Как найти драйвер подсветки

Светодиоды, в последние годы серьезно потеснившие все остальные источники света, сегодня можно встретить повсеместно. Они используются в квартирах и офисах, освещают улицы, украшают здания и интерьеры. Но для правильной работы полупроводникового источника света необходим качественный и надежный драйвер для светодиодов. Сегодня мы поговорим об этом исключительно важном узле и разберемся, почему этот драйвер так необходим, как он работает, и даже попытаемся сделать led driver своими руками.

Что такое драйвер и зачем он нужен

Если заглянуть в англо-русский словарь, то можно узнать, что драйвер – это буквально «водитель» (driver – водитель, англ.). Откуда такое странное название и что он водит? Для того чтобы в этом разобраться, немного отвлечемся и поговорим о светодиодах.

Светодиод (led) – полупроводниковый прибор, способный излучать свет под воздействием приложенного к нему напряжения. Причем для правильной работы полупроводника напряжение, обеспечивающее оптимальный ток через кристалл, должно быть постоянным и строго стабилизированным. Особенно это касается мощных светодиодов, которые крайне критически относятся к всевозможным перепадам и скачкам питающего тока. Стоит питанию диода чуть снизиться, как упадет ток и, как следствие, уменьшится светоотдача. При малейшем превышении нормальной величины тока полупроводник мгновенно перегревается и сгорает.

Основное назначение драйвера – обеспечить светоизлучающий диод необходимым для его нормальной работы током. Таким образом, led драйвер – это, по сути, блок питания для светодиодов, их «водитель», обеспечивающий длительную и качественную работу полупроводникового осветителя.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Ты не встретишь ни одного осветительного прибора, имеющего в своем составе мощный светодиод, который бы не имел драйвера. Поэтому так важно разобраться, какими бывают драйверы, как они работают и какими характеристиками должны обладать.

к содержанию ↑

Виды светодиодных драйверов

Все драйверы для светодиодов можно разделить по принципу стабилизации тока. На сегодняшний день таких принципов два:

  1. Линейный.
  2. Импульсный.

Линейный стабилизатор

Предположим, в нашем распоряжении мощный светодиод, который нужно зажечь. Соберем простейшую схему:

Схема регулировки тока

Схема, поясняющая линейный принцип регулировки тока

Выставляем резистором R, выполняющим роль ограничителя, нужное значение тока – светодиод горит. Еcли напряжение питания изменилось (к примеру, батарея садится), поворачиваем движок резистора и восстанавливаем необходимый ток. Если увеличилось, то таким же образом ток уменьшаем. Именно это и делает простейший линейный стабилизатор: следит за током через светодиод и при необходимости “крутит ручку” резистора. Только делает он это очень быстро, успевая реагировать на малейшее отклонение тока от заданной величины. Конечно, никакой ручки у драйвера нет, ее роль выполняет транзистор, но суть пояснения от этого не меняется.

В чем недостаток линейной схемы стабилизатора тока? Дело в том, что через регулирующий элемент тоже течет ток и бесполезно рассеивает мощность, которая просто греет воздух. Причем чем входное напряжение больше, тем выше потери. Для светодиодов с небольшим рабочим током такая схема годится и успешно используется, но мощные полупроводники линейным драйвером питать себе дороже: драйверы могут съедать больше энергии, чем сам осветитель.

К преимуществам такой схемы питания можно отнести относительную простоту схемотехники и невысокую стоимость драйвера, сочетающуюся с высокой надежностью.

Линейный драйвер

Линейный драйвер для питания светодиода в карманном фонаре 

Импульсная стабилизация

Перед нами тот же светодиод, но схему питания соберем несколько иную:

Схема, импульсный стабилизатор

Схема, поясняющая принцип работы широтно-импульсного стабилизатора

Теперь вместо резистора у нас кнопка КН и добавлен накопительный конденсатор С. Подаем напряжение на схему и нажимаем кнопку. Конденсатор начинает заряжаться, и при достижении на нем рабочего напряжения светодиод загорается. Если продолжать держать кнопку нажатой, то ток превысит допустимую величину, и полупроводник сгорит. Отпускаем кнопку. Конденсатор продолжает питать светодиод и постепенно разряжается. Как только ток опустится ниже допустимого для светодиода значения, снова нажимаем кнопку, подпитывая конденсатор.

Вот так сидим и периодически жмем кнопку, поддерживая нормальный режим работы светодиода. Чем выше питающее напряжение, тем нажатия будут короче. Чем напряжение ниже, тем кнопку придется держать нажатой дольше. Это и есть принцип широтно-импульсной модуляции. Драйвер следит за током через светодиод и управляет ключом, собранным на транзисторе или тиристоре. Делает он это очень быстро (десятки и даже сотни тысяч нажатий в секунду).

С первого взгляда работа утомительная и сложная, но только не для электронной схемы. Зато КПД импульсного стабилизатора может достигать 95%. Даже при питании сверхмощных светодиодных прожекторов потери энергии минимальны, а ключевые элементы драйвера не требуют мощных теплоотводов. Конечно, импульсные стабилизаторы несколько сложнее по конструкции и дороже, но все это окупается высокой производительностью, исключительным качеством стабилизации тока и отличными массогабаритными показателями.

импульсный драйвер

Этот импульсный драйвер способен выдать ток до 3 А безо всяких радиаторов 
к содержанию ↑

Как подобрать драйвер для светодиодов

Разобравшись с принципом работы led driver, осталось научиться их правильно выбирать. Если ты не забыл основ электротехники, полученных в школе, то дело это нехитрое. Перечислим основные характеристики преобразователя для светодиодов, которые будут участвовать в выборе:

  • входное напряжение;
  • выходное напряжение;
  • выходной ток;
  • выходная мощность;
  • степень защиты от окружающей среды.

Прежде всего, необходимо решить, от какого источника будет питаться твой светодиодный светильник. Это может быть сеть 220 В, бортовая сеть автомобиля или любой другой источник как переменного, так и постоянного тока. Первое требование: то напряжение, которое ты будешь использовать, должно укладываться в диапазон, указанный в паспорте на драйвер в графе «входное напряжение». Кроме величины, нужно учесть и род тока: постоянный или переменный. Ведь в розетке, к примеру, ток переменный, а в автомобиле – постоянный. Первый принято обозначать аббревиатурой АС, второй DC. Почти всегда эту информацию можно увидеть и на корпусе самого прибора.

драйвер переменного тока

Этот драйвер рассчитан для работы от сети переменного тока напряжением от 100 до 265 В

Далее переходим к выходным параметрам. Предположим, у тебя есть три светодиода на рабочее напряжение 3.3 В и ток 300 мА каждый (указано в сопроводительной документации). Ты решил сделать настольную лампу, схема соединения диодов последовательная. Складываем рабочие напряжения всех полупроводников, получаем падение напряжения на всей цепочке: 3.3 * 3 = 9.9 В. Ток при таком соединении остается тем же – 300 мА. Значит, тебе нужен драйвер с выходным напряжением 9.9 В, обеспечивающий стабилизацию тока на уровне 300 мА.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Важно! Все полупроводники, работающие от одного драйвера, должны быть однотипными и желательно из одной партии. В противном случае, неизбежен разброс параметров светодиодов, в результате которого один из них будет светить вполнакала, а второй быстро сгорит.

Конечно, именно на это напряжение прибор найти не удастся, но это и не нужно. Все драйверы рассчитаны не на конкретное напряжение, а на некоторый диапазон. Твоя задача – уложить свое значение в этот диапазон. А вот выходной ток должен точно соответствовать 300 мА. В крайнем случае он может быть несколько меньше (лампа будет светить не так ярко), но никогда не больше. Иначе твоя самоделка сгорит сразу либо через месяц.

Идем дальше. Выясняем, какой мощности драйвер нам нужен. Этот параметр должен как минимум совпадать с потребляемой мощностью нашей будущей лампы, а лучше превышать это значение на 10-20%. Как рассчитать мощность нашей «гирлянды» из трех светодиодов? Вспоминаем: электрическая мощность нагрузки – это ток, идущий через нее, умноженный на приложенное напряжение. Берем калькулятор и перемножаем общее рабочее напряжение всех светодиодов на ток, предварительно переведя последний в амперы: 9.9 * 0.3 = 2.97 Вт.

Последний штрих. Конструктивное исполнение. Прибор может быть как в корпусе, так и без него. Первый, естественно, боится пыли и влаги, и в плане электробезопасности он не лучший вариант. Если ты решил встроить драйвер в лампу, корпус которой является хорошей защитой от окружающей среды, тогда подойдет. Но если корпус лампы имеет кучу вентиляционных отверстий (светодиоды должны охлаждаться), а само устройство будет стоять в гараже, то лучше выбрать источник питания в собственном корпусе.

Итак, нам нужен светодиодный драйвер со следующими характеристиками:

  • питающее напряжение – сеть 220 В переменного тока;
  • выходное напряжение – 9.9 В;
  • выходной ток – 300 мА;
  • выходная мощность – не менее 3 Вт;
  • корпус – пылевлагозащитный.

Отправляемся в магазин и смотрим. Вот он:

Драйвер питания

Драйвер для питания светодиодов

Причем не просто подходящий, а идеально соответствующий запросам. Слегка пониженный выходной ток продлит жизнь светодиодов, но на яркости их свечения это абсолютно никак не отразится. Потребляемая мощность упадет до 2.7 Вт – будет запас мощности драйвера.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Если у тебя очень большое количество светодиодов, то при последовательном включении их общее напряжение может превысить максимально возможное для существующих драйверов. В этом случае обратись к разделу Схема подключения драйвера к светодиодам, который находится в конце этой статьи.

к содержанию ↑

В чем отличия между драйвером для светодиодов и блоком питания для LED ленты

Бытует мнение, что блоки питания для светодиодных лент – нечто другое, чем обычный led драйвер. Попробуем прояснить этот вопрос, а заодно научимся правильно выбирать драйвер для светодиодной ленты. Светодиодная лента – это гибкая подложка, на которой расположены все те же светодиоды. Они могут стоять в 2, 3, 4 ряда, это не так важно. Важнее разобраться, как они соединены между собой.

Все полупроводники на ленте разбиты на группы по 3 светодиода, соединенных последовательно через токоограничивающий резистор. Все группы, в свою очередь, соединены параллельно:

схема одной секции и всей светодиодной ленты

Электрическая схема одной секции (слева) и всей светодиодной ленты 

Лента продается в бобинах обычно длиной по 5 м и рассчитана на рабочее напряжение 12 или 24 В. В последнем случае в каждой группе будет не 3, а 6 светодиодов. Предположим, ты купил ленту на 12 В с удельной потребляемой мощностью 14 Вт/м. Таким образом, общая мощность, потребляемая всей бобиной, составит 14 * 5 = 70 Вт. Если тебе не нужна такая длинная, ты можешь отрезать ненужную часть с условием, что будешь резать ее между секциями. Например, ты отрезал половину. Какие характеристики при этом изменятся? Только потребляемая мощность: она уменьшится вдвое.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Важно! Не забывай, что разрезать светодиодную ленту можно только между секциями по 3 светодиода (для 24-х вольтовой их будет 6), которые хорошо видны. На рисунке ниже я пометил их стрелками.

Места разреза led ленты

Места разделения секций хорошо видны и даже помечены пиктограммами ножниц 

Надо ли ограничивать и стабилизировать ток через обычный светодиод? Безусловно, иначе он сгорит. Но мы совсем забыли о резисторе, установленном в каждой секции ленты. Он служит для ограничения тока и подобран таким образом, что при подаче на секцию ровно 12-ти вольт ток через светодиоды будет оптимальным. В задачу драйвера светодиодной ленты входит удержание питающего напряжение строго на уровне 12 В. Все остальное берет на себя токоограничивающий резистор.

Таким образом, главное отличие блока питания led ленты от обычного led драйвера – четко фиксированное выходное напряжение 12 или 24 В. Здесь уже не получится использовать обычный драйвер с выходным напряжением, скажем, от 9 до 14 В.

Остальные критерии выбора блока питания для светодиодной ленты следующие:

  • входное напряжение. Методика выбора та же, что и для обычного драйвера: прибор должен быть рассчитан на то входное напряжение и тот род тока, которым ты будешь питать светодиодную ленту;
  • выходная мощность. Мощность блока питания должна быть минимум на 10% выше мощности ленты. При этом слишком большой запас брать не стоит: снижается КПД всей конструкции;
  • класс защиты от окружающей среды. Методика та же, что и для светодиодного драйвера (см. выше): в прибор не должны попадать пыль и влага.

Драйвер для светодиодной ленты – не что иное, как высококачественный, но обычный стабилизатор напряжения. Он выдает строго фиксированное напряжение, но абсолютно не следит за выходным током. При желании и для эксперимента вместо него ты можешь использовать, к примеру, блок питания от ПК (шина 12 В). Яркость и долговечность ленты от этого не пострадают.

к содержанию ↑

Схема подключения драйвера к светодиодам

Подключить драйвер к светодиодам просто, с этим справится каждый. Вся маркировка нанесена на его корпус. На входные провода (INPUT) подаешь входное напряжение, к выходным (OUTPUT) подключаешь линейку светодиодов. Единственно, необходимо соблюдать полярность, и на этом я остановлюсь подробнее.

Полярность входа (INPUT)

Если питающее драйвер напряжение постоянное, то вывод, помеченный знаком «+» необходимо подключить к положительному полюсу источника питания. Если напряжение переменное, то обрати внимание на маркировку входных проводов. Возможны следующие варианты:

  1. Маркировка «L» и «N»: на вывод «L» нужно подать фазу (находится при помощи индикаторной отвертки), на вывод «N» – ноль.
  2. Маркировка «~», «АС» или отсутствует: полярность соблюдать не нужно.

Полярность выхода (OUTPUT)

Здесь полярность соблюдается всегда! Плюсовой провод подключается к аноду первого светодиода, минусовой – к катоду последнего. Сами светодиоды соединяются между собой: анод последующего к катоду предыдущего.

Схема подключения драйвера к фонарю

Схема подключения драйвера к гирлянде из трех последовательно включенных светодиодов 

Если у тебя очень много светодиодов (скажем, 12 шт.), то их придется разбить на несколько одинаковых групп, а эти группы соединить параллельно. При этом учти, что общая потребляемая светильником мощность составит сумму мощностей всех групп, а рабочее напряжение будет соответствовать напряжению одной группы.

При таком способе подключения токи всех четырех групп светодиодов складываются

При таком способе подключения токи всех четырех групп светодиодов складываются

к содержанию ↑

 Линейный драйвер для светодиодов своими руками

С теорией закончим, перейдем к практике и попробуем собрать линейный драйвер своими руками. Проще всего эту задачу решить при помощи широко распространенного интегрального стабилизатора КР142ЕН12А (его импортный аналог – LM317). Найти его можно в любом соответствующем магазине, и стоит он в районе 20 рублей. Необходимые материалы и инструменты: паяльник, тестер и провода.

Эта микросхема рассчитана на входное напряжение до 40 В, выдерживает ток до 1.5 А и, главное, имеет встроенную защиту от перегрузки, короткого замыкания и перегрева. Правда, это стабилизатор напряжения, а драйвер должен стабилизировать ток. Но мы этот вопрос решим, чуть изменив типовую схему включения микросхемы.

Универсальный драйвер

Универсальный драйвер для светодиодов на интегральном стабилизаторе

Здесь микросхема применяется в роли регулирующего элемента, стабилизирующего ток на заданном уровне. Какой величины этот ток будет? Все зависит от сопротивления резистора R1, номинал которого рассчитывается по простой формуле: R = 1.2/I, где:

  • R – сопротивление в омах;
  • I – необходимый ток в амперах.

Давай попробуем построить драйвер для тех светодиодов, из которых мы делали настольную лампу в начале статьи. Итак, нам нужен драйвер, на напряжение 9.9 В выдающий стабилизированный ток 300 мА. Делаем расчет номинала резистора R1: 1.2/0.3= 4 Ом. Поскольку резистор стоит в токовой цепи, мощность его выбираем не менее 4 Вт.

Здесь отлично подойдут резисторы, используемые практически во всех телевизорах в качестве гасящих по питанию (такие лежат в любом магазине). Они имеют мощность 2 Вт и сопротивление 1-2 Ом. Если резисторы одноомные, то их понадобится 4 шт, если двухомные – 2 шт. Соединяем их последовательно, чтобы сопротивления сложились.

Крепим микросхему на небольшой радиатор и подключаем к выходу нашего драйвера цепочку из трех последовательно соединенных светодиодов, соблюдая полярность. Можно включать. Но куда? Какое входное напряжение у этого драйвера? Вот тут начинается самое интересное. Напряжение на входе должно быть минимум на 2-3 вольта больше того, что необходимо светодиодам, но не более 40 В – больше микросхема не выдержит.

В нашем конкретном случае светодиодам нужно 9.9 В. Значит, на вход можно подать постоянное напряжение величиной от 12 до 40 В. Причем напряжение это может быть нестабилизированное. Подойдет автомобильный аккумулятор, блок питания ноутбука или ПК, понижающий трансформатор с диодным мостом. Подключаем, соблюдая полярность, и наш фонарь готов!

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

А как же с выходным напряжением? Об этом не нужно беспокоиться. Как только драйвер стабилизирует ток на заданном уровне, нужное напряжение на светодиодах установится без нашей помощи. Кто не верит, берет тестер и измеряет.

Вот и закончилась наша беседа о led драйверах. Надеюсь, теперь ты не только знаешь, как работает этот важный узел, но и сможешь его правильно выбрать, подключить, а при необходимости даже собрать своими руками.

Следующая

СветодиодыПараметры и технические характеристики светодиодов типоразмера SMD 3014

На чтение 12 мин Просмотров 1.2к. Опубликовано 4 апреля, 2020

Специальные электронные схемы – драйверы – позволяют продлевать работу светодиодов, делать их свечение равномерным и качественным. Узнаем, как работает это устройство, как правильно его выбрать и установить, а также изготовить своими руками.

Содержание

  1. Что такое драйвер и зачем он нужен?
  2. Принцип работы, классическая схема и отличие от блока питания
  3. Технические характеристики
  4. Виды драйверов
  5. Линейные и импульсные
  6. Электронные, диммируемые и на базе конденсаторов
  7. В корпусе и без него
  8. Срок годности
  9. Как подобрать драйвер для светодиодного светильника?
  10. Как проверить работоспособность?
  11. Подключение
  12. Как сделать драйвер для светодиодного светильника своими руками?

Что такое драйвер и зачем он нужен?

Светодиоды очень чувствительны к изменениям параметров электросети, поэтому их подключают в сеть через драйвер – электронное устройство, контролирующее силу тока и напряжение.

Обычно драйвер к led-светильнику подбирают с запасом по мощности и с учетом диапазона выходного напряжения и тока. Если его параметры не будут подходить к светодиодному устройству, оно придет в негодность, его придется утилизировать.

Принцип работы, классическая схема и отличие от блока питания

Несмотря на то, что драйвер часто называют блоком питания, между этими двумя понятиями есть разница. Драйвер – источник тока, который поддерживает его неизменное значение для прохождения через светодиод, а блок питания поддерживает стабильное напряжение.

Рассмотрим, как работает блок питания на конкретном примере:

  • Подключим к источнику на 12 В сопротивление (R) 40 Ом.
  • Пусть через резистор протекает ток (I) 300 мА. При установке двух резисторов ток удвоится и станет равен 600 мА. При этом напряжение не изменится, так как оно имеет пропорциональную связь с током и сопротивлением (закон Ома I=U/R).

Теперь посмотрим, как работает драйвер:

  • Пусть в цепь с драйвером на 225 мА включено сопротивление (R) 30 Ом.
  • Если при напряжении (U) 12 В включить два параллельно включенных резистора по 30 Ом, ток останется прежним – 225 мА, а напряжение станет вдвое меньше – 6 В.

Драйвер в итоге обеспечивает нагрузку заданным выходным током независимо от скачков напряжения. Поэтому светодиоды, на которые будет подаваться напряжение 6 В, будут светить так же ярко, как и при источнике в 10 В, если на него будет подан ток заданного уровня.

Схема драйвера для светодиодов:

Схема

Цепь драйвера состоит из трех взаимосвязанных узлов:

  • емкостного сопротивления для разделения напряжения;
  • выпрямляющего модуля;
  • стабилизатора.

Принцип работы схемы:

  1. При прохождении тока конденсатор С заряжается до полной зарядки. Чем его емкость меньше, тем быстрее он зарядится.
  2. Переменный ток преобразуется в пульсирующий. Первая часть волны сглаживается при прохождении через конденсатор С.
  3. Электролитический конденсатор, завершающий цепь, служит сглаживающим фильтром-стабилизатором.

Технические характеристики

При покупке светодиодного светильника может возникнуть потребность в покупке драйвера, если осветительное устройство не имеет преобразователя тока.

Основные характеристики:

  • ток на выходе, А;
  • рабочая мощность, Вт;
  • напряжение на выходе, В.

Выходное напряжение может меняться. Оно зависит от схемы подключения к питанию и числа светодиодов. От величины тока зависит уровень яркости и мощность.

Чтобы диоды светили ярко и не притухали, на выходе драйвера ток поддерживается на заданном уровне. Мощность преобразователя должна быть несколько выше, чем суммарное количество Вт всех диодов.

Для расчета мощности драйвера применяют формулу: P = P (led) × X где:

  • P (led) – это мощность одного светодиода;
  • Х – количество диодов.

Если расчетная мощность получилась 10 Вт, драйвер надо брать с запасом на 20-30 %.

Виды драйверов

Все драйвера различают по трем критериям – по способу стабилизации, конструкционным особенностям и наличию/отсутствию защиты. Рассмотрим все варианты подробнее.

Линейные и импульсные

В зависимости от схемы стабилизации тока драйверы делятся на два типа – линейные и импульсные. Они отличаются принципом работы и эффективностью.

Перед электронной схемой драйвера поставлена задача – обеспечение стабильных значений тока и напряжения, подводимых к кристаллу (светодиоду). Самый простой и дешевый вариант – включение в цепь ограничительного резистора.

Линейная схема питания:

Линейная схема

Эта элементарная схема не способна обеспечивать автоматическое поддержание тока. При повышении напряжения он пропорционально растет и, когда превысит допустимое значение, кристалл разрушится от перегрева.

Более сложное управление осуществляется путем включения в цепь транзистора. Минус линейной схемы – снижение мощности при росте напряжения. Такой вариант допустим при работе led-источников малой мощности, но при работе мощных светодиодов такие схемы не применяют.

Плюсы линейной схемы:

  • простота;
  • дешевизна;
  • относительная надежность.

Наряду с линейными схемами, стабилизировать ток и напряжение можно путем импульсной стабилизации:

  • после нажатия кнопки заряжается конденсатор;
  • после отпускания конденсатор разряжается, отдавая запасённую энергию полупроводниковому элементу (светодиоду), который начинает испускать свет;
  • если напряжение растет, то время зарядки конденсатора сокращается, если падает – увеличивается.

Нажимать кнопку пользователю не приходится – за него всё делает электроника. Роль кнопочного механизма в современных источниках питания выполняют полупроводники – тиристоры или транзисторы.

Рассмотренный принцип работы называется в электронике широтно-импульсной модуляцией. За секунду может происходить десятки и даже тысячи срабатываний. КПД такой схемы достигает 95 %.

Упрощенная схема импульсной стабилизации:

схема импульсной стабилизации

Электронные, диммируемые и на базе конденсаторов

От принципа устройства драйвера зависит область его применения и эксплуатационные характеристики.

Виды драйверов по принципу устройства:

  • Электронные. В их схемах обязательно используется транзистор. На выходе устанавливается конденсатор, исключающий или хотя бы сглаживающий пульсации тока. Электронные преобразователи способны стабилизировать токи до 750 мА.
    Драйверы электронного типа борются не только с пульсациями, но и с электромагнитными высокочастотными помехами, наводимыми электроприборами (радио, телевизор, роутер и т. п.). Минимизировать помехи позволяет наличие специального керамического конденсатора.
    Минус электронного драйвера – высокая стоимость, плюс – КПД близкий к 95 %. Их используют в мощных led-светильниках: автофарах, прожекторах, уличных фонарях.

    Электронные

  • Диммируемые. Особенность диммируемых драйверов – возможность управления яркостью светильника. Регулировка основана на изменении тока на выходе, который и определяет яркость светопотока.
    Драйвер можно включать в схему двумя способами: между светильником и стабилизатором или между источником питания и преобразователем.

    Диммируемые

  • На основе конденсаторов. Это недорогие модели, используемые для бюджетных светодиодных светильников. Если в схеме производитель не предусмотрел сглаживающий конденсатор, то на выходе наблюдается пульсация. Другой минус – недостаточная безопасность.
    Плюс подобных моделей – высокий КПД, стремящийся к 100 %, и простота схемы. Подобные драйверы легко собрать своими руками.
    На основе конденсаторов

Драйверы на конденсаторах могут вызывать мерцание, поэтому их не рекомендуется использовать вместе с приборами, установленными внутри помещений. Мерцание вредно влияет на зрение и раздражает нервную систему.

В корпусе и без него

Драйвер может быть размещен внутри защитного корпуса, но может и не иметь его. Электронные схемы уязвимы перед многими внешними факторами, поэтому более надежным вариантом считается размещение драйвера в корпусе.

Корпус защищает электронный преобразователь от влаги, пыли, попадания прямых солнечных лучей и т. д. Бескорпусные модели обходятся дешевле, но у них меньше срок службы и хуже стабильность эксплуатации. Они больше подходят для скрытого монтажа.

Срок годности

Драйвер рассчитан примерно на 30 000 часов. Это немого меньше, чем расчетный срок службы многих светодиодных светильников. Такое уменьшение связано с неблагоприятными факторами, в которых приходится работать стабилизатору тока.

Что негативно влияет на работу драйвера:

  • скачки напряжения в электросети;
  • изменения температуры и/или влажности.

Если прибор мощностью 200 Вт имеет нагрузку 100 Вт, то 50 % номинального значения возвращается в сеть. Это может вызвать перегрузку и сбои питания.

Срок службы драйвера ограничен долговечностью сглаживающего конденсатора. Со временем в нем испаряется электролит, и прибор выходит из строя.

Чтобы продлить работу драйвера, его необходимо эксплуатировать в помещениях с нормальной (не повышенной) влажностью, и подключать к сети с качественным, без скачков, напряжением.

Как подобрать драйвер для светодиодного светильника?

При подключении к стабилизатору тока полупроводники получают необходимую им мощность и достигают номинальных характеристик. От того, насколько правильно будет подобран драйвер, зависит срок службы диодов.

На какие параметры обратить внимание:

  • Мощность. По ней определяют максимально допустимую нагрузку, на которую рассчитан прибор. Например, маркировка (20х26)х1Вт означает, что к драйверу можно подключать одновременно от 20 до 26 светодиодов, каждый мощностью 1 Вт.
  • Ток и напряжение (номинальные значения). Данный параметр производители указывают на каждом светодиоде, именно по нему подбирают драйвер. Если максимальный номинальный ток равен 350 мА, необходимо подключать источник питания на 300-330 мА.
    Подобный диапазон рабочих токов позволяет обеспечивать срок годности светильника, предусмотренный производителем.
  • Класс защиты. От этого показателя зависит, где именно можно применять светильники – на улице или в помещении. Класс влагостойкости и герметичности обозначается буквами IP и выражается двумя цифрами.
    По первой цифре судят о защите от твердых фракций (пыль, грязь, песок, лёд), по второй – от жидких сред. Класс защиты не указывает на температуру, при которой можно применять светильник.
  • Корпус. Драйвер может иметь открытый перфорированный металлический корпус или закрытый. Во втором случае устройство помещено в металлическую коробку. Для домашних условий подойдет негерметизированный корпус из пластика.
  • Принцип работы. Ограничительный резистор не избавляет от перепадов напряжения в электросети и не защищает от импульсных помех. Малейшее изменение напряжения приводит к резким скачкам тока. Линейный стабилизаторы считаются ненадежными и низкоэффективными драйверами, предпочтение отдают импульсным схемам.

подобрать драйвер для светодиодного светильника

Как проверить работоспособность?

Чтобы проверить драйвер без нагрузки, достаточно подать на вход блока 220 В. Если устройство исправно, на выходе появится постоянное напряжение. Его значение будет немного больше верхнего предела, указанного в маркировке драйвера.

Если, к примеру, на стабилизаторе стоит диапазон 27-37 В, то на выходе должно быть около 40 В. Чтобы поддерживать ток в заданном диапазоне, при увеличении сопротивления нагрузки (без нагрузки оно стремится к бесконечности) напряжение также растёт до определенного предела.

Данный способ проверки прост и доступен, но не позволяет делать однозначные выводы о 100%-ной исправности устройства. Попадаются драйвера, которые после включения без нагрузки не запускаются или ведут себя непонятным образом.

Второй вариант проверки:

  1. Подключите к выходу драйвера резистор, подобрав его сопротивление на основе закона Ома. К примеру, мощность драйвера 20 Вт, ток на выходе 600 мА, напряжение – 25-35 В. Искомое сопротивление будет составлять 38-58 Ом.
  2. Подберите сопротивление из заданного диапазона и с соответствующей мощностью. Даже если она будет небольшой, то этого вполне хватит для проверки.
  3. Подключите резистор и замерьте тестером выходное напряжение. Если оно в заданных пределах, то драйвер точно исправен.

При поиске поломок необходимо учитывать принцип устройства схемы. В линейных и импульсных схемах поломки могут быть связаны с определенными проблемами. Возможные неисправности:

  • В линейных стабилизаторах для защиты от перепадов напряжения применяют пару резисторов сопротивлением от 5 до 100 Ом. Один стоит на входе диодного моста, второй – на выходе. Чтобы уменьшить мерцание, параллельно нагрузке включают конденсатор-электролит максимальной емкости.
    Неисправности линейных драйверов могут быть связаны с перегоранием одного или сразу двух защитных резисторов.
  • В импульсных преобразователях тока микросхемы защищены от перегрузки, перегрева и перенапряжения и по идее не могут сломаться. На деле же любая микросхема, особенно в драйверах китайского производства, может прийти в негодность.
    Проблема усложняется тем, что многим китайским микросхемам трудно найти замену. Некоторые из них невозможно найти даже в интернете.

Подключение

Подключение драйвера к светодиодам не вызывает сложностей у пользователей, так как на его корпусе имеется необходимая маркировка.

Как подключить драйвер:

  1. На входные провода (INPUT) подайте входное напряжение.
  2. К выходным проводам (OUTPUT) подключите светодиоды.

При подключении соблюдайте полярность:

  • Полярный вход (INPUT). Если драйвер запитывается постоянным напряжением, то вывод «+» подключите к аналогичному полюсу источника питания. Если напряжение переменное, обратите внимание на маркировку, нанесённую на входные провода. Возможны два варианта:
    • «L» и «N». На вывод «L» подайте фазу (ее найдите посредством индикаторной отвертки), на «N» – ноль.
    • «~», «АС» или нет маркировки – можете не соблюдать полярность.
  • Полярный выход (OUTPUT). Соблюдайте полярность всегда. Провод «+» подключите к аноду 1-го светодиода, «-» – к катоду последнего. Все полупроводники соединены последовательно – к катоду предыдущего присоединен анод следующего.

Есть и второй вариант подключения светодиодов – параллельно включаются несколько цепочек, содержащих равное количество диодов. При последовательном подключении все элементы светятся одинаково, при параллельном варианте линии могут иметь разную яркость.

Как сделать драйвер для светодиодного светильника своими руками?

Драйвер можно изготовить из старой телефонной зарядки. Необходимо только внести небольшие изменения в микросхему. Такой самоделки хватит для питания 3 светодиодов мощностью по 1 Вт. Рассмотрим пошагово сборку драйвера из телефонной зарядки:

  1. Снимите корпус с зарядного устройства.
  2. С помощью паяльника уберите резистор, ограничивающий напряжение, подаваемое на телефон.

    Резистор

  3. На место отпаянного резистора поставьте подстроечное сопротивление. Установите на нем 5 000 Ом.

    Сопротивление

  4. Припаяйте к выходному каналу последовательно светодиоды.

    Припаять светодиоды

  5. Отпаяйте входные каналы и припаяйте вместо них шнур для подключения к электросети 220 В.

    Входные каналы

  6. Проверьте работоспособность схемы, выставив с помощью регулятора на резисторе такое напряжение, чтобы диоды горели ярко, но не меняли цвета.

    Проверить работу

При выполнении работ по созданию дайвера из зарядного устройства необходимо придерживаться правил техники безопасности. Если дотронуться до оголенных частей, можно получить сильный удар током.

Драйвер можно собрать и с нуля. Для этого понадобится паяльник, тестер, провода и интегральный стабилизатор КР142ЕН12А (либо зарубежный аналог – LM317), который можно приобрести в любом специализированном магазине рублей за 20.

Параметры покупной микросхемы – напряжение 40 В и ток 1,5 А. В нем имеется встроенная защита от перегрузки, перегрева и короткого замыкания. Микросхема стабилизирует напряжение, а драйвер выравнивает ток, поэтому понадобится внести изменения в стандартную схему подключения микросхемы.

Драйвер на интегральном стабилизаторе:

Драйвер

В задачу микросхемы в данном случае входит регулирование, благодаря которому ток будет поддерживаться на необходимом уровне. Величина тока определяется сопротивлением резистора R1. Его номинальное значение рассчитывают по формуле: R = 1,2/I, где:

  • R – сопротивление, Ом;
  • I – ток, А.

Порядок сборки драйвера:

  1. Соберите стабилизатор тока на 9,9 В с током 300 мА. Тогда R1 =1,2/0,3= 4 Ом. Мощность резистора – от 4 Вт. Можно взять резисторы, которые применяются в телевизорах. Их также можно купить в магазинах. Мощность этих элементов – 2 Вт, сопротивление – 1-2 Ом.
  2. Соедините резисторы последовательно. Их сопротивление сложится и будет равно 2-4 Ом.
  3. Прикрепите микросхему на радиатор и подключите к выходу драйвера цепь из последовательно соединенных диодов. Соблюдайте полярность при подключении светодиодов.
  4. На вход подайте постоянное напряжение 12-40 В (прибор рассчитан на 9,9 В, поэтому берём с запасом). Превышать предельное значение не стоит – микросхема может сгореть.
    Подаваемое напряжение может быть не стабилизированным. Можно воспользоваться автомобильным аккумулятором, блоком питания от ноутбука или понижающим трансформатором с диодным мостом. Подключите драйвер, соблюдай полярность – работа сделана.

Благодаря драйверам удается не только улучшить работу светодиодных светильников, но и обеспечить их долгую, бесперебойную работу. Учитывая стоимость led-светильников, применение драйверов становится экономически выгодным решением.

Если увлекаетесь инвестициями, то рекомендую отличную статью про подсчёт комиссий и расходов на брокерских счетах.

Назначение

Led-driver – это стабилизирующий модуль. Без него не способен работать ни один из ныне выпускаемых светодиодных элементов – от самых слабых до мощнейших. Он должен строго подбираться под нагрузку собираемой схемы, особенно когда светильники имеют последовательный хаpaктер соединения. При этом падение напряжение в каждом конкретном лэд-источнике света может варьироваться (так как зависит от заводских параметров сборки), в то время как сила тока должна оставаться одна и та же на всех них.

Роль led-driver переоценить просто невозможно. Ведь при малейшем повышении параметров электропитания полупроводниковый кристалл мгновенно нагревается и сгорает. С другой стороны, при падении хаpaктеристик сети страдает светоотдача и уменьшается заявленная производителем светосила

Поэтому так важно правильно подбирать драйвер для светодиодов

Драйверы для светодиодов: где купить и сколько стоят

Приобрести стабилизаторы для светодиодных ламп и микросхемы к ним можно в магазине радиодеталей, электротехники и на многих торговых интернет-площадках. Последний вариант – самый экономичный. Стоимость устройства зависит от его технических характеристик, типа и производителя. Средние цены на некоторые виды драйверов приведены в таблице ниже:

Модель Технические параметры Цена, руб.
DC12V
  • Мощность: 18 Вт
  • Выходное напряжение: 12 В
  • Входное напряжение: 100÷240 В
190
драйвер DC12V
LB0138
  • Мощность: 6 Вт,
  • Выходное напряжение: 45 В
  • Входное напряжение: 220 В
160
драйвер LB0138
YW-83590
  • Мощность: 21 Вт
  • Выходное напряжение: 25÷35 В
  • Входное напряжение: 200÷240 В
680
драйвер YW-83590
LB009
  • Мощность: 150 Вт
  • Входное напряжение 170÷260 В
  • Выходное напряжение: 12 В
730
драйвер LB009

Микросхема PT4115 стоит от 40 до 150 рублей за штуку. Стоимость более мощных элементов колеблется от 100 рублей до нескольких тысяч.

Как проверить драйвер светодиодной лампы

Проверить работу драйвера светодиода можно подключив светильник к сети. Надо только убедиться в исправности осветительного прибора и отсутствии пульсаций.

Существует способ проверить драйвер и без светодиода. На него подается 220 В и измеряются показатели на выходе. Показатель должен быть постоянным, по значению немного больше указанного на блоке. Например указанные на блоке значения 28-38 В обозначают выходное напряжение без нагрузки около 40 В.


Рисунок 8. Проверка исправности светодиода.

Описанный способ проверки не дает полного представления об исправности драйвера. Нередко приходится сталкиваться с исправными блоками, которые не включаются вхолостую или же работают нестабильно без нагрузки. Выходом представляется подключение к прибору специального загрузочного резистора. Выбрать сопротивление резистора можно по закону Ома с учетом указанных на блоке показателей.

Схема драйверов для светодиодов с регулятором яркости на базе РТ4115 своими руками

Простой преобразователь тока можно собрать на базе готовой китайской микросхемы PT4115. Она является достаточно надежной для применения. Характеристики микросхемы:

  • КПД до 97%;
  • есть вывод для устройства, регулирующего яркость;
  • защищена от разрывов нагрузки;
  • максимальное отклонение стабилизации 5%;
  • входное напряжение 6÷30 В;
  • мощность на выходе 1,2 А.

Микросхема подходит для питания LED-источника свыше 1 Вт. Имеет минимум компонентов обвязки.

Расшифровка выходов микросхемы:

  • SW – выходной переключатель;
  • DIM – диммирование;
  • GND – сигнальный и питающий элемент;
  • CIN – конденсатор
  • CSN – датчик тока;
  • VIN – напряжение питания.

Собрать драйвер на базе этой микросхемы может даже начинающий мастер.

Возможный вариант сборки схемы драйвера для светодиодов на базе pt4115

Характеристики драйверов, их отличия от блоков питания LED ленты.

Если сравнивать драйвер и блок питания, то у них есть различия в работе. Драйвер – это источник тока. Его задача поддерживать именно определенную силу тока через кристалл или светодиодную линейку.

Задача стабилизированного блока питания в выдаче именно стабильного напряжения. Хотя блок питания – понятие обобщенное.

Источник напряжения применяется в основном со светодиодной лентой, где диоды включены в параллель. Соответственно через них должен проходить равный ток, при неизменном напряжении

При использовании одного светодиода важно обеспечить определенную силу тока через него. Отличия есть, но оба выполняют одну и туже задачу – обеспечение стабильного питания

Для подключения светодиодной ленты необходимы, как правило, блоки питания, выдающие 12, либо 24 В. Второй параметр – это мощность. Блок питания должен выдавать мощность не равную, а несколько большую, чем мощность подключаемой светодиодной линейки. В противном случае, яркость свечения будет недостаточна. Обычно запас по мощности рекомендуется в пределах 20-30 процентов от суммарной мощности.

При выборе драйвера нужно учесть:

  • Мощность,
  • Напряжение,
  • Предельный ток.

Кроме того, существуют и регулируемые источники питания. Их задача – регулировка яркости освещения. Но различаются принципы – регулировка напряжения, либо силы тока.

Для подключения led-линейки потребуется большая сила тока при неизменном напряжении.

Суммарная мощность будет рассчитываться по формуле P = P(led) × n, где Р – мощность, Р(led) – мощность единичного диода в линейке, n – их количество.

Сила тока через линейку будет рассчитываться по аналогичной формуле.

Если есть желание самостоятельно изготовить источник питания для светодиодов, то самый простой вариант – импульсный без гальванической развязки.

Схема простого led-драйвера без гальванической развязки.

Схема проста и надежна. Делитель основан на емкостном сопротивлении. Выпрямление производится при помощи диодного моста. Электролитический конденсатор (перед L7812) сглаживает пульсации после выпрямления. Конденсатор после L7812 сглаживает пульсации на светодиодах. На работу схемы он не влияет. L7812 – собственно сам стабилизатор. Это импортный аналог советских микросхем серии КРЕНхх. Та же самая схема включения. Характеристики несколько улучшены. Однако предельный ток составляет не более 1.2А. Это не позволит создать мощный светильник. Существуют неплохие варианты готовых источников питания.

Основные особенности

Мощность, которую эти устройства способны отдавать под нагрузкой, является важным показателем. Не стоит перегружать его, пытаясь добиться максимальных результатов. В результате таких действий могут выйти из строя драйверы для светодиодов или же сами LED-элементы.

Дешевый светодиодный драйвер

На электронную начинку устройства влияет множество причин:

  • класс защиты аппарата;
  • элементная составляющая, которая применяется для сборки;
  • параметры входа и выхода;
  • марка производителя.

Изготовление современных драйверов выполняется при помощи микросхем с использованием технологии широтно-импульсного преобразования, в состав которых входят импульсные преобразователи и схемы, стабилизирующие ток. ШИМ-преобразователи запитываются от 220 В, обладают высоким классом защиты от коротких замыканий, перегрузок, а так же высоким КПД.

Тестирование светодиодов в режиме прозвонки

Мультиметр представляет собой универсальный измеритель, который позволяет проверить исправность практически любого электрического устройства или элемента. Чтобы проверить с помощью тестера светоизлучающий диод, необходимо, чтобы прибор мог переключаться в режим проверки диодов, который чаще всего называют прозвонкой.

Проверка исправности светодиода мультиметром производится в следующем порядке:

  • Установить переключатель тестера в режим проверки диодов.
  • Подключить щупы мультиметра к контактам проверяемого элемента.

При подключении LED следует учитывать полярность его выводов (черный щуп измерительного прибора подключается к катоду, а красный – к аноду). Впрочем, если точное расположение полюсов неизвестно, то ничего страшного в неправильном подсоединении нет, и светодиод в этом случае из строя не выйдет.

  • Ток прозвонки имеет небольшое значение, и его недостаточно для того, чтобы светодиод работал в полную силу. Поэтому увидеть свечение элемента можно, слегка затемнив помещение.
  • Если возможности приглушить освещение нет, нужно посмотреть на показания мультиметра. При проверке рабочего диода значения на табло прибора будут отличаться от единицы.

Наглядно проверка светодиодов на видео:

С помощью этого метода можно проверить на работоспособность даже мощный диод. Минус такого способа заключается в том, что провести диагностику элементов, не выпаивая их из схемы, не получится. Чтобы протестировать LED в схеме, к щупам необходимо подсоединить переходники.

Иногда исправность детали проверяется путем измерения сопротивления, но этот способ не получил широкого распространения, поскольку чтобы воспользоваться им, нужно знать технические параметры диода.

Виды драйверов

Все драйвера различают по трем критериям – по способу стабилизации, конструкционным особенностям и наличию/отсутствию защиты. Рассмотрим все варианты подробнее.

Линейные и импульсные

В зависимости от схемы стабилизации тока драйверы делятся на два типа – линейные и импульсные. Они отличаются принципом работы и эффективностью.

Перед электронной схемой драйвера поставлена задача – обеспечение стабильных значений тока и напряжения, подводимых к кристаллу (светодиоду). Самый простой и дешевый вариант – включение в цепь ограничительного резистора.

Линейная схема питания:

Эта элементарная схема не способна обеспечивать автоматическое поддержание тока. При повышении напряжения он пропорционально растет и, когда превысит допустимое значение, кристалл разрушится от перегрева.

Более сложное управление осуществляется путем включения в цепь транзистора. Минус линейной схемы – снижение мощности при росте напряжения. Такой вариант допустим при работе led-источников малой мощности, но при работе мощных светодиодов такие схемы не применяют.

Плюсы линейной схемы:

  • простота;
  • дешевизна;
  • относительная надежность.

Наряду с линейными схемами, стабилизировать ток и напряжение можно путем импульсной стабилизации:

  • после нажатия кнопки заряжается конденсатор;
  • после отпускания конденсатор разряжается, отдавая запасённую энергию полупроводниковому элементу (светодиоду), который начинает испускать свет;
  • если напряжение растет, то время зарядки конденсатора сокращается, если падает – увеличивается.

Нажимать кнопку пользователю не приходится – за него всё делает электроника. Роль кнопочного механизма в современных источниках питания выполняют полупроводники – тиристоры или транзисторы.

Рассмотренный принцип работы называется в электронике широтно-импульсной модуляцией. За секунду может происходить десятки и даже тысячи срабатываний. КПД такой схемы достигает 95 %.

Упрощенная схема импульсной стабилизации:

Электронные, диммируемые и на базе конденсаторов

От принципа устройства драйвера зависит область его применения и эксплуатационные характеристики.

Виды драйверов по принципу устройства:

  • Электронные. В их схемах обязательно используется транзистор. На выходе устанавливается конденсатор, исключающий или хотя бы сглаживающий пульсации тока. Электронные преобразователи способны стабилизировать токи до 750 мА. Драйверы электронного типа борются не только с пульсациями, но и с электромагнитными высокочастотными помехами, наводимыми электроприборами (радио, телевизор, роутер и т. п.). Минимизировать помехи позволяет наличие специального керамического конденсатора. Минус электронного драйвера – высокая стоимость, плюс – КПД близкий к 95 %. Их используют в мощных led-светильниках: автофарах, прожекторах, уличных фонарях.
  • Диммируемые. Особенность диммируемых драйверов – возможность управления яркостью светильника. Регулировка основана на изменении тока на выходе, который и определяет яркость светопотока. Драйвер можно включать в схему двумя способами: между светильником и стабилизатором или между источником питания и преобразователем.
  • На основе конденсаторов. Это недорогие модели, используемые для бюджетных светодиодных светильников. Если в схеме производитель не предусмотрел сглаживающий конденсатор, то на выходе наблюдается пульсация. Другой минус – недостаточная безопасность. Плюс подобных моделей – высокий КПД, стремящийся к 100 %, и простота схемы. Подобные драйверы легко собрать своими руками.

В корпусе и без него

Драйвер может быть размещен внутри защитного корпуса, но может и не иметь его. Электронные схемы уязвимы перед многими внешними факторами, поэтому более надежным вариантом считается размещение драйвера в корпусе.

Корпус защищает электронный преобразователь от влаги, пыли, попадания прямых солнечных лучей и т. д. Бескорпусные модели обходятся дешевле, но у них меньше срок службы и хуже стабильность эксплуатации. Они больше подходят для скрытого монтажа.

Схема подключения драйвера к светодиодам

Подключить драйвер к светодиодам просто, с этим справится каждый. Вся маркировка нанесена на его корпус. На входные провода (INPUT) подаешь входное напряжение, к выходным (OUTPUT) подключаешь линейку светодиодов. Единственно, необходимо соблюдать полярность, и на этом я остановлюсь подробнее.

Полярность входа (INPUT)

Если питающее драйвер напряжение постоянное, то вывод, помеченный знаком «+» необходимо подключить к положительному полюсу источника питания

Если напряжение переменное, то обрати внимание на маркировку входных проводов. Возможны следующие варианты:

  1. Маркировка «L» и «N»: на вывод «L» нужно подать фазу (находится при помощи индикаторной отвертки), на вывод «N» – ноль.
  2. Маркировка «~», «АС» или отсутствует: полярность соблюдать не нужно.

Полярность выхода (OUTPUT)

Здесь полярность соблюдается всегда! Плюсовой провод подключается к аноду первого светодиода, минусовой – к катоду последнего. Сами светодиоды соединяются между собой: анод последующего к катоду предыдущего.

Схема подключения драйвера к гирлянде из трех последовательно включенных светодиодов

Если у тебя очень много светодиодов (скажем, 12 шт.), то их придется разбить на несколько одинаковых групп, а эти группы соединить параллельно. При этом учти, что общая потребляемая светильником мощность составит сумму мощностей всех групп, а рабочее напряжение будет соответствовать напряжению одной группы.

При таком способе подключения токи всех четырех групп светодиодов складываются

Виды светодиодных драйверов

Все драйверы для светодиодов можно разделить по принципу стабилизации тока. На сегодняшний день таких принципов два:

  1. Линейный.
  2. Импульсный.

Линейный стабилизатор

Предположим, в нашем распоряжении мощный светодиод, который нужно зажечь. Соберем простейшую схему:

Схема, поясняющая линейный принцип регулировки тока

Выставляем резистором R, выполняющим роль ограничителя, нужное значение тока – светодиод горит. Еcли напряжение питания изменилось (к примеру, батарея садится), поворачиваем движок резистора и восстанавливаем необходимый ток. Если увеличилось, то таким же образом ток уменьшаем. Именно это и делает простейший линейный стабилизатор: следит за током через светодиод и при необходимости «крутит ручку» резистора. Только делает он это очень быстро, успевая реагировать на малейшее отклонение тока от заданной величины. Конечно, никакой ручки у драйвера нет, ее роль выполняет транзистор, но суть пояснения от этого не меняется.

В чем недостаток линейной схемы стабилизатора тока? Дело в том, что через регулирующий элемент тоже течет ток и бесполезно рассеивает мощность, которая просто греет воздух. Причем чем входное напряжение больше, тем выше потери. Для светодиодов с небольшим рабочим током такая схема годится и успешно используется, но мощные полупроводники линейным драйвером питать себе дороже: драйверы могут съедать больше энергии, чем сам осветитель.

К преимуществам такой схемы питания можно отнести относительную простоту схемотехники и невысокую стоимость драйвера, сочетающуюся с высокой надежностью.

Линейный драйвер для питания светодиода в карманном фонаре

Импульсная стабилизация

Перед нами тот же светодиод, но схему питания соберем несколько иную:

Схема, поясняющая принцип работы широтно-импульсного стабилизатора

Теперь вместо резистора у нас кнопка КН и добавлен накопительный конденсатор С. Подаем напряжение на схему и нажимаем кнопку. Конденсатор начинает заряжаться, и при достижении на нем рабочего напряжения светодиод загорается. Если продолжать держать кнопку нажатой, то ток превысит допустимую величину, и полупроводник сгорит. Отпускаем кнопку. Конденсатор продолжает питать светодиод и постепенно разряжается. Как только ток опустится ниже допустимого для светодиода значения, снова нажимаем кнопку, подпитывая конденсатор.

Вот так сидим и периодически жмем кнопку, поддерживая нормальный режим работы светодиода. Чем выше питающее напряжение, тем нажатия будут короче. Чем напряжение ниже, тем кнопку придется держать нажатой дольше. Это и есть принцип широтно-импульсной модуляции. Драйвер следит за током через светодиод и управляет ключом, собранным на транзисторе или тиристоре. Делает он это очень быстро (десятки и даже сотни тысяч нажатий в секунду).

С первого взгляда работа утомительная и сложная, но только не для электронной схемы. Зато КПД импульсного стабилизатора может достигать 95%. Даже при питании сверхмощных светодиодных прожекторов потери энергии минимальны, а ключевые элементы драйвера не требуют мощных теплоотводов. Конечно, импульсные стабилизаторы несколько сложнее по конструкции и дороже, но все это окупается высокой производительностью, исключительным качеством стабилизации тока и отличными массогабаритными показателями.

Этот импульсный драйвер способен выдать ток до 3 А безо всяких радиаторов 

Изготовление драйвера для светодиодов своими руками

Если в наличии пользователя есть несколько полупроводниковых кристаллов или линейка подсветки из старого телевизора, он может самостоятельно сделать источник тока для них.

Для этого следует приобрести приборы и детали или выпаять радиоэлементы из старой аппаратуры. Часто КПД устройств, сделанных своими руками, намного выше, чем у промышленных образцов.

Материалы и инструменты для работы

Для самодельного простого драйвера потребуются:

  • конденсаторы: простой 0,27 мкф на 400 V и 2 электролитических 500×16 V и 100×16 V;
  • резистор 500 кОм на 0,5 W;
  • 4 диода или готовый мост на 220 V;
  • микросхема LM317;
  • паяльник мощностью 20-40 Вт;
  • флюс и припой (желательно типа ПОС);
  • пассатижи, кусачки, плоскогубцы;.
  • многожильные изолированные проводники из меди сечением 0,35-1 мм²;
  • трубка термоусадочная;
  • мультиметр или тестер;
  • изолента;
  • плата для распайки элементов.

Схемы простого драйвера для светодиода 1 Вт и мощного

Классический преобразователь представляет собой сочетание электронного делителя напряжения и микросхемы-стабилизатора. Первый узел состоит из 2 элементов (конденсатора 0,27 мкф и резистора 500 кОм), соединенных параллельно, к которым последовательно подключен мост из диодов, выдерживающих входное напряжение.

В качестве стабилизатора часто применяют микросхему L7812, но это не совсем правильное решение. Она является линейным устройством, регулирующим напряжение, и при изменении тока может сгореть.

Схема подключения

Лучше воспользоваться микросхемами LM317, LM338 или LM350, у которых есть защита от КЗ и перегрева. Питать их можно любым напряжением 5-35 V. К драйверу можно подсоединить 5-10 светодиодов.

Схема подключения проста:

  • плюс делителя идет на вход микросхемы (1 вывод);
  • общий провод через анод светодиода идет на минус радиодетали (среднюю ножку);
  • туда же через резистор, ограничивающий ток, подключен выход LM317 (3 контакт).

Установив вместо последнего элемента регулируемое сопротивление, можно изменять силу тока, т. е. яркость светодиодов в некоторых пределах.

Если нужно соорудить мощный прожектор, то драйвер придется модифицировать:

  • необходимо поднять питающее напряжение до 24 V;
  • установить стабилизатор с наибольшим током, а из предложенных микросхем только LM338 может выдавать 5А.

Ввиду большой силы тока следует установить ее на радиатор.

Как собрать и настроить драйвер?

В простом преобразователе для светодиодов мало элементов. Драйвер можно собрать на специальной плате, куске фанеры или провести навесной монтаж.

Устройство не требует наладки, если взять все указанные детали. Главное – правильно рассчитать резистор, ограничивающий ток.

Что такое драйверы для светодиодов и зачем они нужны

Светодиоды – это полупроводниковые элементы. За яркость их свечения отвечает ток, а не напряжение. Чтобы они работали, нужен стабильный ток, определенного значения. При p-n переходе падает напряжение на одинаковое количество вольт для каждого элемента. Обеспечить оптимальную работу LED-источников с учетом этих параметров – задача драйвера.

Какая именно нужна мощность и насколько падает напряжение при p-n переходе, должно быть указано в паспортных данных светодиодного прибора. Диапазон параметров преобразователя должен вписываться в эти значения.

Устройство светодиода

По сути, драйвер – это блок питания. Но основной выходной параметр этого устройства – стабилизированный ток. Их производят по принципу ШИМ-преобразования с использованием специальных микросхем или на базе из транзисторов. Последние называют простыми.

Преобразователь питается от обычной сети, на выходе выдает напряжение заданного диапазона, которое указывается в виде двух чисел: минимального и максимального значения. Обычно от 3 В до нескольких десятков. Например, с помощью преобразователя с напряжением на выходе 9÷21 В и мощностью 780 мА можно обеспечить работу 3÷6 светодиодных элементов, каждый из которых создает падение в сети на 3 В.

Таким образом, драйвер – это устройство, преобразующее ток из сети 220 В под заданные параметры осветительного прибора, обеспечивающее его нормальную работу и долгий срок эксплуатации.

Внешний вид LED-драйвера

Схема подключения драйвера к светодиодам.

Перед подключением светодиодов к драйверу необходимо уметь определять его полярность, иными словами, распознавать, где анод (+), где катод (-). Без этого света не будет.

Индикаторные диоды, а также некоторые маломощные осветительные, имеют два вывода.

Выводы светодиода.

Светодиоды в исполнении SMD (поверхностный монтаж) имеют либо 2, либо 4 вывода. В любом случае это анод и катод.

Выводы светодиодов в SMD-исполнении.

В первом случае выводы 3 и 4 могут быть не задействованы. Во втором случае косой срез расположен ближе к катоду

Обратите внимание, единого стандарта нет и возможны различия в полярности

Поэтому можно либо обратиться к datasheet, либо использовать низковольтный источник постоянного тока и резистор ограничитель. В случае неправильной полярности светодиод не может загореться.

При использовании источника тока схема драйвера для светодиодов будет следующая:

Схема подключения светодиода.

Если у нас источник напряжения, то подключение осуществляется через ограничивающий резистор.

Схема подключения светодиода к источникунапряжения через ограничитель.

Классическая светодиодная лента построена по такой схеме:

Схема светодиодной линейки.

В этом случае расчет производится по формулам:

Формула связи тока, напряжения, сопротивления.

При подключении важно учитывать:

  • При малой силе тока, мы теряем в яркости, при большой в сроке службы.
  • Напряжение из datasheet указывает падение напряжения при прохождении номинального тока. Этот параметром не основной.
  • Мощным светодиодам требуется и качественное питание, и хорошее охлаждение.

Типы драйверов по типу устройства

Устройства, преобразующие источник питания 220 В в индикаторы, необходимые для светодиодов, условно делят на три категории: электронные; на основе конденсаторов; диммируемый.

Рынок осветительных аксессуаров представлен самыми разнообразными моделями драйверов, в основном от китайского производителя. И, несмотря на невысокий ценовой диапазон, из этих устройств можно выбрать довольно приличный вариант

Однако стоит обратить внимание на гарантийный талон, ведь не вся представленная продукция имеет приемлемое качество

Электронный дисплей устройства

В идеале электронный преобразователь должен быть оснащен транзистором. Его роль – разряжать управляющую микросхему. Для устранения или максимального сглаживания пульсаций на выходе установлен конденсатор.

Этот тип устройств относится к категории дорогих, но способен стабилизировать ток до 750 мА, на что не способны балластные механизмы.

Пульсация – не единственный недостаток преобразователей. Второй – это высокочастотные электромагнитные помехи (ВЧ). Таким образом, если другие электрические устройства, такие как радио, подключены к розетке, подключенной к лампе, могут возникнуть помехи при приеме цифровых FM-частот, телевидения, маршрутизатора и т.д.

В дополнительном устройстве высококачественного устройства должно быть два конденсатора: один – электролитический для ослабления пульсаций, другой – керамический для понижения радиочастоты. Однако такое сочетание встречается редко, особенно если речь идет о китайских товарах.

Благодаря высокому КПД (до 95%) такие механизмы подходят для мощных устройств, используемых в различных сферах, например, для тюнинга автомобилей, уличного освещения и бытовых светодиодных источников.

Конденсатор мощности

Теперь перейдем к не очень популярным устройствам на основе конденсаторов. Практически все схемы светодиодных ламп недорогого образца, в которых используются драйверы этого типа, имеют схожие характеристики.

Однако из-за модификаций производителя они претерпевают изменения, например, удаление элемента схемы. Особенно часто из этой части служит один из конденсаторов – пескоструйный.

У таких механизмов всего два преимущества: они доступны для самостоятельной сборки, а их КПД стопроцентный, поскольку потери будут только на переходах и pn резисторах.

Столько же недостатков: низкая электробезопасность и высокая степень пульсации. Второй недостаток – около 100 Гц и образован за счет выпрямления переменного напряжения. ГОСТ предписывает допустимую пульсацию 10-20% в зависимости от назначения помещения, в котором установлен осветительный прибор.

Единственный способ уменьшить этот недостаток – выбрать конденсатор правильного номинала. Однако не стоит рассчитывать на полное устранение проблемы – такое решение может только снизить интенсивность взрывов.

Диммируемые преобразователи тока

Регулируемые диммеры с драйвером светодиодов позволяют изменять показания входного и выходного тока, уменьшая или увеличивая яркость света, излучаемого диодами.

Есть два способа подключения:

  • первый предполагает плавный старт;
  • второй – импульс.

Рассмотрим принцип работы диммируемых драйверов на базе микросхемы CPC9909, используемой в качестве устройства управления цепями светодиодов, в том числе с повышенной яркостью.

При плавном запуске микросхема с драйвером обеспечивает плавное включение диодов с увеличением яркости. Для этого используются два резистора, подключенные к клемме LD, предназначенные для выполнения задачи сглаживания. Так решается важная задача: продление срока службы светодиодных элементов.

Этот же выход обеспечивает аналоговое регулирование: резистор 2,2 кОм заменен на более мощный переменный аналог – 5,1 кОм. Таким образом достигается постепенное изменение выходного потенциала.

Применение второго метода заключается в подаче прямоугольных импульсов на низкочастотный выход ШИМД. В этом случае используется микроконтроллер или генератор импульсов, которые обязательно разделены оптопарой.

С телом или без?

Драйверы доступны с корпусом или без него. Первый вариант – самый распространенный и самый дорогой. Такие устройства защищены от влаги и частиц пыли.

Устройства второго типа используются для скрытой установки и, соответственно, стоят недорого.

Каждый из них отличается допустимой температурой при эксплуатации – на это также необходимо обращать внимание при выборе

Как подобрать драйвер (блок питания) для светодиодов

Полезные ссылки:

  • Комплектующие для сборки самодельных фитоламп
  • Фото и видео примеры самодельных фитоламп для растений

У каждого диода, в свою очередь, в описании указано падение напряжения при разных токах. Например, для красного диода 660 нм при токе 600 мА оно составит 2,5 В:

Количество диодов, которое можно подключить на драйвер, суммарным падением напряжения должно укладываться в пределы выходного напряжения драйвера. То есть на драйвер 50Вт 600 мА с выходным напряжением 60-83 В можно подключить от 24 до 33 красных диодов 660 нм. (То есть 2,5*24 = 60, 2,5*33 = 82,5).

Другой пример: Хотим собрать биколорную лампу красный + синий. Выбрали соотношение красного к синему 3:1 и хотим рассчитать, какой драйвер нужно взять для 42 красных и 14 синих диодов. Считаем: 42*2,5 + 14*3,5 = 154 В. Значит, нам потребуется два драйвера 50 Вт 600 мА, на каждый будет приходиться 21 красных и 7 синих диодов, суммарное падение напряжения на каждом получится по 77 В, что попадает в его выходное напряжение.

Теперь несколько важных пояснений:

1) Не стоит искать драйвер мощностью более 50 Вт: они есть, но они менее эффективны, чем аналогичный набор драйверов меньшей мощности. Более того, они будут сильно греться, что потребует от Вас дополнительных расходов на более мощное охлаждение. Кроме тго, драйвера мощностью более 50Вт как правило сильно дороже, например драйвер на 100Вт может быть дороже чем 2 драйвера по 50Вт. Поэтому гнаться за ними не стоит. Да и надежнее когда цепи светодиодов разделены на секции, если вдруг что-то перегорит — то сгорит не все а только чать. Поэтому выгодно разделять на несколько драйверов, а не стремиться все повесить на один. Вывод: 50Вт — оптимальный вариант, не больше.

2) Ток у драйверов бывает разный: 300 мА, 600 мА, 750 мА — это ходовые. Других вариантов довольно много. По большому счету, более эффективным с точки зрения КПД на 1 Вт будет использование драйвера на 300 мА, также он не будет сильно нагружать светодиоды, и они будут меньше греться и дольше прослужат. Но главный минус таких драйверов, что диоды будут работать «вполсилы», и поэтому их потребуется примерно в два раза больше, чем для аналога с 600 мА. Драйвер с током 750 мА будет питать диоды на пределе возможностей, поэтому диоды будут очень сильно греться, и им потребуется очень мощное, хорошо продуманное охлаждение. Но даже несмотря на это, они в любом случае деградируют от перегрева раньше среднего срока «жизни» светодиодных ламп работающих например на 500-600 мА токе. Поэтому мы рекомендуем использовать драйверы с током 600 мА. Они получаются самым оптимальным решением с точки зрения соотношения цена-эффективность-срок службы.

3) Мощность диодов указывается номинальная, то есть максимально возможная. Но на максимум они никогда не запитываются (почему — см. п.2). Реальную мощность диода рассчитать очень просто: необходимо ток используемого драйвера умножить на падение напряжения диода. Например, при подключении драйвера на 600 mA к красному диоду 660 нм мы получим реальное напряжение на диоде: 0,6(А) * 2,5(В) = 1,5 Вт.

Сетевая лампа на светодиодах своими руками

В настоящее время стоимость электроэнергии значительно выросла. Для того чтобы оптимизировать бюджет можно воспользоваться двумя вариантами: увеличить свои месячные доходы или начать экономить. Второй способ займет гораздо меньше времени и усилий. Поэтому в качестве одного из решений проблемы выступает замена обычных лам накаливания на более энергосберегающие. В качестве альтернативы обычно рассматривают ЛДС или LED-светодиоды. Однако последние имеют гораздо больший срок службы и мощность всего 8 Ватт.

Принципиальная схема лампы на светодиодах представлена на следующем рисунке:

Изготовить сетевую лампу на светодиодах своими руками не так сложно, как может показаться с первого взгляда. Для этого придется купить в магазине радиотоваров несколько деталей:

  1. Светодиод мощностью 1 Ватт – 8 шт.;
  2. Радиатор – 1 шт.;
  3. Мост диодный – 1 шт.;
  4. Кусок оргстекла или пластмассы – 1 шт.;
  5. Резистор на 56 Ом – 1 шт.;
  6. Резистор на 100 Ом – 1 шт.;
  7. Резистор на 1,2 кОм – 1 шт.;
  8. Резистор на 3,9 кОм – 1 шт.;
  9. Конденсатор неполярный 680 нФ с напряжением 400 В – 1 шт.;
  10. Конденсатор полярный 2мкФ с напряжением 400 В – 1 шт.;
  11. Транзистор 13001 – 2 шт.

Желательно приобрести готовую диодную сборку. Если такую не удалось найти, что основу для LED-лампы можно спаять самостоятельно. Когда все элементы будущей конструкции есть в наличии, то можно приступать к работе.

На кусочке оргстекла необходимо сделать разметку под светодиоды, она должна совпадать с формой радиатора. После этого в материале высверливают небольшие отверстия.

После этого заготовку нужно зашкурить наждачной бумагой или шлифовальной машинкой. Обрабатываю поверхность детали до тех пор, пока она не станет матовой. Затем на светодиодах выравнивают лапки, концы проводов не должны касаться радиатора.

Далее светодиоды нужно прикрепить к оргстеклу. После установки их спаивают между собой, соблюдая полярность.

Когда все элементы установлены на свои места, то нужно подпаять проводки. Для отвода тепла стоит воспользоваться термопастой. Оптимальным по свойствам является состав КПТ-8, его следует наносить непосредственно на светодиоды.

Затем светодиоды крепят на радиаторе и собирают электронную часть. Специалисты рекомендуют паять все по схеме навесом. В итоге должна получится следующая конструкция:

После этого можно переходить к проверке работоспособности устройства. В равнении с обычной лампой накаливания светодиоды более яркие. Они имеют больший срок эксплуатации и прочность.

Рекомендуем:

В чем их различие и что лучше выбрать: подведем итог

И так, если говорить в общем, то и блок питания, и электронный трансформатор, и драйвер относятся к категории электрических преобразователей. Но, каждый из них имеет свое назначение в прикладной электронике. Исходя из теоретических рассуждений, они взаимозаменяемы, но большинство оборудования, для которых они предназначены, не будет работать с аналогичными устройствами или будет работать некорректно.

Для чего же можно использовать каждое из них:

  • Драйвер – используется, чтобы подключить светодиод, для остальных приборов использовать драйвер нецелесообразно. Драйвер уже установлен в светодиодных лампочках, как обязательный компонент. Однако следует отметить, что конкретный драйвер, используется исключительно для подходящего под его параметры полупроводника или группы полупроводников. Если один из светодиодов перегорит, то драйвер перестанет соответствовать новому току.
  • Блок питания – подходит для включения низковольтного оборудования с постоянным напряжением питания на 12 В, 24 В и т.д. Часто применяется для подключения светодиодных лент, так как ленты уже имеют переменные резисторы и не нуждаются в ограничении тока. Но им нужно применять выпрямитель, который и предоставляет блок питания, так как светодиод чувствителен к любым колебаниям питающих величин.
  • Электронный трансформатор – часто используется для галогенных ламп, что обуславливается наличием минимальной нагрузки, без которой он попросту не запустится. Светодиодных приборов для электронного трансформатора может быть недостаточно, а вот галогенных более чем хватает. Но сами галогенки можно включать как от трансформатора, так и от блока питания, так как они работают от действующего напряжения.

Блок питания постоянного тока

Блок питания постоянного тока является прибором для понижения переменного напряжения из электросети до требуемого значения, и преобразование его в постоянное.

Такие БП используют для светодиодных лент и для светодиодных ламп на 12В. Будет ошибкой использовать трансформатор для их питания, так как это может снизить срок службы, а также приведет к мерцанию светового потока.

Как известно, для работы светодиодов нужен стабильный ток. Но такие блоки питания стабилизируют только напряжение. Для этого в LED-ленте, например, используют токоограничительные резисторы. Но эффективно такое решение только для маломощных диодов.

Е14 v.s. E27

Сравним с лампой с цоколем E27 такого же цвета (4200К), производителя (Lexman), мощности и формы [из предыдущего поста]:

Сравнение устройства двух светодиодных ламп типа свеча, миньён, с цоколями е14 и е27 от Lexman

Фото 7. Сравнение похожих светодиодных ламп Lexman с разными цоколями Е14 и Е27

Вообще всё разное (светодиоды, микросхем драйвера, корпуса). при том, что светят совершенно одинаково (по цвету, спектру, яркости). И мне не понравился этот цвет: зеленушно-желтушный какой-то, что хорошо заметно на контрасте с естественным дневным светом из окна, если включить их днём. Так же ещё и CRI у обеих ламп не очень-то высок по современным меркам — 85.

Модная кухня

световой поток

Многие особенно часто путают блоки питания и драйвера, подключая светоизлучающие диоды и ленты дюралайт не от тех источников что необходимо.

В конце концов через ограниченный временной интервал они ломаются, а вы и не подозреваете в чем была причина и начинаете неправильно грешить на «некачественного» изготовителя.

Рассмотрим детальнее в чем их отличия и когда необходимо использовать тот или другой источник питания. Однако для начала коротко попытаемся разобраться в типах трансформаторов.

На данный момент уже нечасто можно повстречать использование трансформаторного БП. Схема их сборки и работы неимоверно проста и понятна.

Самый основной компонент тут, разумеется преобразователь электрической энергии. Дома он видоизменяет напряжение 220В в напряжение 12 или 24В. Другими словами, идет прямое переустройство одного напряжения в иное.

блока питания

Частота сети при этом, обыкновенные нам всем 50 Герц.

Дальше за ним стоит выпрямитель. Он выпрямляет синусоиду переменного напряжения и на выходе выдаёт «постоянку». Другими словами 12В, подаваемые к потребителю, это уже стабильное напряжение 12V, а не переменое.

блока питания

У подобной схемы 3 основных достоинства:

    ее простота
    примитивность конструкции
    относительная надежность

светодиодные ленты

Но имеются тут и минусы, которые заставили разработчиков подумать и выдумать что-нибудь более современное.

    во-первых это значительный вес и хорошие размеры
    как последствие первого минуса — перерасход металла на сборку всей конструкции
    ну и ухудшает все дело невысокий косинус фи и невысокий КПД

Собственно поэтому и были изобретены импульсные источники питания. Тут уже немного другой рабочий принцип.

Во-первых, выпрямление напряжения происходит тут же. Другими словами, подается на вход переменно 220В и здесь же при входе превращается в постоянное 220V.

драйвер

Дальше стоит генератор импульсов. Основная его функция — создать искусственно переменое напряжение с очень высокой частотой. В пару десятков либо даже сотен килогерц (от 30 до 150кГц). Сопоставьте это с привычными нам 50 Гц в домашних розетках.

светодиодные ленты

Кстати за счёт такой большой частоты, мы почти не слышим гул импульсных блоков питания. Это можно объяснить тем, что человеческое ухо способно отличать звук до 20кГц, не больше.

драйвер

3-ий компонент в схеме — импульсный преобразователь электрической энергии. Он по форме и конструкции напоминает обыкновенный. Впрочем основное его отличие — это небольшие размеры и габариты.

Это как раз таки и достигается за счёт высокой частоты.

питание

Из данных трех компонентов самым основным считается генератор импульсов. Без него, не было бы такого относительно небольшого трансформатора.

Преимущества импульсных блоков:

    небольшая цена, если разумеется сопоставлять по мощности его, и аналогичный блок собранный на самом обыкновенном трансформаторе
    КПД от 90 до 98%
    напряжение питания можно подать в огромном разбросе
    при качественном производителе трансформатора, у импульсных ИБП более большой косинус фи

драйвер

Есть и минусы:

    усложненность сборочной схемы
    трудная конструкция
    если вам попался плохого качества импульсный блок, то он будет выдавать в сеть кучу высокочастотных помех, которые будут оказывать влияние на работу остального оборудования

Для светодиодных же осветительных приборов блоки такого типа не подходят. Благодаря этому для их питания применяются драйверы.

Чего же для светоизлучающих диодов нельзя использовать простой БП, и зачем нужен собственно драйвер?

питание

Драйвер — данное устройство аналогичное на блок питания.

Светоизлучающие диоды «питаются» электротоком. Также у них есть подобная характеристика, как падение напряжения.

Если вы видите на светодиоде надпись 10мА и 2,7В, то это значит, что максимально возможный ток для него 10мА, не больше.

При протечке тока такой величины, на светодиоде затеряется 2,7 Вольт. Собственно затеряется, а не потребуется для работы. Добьетесь стабилизации тока и светоизлучающий диод будет работать долго и ярко.

Кроме того, светоизлучающий диод — это полупроводник. И сопротивление этого полупроводника зависит от напряжения, которое на него подано. Меняется сопротивление согласно графика — вольтамперной характеристике.

питание

Если на нее увидеть, то становится видно, если вы даже не гораздо увеличите или уменьшите напряжение, это резко, в несколько раз изменит величину электрического тока.

Причем зависимость не прямо пропорциональная.

драйвер

Кажется, 1 раз выставь точное напряжение и можно получить минимальный ток, который нужен для светоизлучающего диода. При этом, он не будет превосходить предельные величины. Как бы и обыкновенный блок с этим должен справиться.

Но у всех светоизлучающих диодов уникальные параметры и характеристики. При одном и том же напряжении они могут «есть» различный ток.

световой поток

А диапазон температур работы LED светильников довольно высок. К примеру, в зимний период на улице может быть -30 градусов, а в летний период уже все +40. И это в одном и том же месте.

Работать они разумеется будут, однако в каком режиме отдачи света и как долго неизвестно. Завершается подобная работа постоянно одинаково — выгоранием светоизлучающего диода.

светодиодные ленты

Кстати, при превышении температуры поток света у LED светильников всегда падает, даже у тех, которые подключены через драйвер. У плохого качества экземпляров поток света падает достаточно сильно, стоит им поработать где то час и нагреться.

У надежных изделий поток света с нагревом уменьшается слабо, но все таки уменьшается.

блока питания

Многие плохие производственники хитрят и измеряют такие параметры сразу же после включения, когда поток еще самый большой.

А уже эту последовательную цепочку подсоединяют к драйверу. Данные цепочки можно сочетать всевозможными вариантами. Создавать последовательно-параллельные или смешанные схемы.

световой поток

Разумеется и у драйверов имеются собственные бесспорные минусы:

    во-первых они рассчитаны исключительно на конкретный ток и мощность

А это означает, что для любого драйвера каждый раз придется выбирать некоторое количество светоизлучающих диодов. Если один из них нечаянно поломается во время работы, то драйвер весь ток запустит на оставшиеся.

Что приводит к их перегреву и дальнейшему выгоранию. Другими словами потеря одного светоизлучающего диода за собой влечет неполадку всей цепочки.

драйвер

Бывают и многофункциональные модели драйверов, для них не имеет значения кол-во светоизлучающих диодов, основное чтобы их общая мощность не была больше допустимую. Однако они очень дорого.

    узкоспециализированность на светоизлучающих диодах

Обычные блоки питания можно применять для разных нужд, везде где нужны 12В и более, к примеру для систем наблюдения при помощи видеокамер.

светодиодные ленты

Основное же назначение драйверов — это светоизлучающие диоды.

А есть бездрайверные фабричные осветительные приборы? Есть. Совсем недавно на рынке возникло немало подобных Светодиодных светильников и прожекторов.

питание

Впрочем энергетическая эффективность у них не достаточно высокая, на уровне обыкновенных ламп дневного света. И как он поведет себя при допустимых перепадах показателей в наших сетях, большой вопрос.

Отдельный вопрос это ленты дюралайт. Для них вовсе не требуются драйвера, и насколько известно они подключаются от обычных для нас трансформаторов 12-36 Вольт.

светодиодные ленты

Кажется в чем подвох? Там же тоже стоят светоизлучающие диоды.

Все вы видели на светодиодных лентах впаянные сопротивления (резисторы).

драйвер

Они как раз таки и отвечают за ограничение тока до номинальной величины. Одно сопротивление ставится на три постепенно подключенных светоизлучающего диода.

светодиодные ленты

Такие участки ленты, которые рассчитаны на напряжение 12 Вольт называют кластерами. Эти некоторые кластеры на всем протяжении ленты подключены между собой в параллель.

светодиодные ленты

И собственно благодаря подобному параллельному соединению, на все светоизлучающие диоды подается одинаковое напряжение 12В. Благодаря кластеризации при установке низковольтной ленты, ее спокойно можно отрезать на очень маленькие кусочки, состоящие минимум из 3-х светоизлучающих диодов.

Кажется, решение найдено и где тут минус? А основной минус данного устройства — эти резисторы не проделывают никакой полезной работы.

световой поток

Они лишь дополнительно греют пространство вокруг и сам светоизлучающий диод возле него. Собственно поэтому ленты дюралайт не светят так ярко, как нам хочется. Благодаря чему, их применяют только как дополнительный свет интерьера.

Сопоставьте 60-70 люмен/ватт у светящихся лент, против 120-140 лм/вт у осветительных приборов и решений на основе драйверов.

Появляется вопрос, а можно ли отыскать ленту без сопротивлений и присоединить к ней драйвер отдельно? Да, данные устройства к примеру используют в LED-панелях.

световой поток

Их часто устанавливают в навесном потолке и не только. Используются они без сопротивлений. Их еще называют токовыми светодиодными линейками.

драйвер

Собственно токовыми. Тут все некоторые участки линеек подключаются постепенно на один драйвер. И все отлично работает.

Что такое трансформатор?

Классический трансформатор — это электромагнитная катушка как минимум с двумя обмотками с разным количеством витков в каждой.

Подавая переменное напряжение на одну из обмоток, с другой можно снимать переменное напряжение, как меньшего, так и большего значения, в зависимости от соотношения количеств витков в обмотках.

Все прочие электронные приборы, питающие какую-либо технику, технически не являются трансформаторами. Но, тем не менее, трансформатор — общепринятое название источника питания, под которым обычно понимается источник постоянного по значению напряжения, тип тока которого может быть как переменным, так и постоянным.

Именно в таком понимании мы используем термин трансформатор.

В нашем каталоге

Понижающие трансформаторы 220 — 12/24/36 вольтБлоки питания — драйверы для прожекторов

Поломка драйвера в светодиодных светильниках — довольно часто встречающаяся проблема.

Часто бывает так, что необходимая модель драйвера уже не производится, либо его невозможно приобрести отдельно от светильника.

Для того, чтобы подобрать замену LED драйвера нужно обратить внимание на его основные характеристики.

Выходной ток — часто встречаются такие значения: 300 мА (0,3 А),  350 мА, 500 мА, 700 мА и т.д.

подбор драйвера для светильника

Данный параметр должен быть не больше, чем в неисправном драйвере, замену подобрать очень легко.

Выходное напряжение — может быть указано как интервал, либо как фиксированное значение.

взаимозаменяемость светодиодных драйверовДиапазон выходного напряжения должен быть таким же, либо шире, чем в неисправном драйвере. Если указано фиксированное рабочее напряжение, то оно должно находиться примерно по середине искомого диапазона.

Максимальная выходная мощность — может быть указана как диапазон, так и как фиксированное значение.

мощность светодиодного драйвера

Выходная мощность должна быть не меньше, чем в неисправном драйвере, но и не превышать ее более чем на 10-15 %.

Так же стоит не забывать про степень защиты светодиодного драйвера, если планируется установка светильника на улице или в других агрессивных средах. Ну ,и конечно, физические размеры LED драйвера не должны помешать его установку в корпус светильника.

Если вам нужен светодиодный драйвер, то вы можете приобрести его в нашем интернет-магазине электротоваров.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как исправить пересушенное мясо свинины в духовке
  • Как найти масштаб формула математика
  • Как найти катет подобного треугольника
  • Как найти биотехнический центр в человеке пауке
  • Как найти величину страхового возмещения

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии