02}})^3 = (frac{{100}}{2})^3 = ]

    [ = 50^3 = 125000; ]

    [ 3)(1frac{{61}}{{64}})^{ - frac{2}{3}} = (frac{{125}}{{64}})^{ - frac{2}{3}} = (frac{{64}}{{125}})^{frac{2}{3}} = (sqrt[3]{{frac{{64}}{{125}}}})^2 = ]

    [ = (frac{4}{5})^2 = frac{{16}}{{25}} = 0,64. ]

Дробное число в дробную степень

Возведение дробного числа в дробную степень, не так сложна, если понимать что мы хотим сделать. Хотя у многих подобный вопрос вызывает  панику.

Данную тему мы уже поднимали в материале Корни и степени комплексных чисел онлайн но вернемся еще раз к написанному.

Для того, что бы нам решать подобные задачи нам необходимо знать связь натурального логарифма ln(x)  и экспоненты e^x.

Связь очень проста x=e^{ln(x)} или  так x=ln(e^x)

Из последней формулы следует вывод что ln(e)=1

Подумав, теперь легко решить нашу поставленную задачу

Что бы возвести дробное число  в дробную степень

a^b

вычислим значение натурального логарифма

ln(a^b)=bln(a)

и результат возведем в экспоненту

e^{bln(a)}

Это и будет являтся  результатом возведения дробного числа в дробную степень.

Примеры

a^b

2.5^{-0.67}=>-0.67ln(2.5)=>-0.613914=>e^{-0.613914}=0.5412279

Удачных расчетов!

Определение

Возведение целого числа в дробную степень — это арифметический процесс, при котором находится значение степени числа, выраженной дробью.

Преимущества дробной степени над записью выражения с помощью корней

Использовать дробную степень проще, чем записывать выражения с помощью корней. Это связано с тем, что вычислить значение числа в определенной степени легче, чем применять свойства корней. Если возведение в степень займет один шаг, то вычисление корня производится в несколько шагов.

Правило возведения

Возведение числа в дробную степень осуществляется согласно правилу: пусть (frac pq) — обыкновенная дробь, причём (p) и (q) больше нуля и (q≠1). Тогда для возведения числа a в дробную степень нужно извлечь из него корень q-ой степени и возвести в степень числителя, которая равна (p).

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

В математической форме это правило выглядит так:

(a^frac qp=;sqrt[p]{a^q},;ageq0,;p>0,;q>1)

Правило, когда показатель степени является дробью

Если показателем степени является десятичная дробь, то нужно перевести ее в обыкновенную:

(625^{0,75} = 625^frac3{4;} = sqrt[4]{625^3} = 53 = 125)

В случае, если число смешанное, необходимо перевести его в неправильную дробь:

(left(15frac58right)^frac23;=;left(frac{125}8right)^frac23;=;sqrt[3]{left(frac{125}8right)^2};=;left(sqrt[3]{frac{125}8}right)^2;=;left(frac52right)^2;=;frac{25}4;=;6frac14)

При возведении дроби в отрицательную степень следует использовать формулу:

(left(frac abright)^{-n};=;left(frac baright)^n)

К примеру:

(625^{-frac34};=;frac1{625^{frac34}};=;frac1{sqrt[4]{625^3}};=;frac1{5^3};=;frac1{125})

Решение в виде задачи, примеры

Пример 1

Найти: (81^frac14)

Решение

(81^frac14=sqrt[4]{81^1}=3)

Ответ: 3.

Пример 2

Вычислить: (135^frac9{10})

Решение

(135^frac9{10}=;sqrt[10]{135^9})

Ответ: (;sqrt[10]{135^9}).

Пример 3

Найти: (left(1frac35right)^frac13)

Решение

(left(1frac35right)^frac13=left(frac85right)^frac13=sqrt[3]{left(frac85right)^1}=sqrt[3]{frac85}=sqrt[3]{frac{2^3}5}=frac2{sqrt[3]5})

Ответ: (frac2{sqrt[3]5}).

Как возвести число в дробную степень?

Alexsandr82
[21.4K]

6 лет назад 

Как возвести число в дробную степень? То есть как например, возвести число 2 в степень 2/3?

Alexs­andr8­2
[21.4K]

5 лет назад 

Для того чтобы возвести число в дробную степень нужно выполнить две операции: во-первых, возвести число в степень числителя дробной степени (числитель — это то что у дроби находится сверху), во-вторых, из того что получилось после возведения в степень нужно извлеч корень той степени чему равен знаменатель дробной степени (знаменатель — это то что стоит внизу дроби). Например, нам нужно возвести 3 в степень 3/7, сначало мы возводим 3 в степень числителя т.е. в куб, получаем 27, а затем извлекаме корень седьмой степени. Если дробная степень представленна с целой частью, то есть например нужно 2 возвести в степень 1 целая 1/3 то степень нужно представить в виде обычной дроби т.е. в данном случае это будет 4/3, а затем производить вычисления, 2 возводим в 4 степень получаем 16 и затем берем кубический корень из 16. Таким же образом в случае если нужно возвести число в степень 1,5, степень можно представить в виде обычной дроби 15/10 или 3/2 и произвести вычисления.

комментировать

в избранное

ссылка

отблагодарить

Вален­тина МД
[33.2K]

5 лет назад 

Чтобы возвести число в дробную степень, надо возвести его в ту степень, которая показана в числителе и извлечь корень той степени, которая указана в знаменателе.

Например:

2 в степени 2/1, это 2 во второй степени или другое название 2 в квадрате, равно 2*2.

2 в степени 1/2, это корень квадратный из 2.

2 в степени 2/3, это 2, возведена во вторую степень (квадрат), и потом из полученного результата извлечён корень 3 степени (куб)

комментировать

в избранное

ссылка

отблагодарить

vdtes­t
[29.4K]

6 лет назад 

Чтобы возвести число в дробную степень надо возвести число в степень числителя дробной степени и вычислить из этого значения корень степени знаменателя дробной степени

то есть результатом возведения в степень будет корень степени знаменателя дробной степени из числа в степени числителя дробной степени

Пример

комментировать

в избранное

ссылка

отблагодарить

Знаете ответ?

Дробная степень числа

  • Дробный показатель степени
  • Действия над степенями с дробными показателями

Дробный показатель

Число с дробным показателем степени равно корню с показателем, равным знаменателю, и подкоренным числом в степени, равной числителю.

Чтобы разобраться, почему число в дробной степени равно корню, надо вспомнить правило извлечения корня из степени:

Чтобы извлечь корень из степени, надо показатель степени разделить на показатель корня:

Следовательно, если показатель степени не делится на показатель корня, то получается дробная степень:

Поэтому извлечение корня всегда может быть заменено возведением в степень.

Действия над степенями с дробными показателями

Действия над степенями с дробными показателями совершаются по тем же правилам, которые установлены для степеней с целым показателем.

При доказательстве этого положения, будем сначала предполагать, что члены дробей:    и  ,  служащих показателями степеней, положительны.

В частном случае  n  или  q  могут равняться единице.

При умножении дробных степеней с одинаковыми основаниями их показатели складываются:

При делении дробных степеней с одинаковыми основаниями из показателя делимого вычитается показатель делителя:

Чтобы возвести степень в другую степень, в случае дробных показателей, достаточно перемножить показатели степеней:

Чтобы извлечь корень из дробной степени, достаточно показатель степени разделить на показатель корня:

Правила действий применимы не только к положительным дробным показателям, но и к отрицательным.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти вуз в питере
  • Eset internet security карантин как найти
  • Как составить заказ на материалы
  • Как в одноклассниках найти друзей которые удалились
  • Как найти свой планшет apple

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии