Нахождение длины вектора, примеры и решения
Длина вектора — основные формулы
Длину вектора a → будем обозначать a → . Данное обозначение аналогично модулю числа, поэтому длину вектора также называют модулем вектора.
Для нахождения длины вектора на плоскости по его координатам, требуется рассмотреть прямоугольную декартову систему координат O x y . Пусть в ней задан некоторый вектор a → с координатами a x ; a y . Введем формулу для нахождения длины (модуля) вектора a → через координаты a x и a y .
От начала координат отложим вектор O A → = a → . Определим соответственные проекции точки A на координатные оси как A x и A y . Теперь рассмотрим прямоугольник O A x A A y с диагональю O A .
Из теоремы Пифагора следует равенство O A 2 = O A x 2 + O A y 2 , откуда O A = O A x 2 + O A y 2 . Из уже известного определения координат вектора в прямоугольной декартовой системе координат получаем, что O A x 2 = a x 2 и O A y 2 = a y 2 , а по построению длина O A равна длине вектора O A → , значит, O A → = O A x 2 + O A y 2 .
Отсюда получается, что формула для нахождения длины вектора a → = a x ; a y имеет соответствующий вид: a → = a x 2 + a y 2 .
Если вектор a → дан в виде разложения по координатным векторам a → = a x · i → + a y · j → , то вычислить его длину можно по той же формуле a → = a x 2 + a y 2 , в данном случае коэффициенты a x и a y выступают в роли координат вектора a → в заданной системе координат.
Вычислить длину вектора a → = 7 ; e , заданного в прямоугольной системе координат.
Чтобы найти длину вектора, будем использовать формулу нахождения длины вектора по координатам a → = a x 2 + a y 2 : a → = 7 2 + e 2 = 49 + e
Формула для нахождения длины вектора a → = a x ; a y ; a z по его координатам в декартовой системе координат Oxyz в пространстве, выводится аналогично формуле для случая на плоскости (см. рисунок ниже)
В данном случае O A 2 = O A x 2 + O A y 2 + O A z 2 (так как ОА – диагональ прямоугольного параллелепипеда), отсюда O A = O A x 2 + O A y 2 + O A z 2 . Из определения координат вектора можем записать следующие равенства O A x = a x ; O A y = a y ; O A z = a z ; , а длина ОА равна длине вектора, которую мы ищем, следовательно, O A → = O A x 2 + O A y 2 + O A z 2 .
Отсюда следует, что длина вектора a → = a x ; a y ; a z равна a → = a x 2 + a y 2 + a z 2 .
Вычислить длину вектора a → = 4 · i → — 3 · j → + 5 · k → , где i → , j → , k → — орты прямоугольной системы координат.
Дано разложение вектора a → = 4 · i → — 3 · j → + 5 · k → , его координаты равны a → = 4 , — 3 , 5 . Используя выше выведенную формулу получим a → = a x 2 + a y 2 + a z 2 = 4 2 + ( — 3 ) 2 + 5 2 = 5 2 .
Длина вектора через координаты точек его начала и конца
Выше были выведены формулы, позволяющие находить длины вектора по его координатам. Мы рассмотрели случаи на плоскости и в трехмерном пространстве. Воспользуемся ими для нахождения координат вектора по координатам точек его начала и конца.
Итак, даны точки с заданными координатами A ( a x ; a y ) и B ( b x ; b y ) , отсюда вектор A B → имеет координаты ( b x — a x ; b y — a y ) значит, его длина может быть определена по формуле: A B → = ( b x — a x ) 2 + ( b y — a y ) 2
А если даны точки с заданными координатами A ( a x ; a y ; a z ) и B ( b x ; b y ; b z ) в трехмерном пространстве, то длину вектора A B → можно вычислить по формуле
A B → = ( b x — a x ) 2 + ( b y — a y ) 2 + ( b z — a z ) 2
Найти длину вектора A B → , если в прямоугольной системе координат A 1 , 3 , B — 3 , 1 .
Используя формулу нахождения длины вектора по координатам точек начала и конца на плоскости, получим A B → = ( b x — a x ) 2 + ( b y — a y ) 2 : A B → = ( — 3 — 1 ) 2 + ( 1 — 3 ) 2 = 20 — 2 3 .
Второй вариант решения подразумевает под собой применение данных формул по очереди: A B → = ( — 3 — 1 ; 1 — 3 ) = ( — 4 ; 1 — 3 ) ; A B → = ( — 4 ) 2 + ( 1 — 3 ) 2 = 20 — 2 3 . —
Ответ: A B → = 20 — 2 3 .
Определить, при каких значениях длина вектора A B → равна 30 , если A ( 0 , 1 , 2 ) ; B ( 5 , 2 , λ 2 ) .
Для начала распишем длину вектора A B → по формуле: A B → = ( b x — a x ) 2 + ( b y — a y ) 2 + ( b z — a z ) 2 = ( 5 — 0 ) 2 + ( 2 — 1 ) 2 + ( λ 2 — 2 ) 2 = 26 + ( λ 2 — 2 ) 2
Затем полученное выражение приравняем к 30 , отсюда найдем искомые λ :
26 + ( λ 2 — 2 ) 2 = 30 26 + ( λ 2 — 2 ) 2 = 30 ( λ 2 — 2 ) 2 = 4 λ 2 — 2 = 2 и л и λ 2 — 2 = — 2 λ 1 = — 2 , λ 2 = 2 , λ 3 = 0 .
Ответ: λ 1 = — 2 , λ 2 = 2 , λ 3 = 0 .
Нахождение длины вектора по теореме косинусов
Увы, но в задачах не всегда бывают известны координаты вектора, поэтому рассмотрим другие способы нахождения длины вектора.
Пусть заданы длины двух векторов A B → , A C → и угол между ними (или косинус угла), а требуется найти длину вектора B C → или C B → . В таком случае, следует воспользоваться теоремой косинусов в треугольнике △ A B C , вычислить длину стороны B C , которая и равна искомой длине вектора.
Рассмотрим такой случай на следующем примере.
Длины векторов A B → и A C → равны 3 и 7 соответственно, а угол между ними равен π 3 . Вычислить длину вектора B C → .
Длина вектора B C → в данном случае равна длине стороны B C треугольника △ A B C . Длины сторон A B и A C треугольника известны из условия (они равны длинам соответствующих векторов), также известен угол между ними, поэтому мы можем воспользоваться теоремой косинусов: B C 2 = A B 2 + A C 2 — 2 · A B · A C · cos ∠ ( A B , → A C → ) = 3 2 + 7 2 — 2 · 3 · 7 · cos π 3 = 37 ⇒ B C = 37 Таким образом, B C → = 37 .
Итак, для нахождения длины вектора по координатам существуют следующие формулы a → = a x 2 + a y 2 или a → = a x 2 + a y 2 + a z 2 , по координатам точек начала и конца вектора A B → = ( b x — a x ) 2 + ( b y — a y ) 2 или A B → = ( b x — a x ) 2 + ( b y — a y ) 2 + ( b z — a z ) 2 , в некоторых случаях следует использовать теорему косинусов.
Решить треугольник Онлайн по координатам
1) длины и уравнения сторон, медиан, средних линий, высот, серединных перпендикуляров, биссектрис;
2) система линейных неравенств, определяющих треугольник;
2) уравнения прямых, проходящих через вершины параллельно противолежащим сторонам;
3) внутренние углы по теореме косинусов;
4) площадь треугольника;
5) точка пересечения медиан (центроид) и точки пересечения медиан со сторонами;
10) параметры вписанной и описанной окружностей и их уравнения.
Внимание! Этот сервис не работает в браузере IE (Internet Explorer).
Запишите координаты вершин треугольника и нажмите кнопку.
Примечание: дробные числа записывайте
через точку, а не запятую.
Округлять до -го знака после запятой.
Площадь треугольника по координатам вершин — формулы для расчета
Самый простой многоугольник и вектор
Чтобы найти площадь треугольника через векторы и известные координаты его вершин, необходимо подробнее познакомиться с этими геометрическими объектами. Знание их свойств позволяет легко вычислять разные характеристики изучаемой фигуры, включая периметр, высоту, углы при вершинах и другие. При этом используются универсальные математические операции, которые можно применять с успехом не только для треугольника, но и для других многоугольников.
Фигура на плоскости
Треугольник в геометрии представляет собой самый простой многоугольник, который лежит всегда в одной плоскости, даже если фигура рассматривается в трехмерном пространстве. Состоит он из сторон и вершины.
Сторон и вершин у фигуры по три. Сторона является отрезком, а вершина — это точка пересечения этих отрезков. Для нее характерен определенный угол. Все углы треугольника являются разными в общем случае, их сумма всегда соответствует 180°. Однако, существуют специальные типы фигуры, для которых либо два угла равны друг другу (равнобедренный), либо все три (равносторонний). В задачах называют треугольники по имени их трех вершин, обозначенных латинскими буквами, например, ABC или NPQ.
Для треугольника важное значение имеют следующие отрезки:
- делящий противоположную углу сторону пополам — медиана;
- разделяющий угол при вершине на два равных — биссектриса;
- падающий под прямым углом на противоположную углу сторону — высота.
Высота, например, используется для расчета площади фигуры. Для равностороннего треугольника все эти отрезки совпадают друг с другом для любой вершины, а для равнобедренного они одинаковы лишь для угла, образованного равными сторонами.
Направленный отрезок
Вектором называют линейный элемент, который имеет начало и конец. Для его определения удобнее всего использовать координатную плоскость. Она представляет собой две направленные оси, имеющие шкалу и пересекающиеся под углом 90°. Точка пересечения является началом координат и обозначается буквой O (0; 0). Здесь каждая из цифр указывает точку пересечение перпендикуляра, опущенного из рассматриваемого объекта к каждой из двух осей.
Если начало A (x0; y0) и конец B (x1; y1) вектора известны, тогда легко можно вычислить его собственные координаты. Делается это так:
AB- = B-A = (x1-x0; y1-y0).
Иными словами, чтобы получить вектор AB-, следует из соответствующих координат его конца вычесть его начало. Эта операция эквивалентна параллельному перемещению AB- в начало координатной плоскости, что говорит о существовании бесконечного количества одинаковых AB-векторов.
Направленные отрезки можно складывать, вычитать и умножать. Для каждой из операций существуют определенные правила. Если для сложения и вычитания речь идет о геометрических особенностях, то в случае умножения применяются исключительно алгебраические выражения. Вектор a- можно умножить на b- двумя принципиально разными способами:
- Скалярно: (a-*b-). В этом случае мы получаем число. Правило умножения записывается следующим образом: (a-*b-) = |a-|*|b-|*cos (ab)=x1*x2+y1*y2. Здесь знаком модуля (||) обозначены длины соответствующих отрезков, cos (ab) — это косинус угла между a- и b-, при этом a-(x1; y1), b-(x2; y2). Этот тип произведения можно использовать для вычисления углов между направленными отрезками, а также для определения объема фигур в пространстве.
- Векторно: [a-*b-]. Результатом этой операции является вектор, который перпендикулярен исходным, его направление (вверх или вниз) принято определять по правилу правой руки: четыре пальца должны быть направлены от конца a- к концу b-, тогда оттопыренный большой палец укажет направление их векторного произведения. Длина этого перпендикулярного вектора определяется так: [a-*b-] = |a-|*|b-|*sin (ab) = x1*y2-x2*y1. Векторное произведение используют для вычисления площадей фигур.
Методы вычисления площади по координатам
Задачи на вычисление площадей, периметров или объемов фигур по известным координатам их вершин являются типичными для школьного курса геометрии. В связи с развитием современных технологий школьники часто ищут в интернете, как решить треугольник онлайн по координатам. Тем не менее, существует ряд простых способов, которые позволяют быстро найти площадь фигуры, если известно расположение трех его вершин на координатной плоскости.
Универсальный подход
Этот метод можно применять всегда, независимо от того, какой тип треугольника рассматривается. Известно, что площадь фигуры вычисляется, как произведение половины стороны на опущенную на нее высоту: S = ½*a*h.
Пусть имеются координаты вершин заданного треугольника ABC:
Тогда координаты его векторов AB- и AC- выразятся так:
Если провести высоту h треугольника ABC к любой из этих сторон, например, к AC, то ее длина может быть рассчитана с использованием тригонометрической функции синуса:
Здесь α является углом между векторами-сторонами AB- и AC-. Тогда формулу площади можно переписать в следующем виде: S = ½*a*h = ½*AC* AB*sin (α).
Можно заметить, что записанное выражение является не чем иным, как векторным произведением для AB- и AC-, поэтому можно переписать формулу для S так:
S = ½*[ AB-* AC- ] = ½*((x2-x1)*(y3-y1) — (y2-y1)*(x3-x1)).
Можно аналогично показать, что подобные выражения получаются для пар векторов AC-, BC- и AB-, BC-.
Рекомендуется не запоминать конечные выражения для площади треугольника, поскольку они являются несколько громоздкими, и при их использовании ученики могут запутаться. Для решения подобного рода задач достаточно понять свойства векторов и единственную универсальную формулу для S для любого типа треугольников.
Любопытно отметить, что векторное произведение при вычислении площади можно применять не только для треугольников, но и для любых четырехугольников. Так, в случае параллелограмма рассматриваемая характеристика будет точно равна векторному произведению любых смежных (непараллельных) его сторон.
Использование формулы Герона
Этот способ также может считаться универсальным, поскольку он применим к любым типам треугольников. В работе Герона Александрийского, которая называется «Метрика» и относится к I веку нашей эры, впервые было обнаружено выражение, позволяющее по длинам сторон рассматриваемой фигуры определить ее площадь. Формула имеет следующий вид:
Здесь p — полупериметр, a, b, c — длины сторон.
Последовательность этапов решения задачи можно выразить таким образом:
- Необходимо определить координаты векторов, образующих стороны треугольника.
- Затем, следует вычислить длины их сторон.
- Посчитать полупериметр фигуры.
- Применить формулу Герона.
Ключевым этапом является определение длины вектора. Пусть AB- имеет координаты (x1; y1), тогда его длина вычисляется так:
|AB-| = (x1 2 + y1 2 )^0,5.
Длина любого вектора как на плоскости, так и в пространстве, вычисляется, как сумма квадратов всех его координат, взятых под корень.
Очевидно, что можно записать общее выражение для площади треугольника через координаты с использованием формулы Герона, но оно будет слишком громоздким, поэтому нет никакого смысла запоминать его.
Другие способы
Существуют эмпирические правила, которые можно запомнить и легко решать задачи на определение площади треугольника. Пусть координаты его вершин задаются так: A (x1; y1), B (x2; y2), C (x3; y3). Предположим, что порядок вершин A, B, C расположен против часовой стрелки, тогда существуют следующие правила определения площади ABC:
- Можно воспользоваться формулой: S = ½*(x1*(y2-y3) + x2*(y3-y1) + x3*(y1-y2)). То есть выбирается первая координата вершины и умножается на разность вторых координат двух других вершин, возникающих против хода стрелки часов от первой. Затем, все три члена складываются и делятся на 2.
- Матричный способ. Необходимо выписать в столбик пары координат каждой вершины против часовой стрелки и завершить координатами исходной. После этого следует сложить три попарных произведения первой и второй координат двух соседних вершин, а затем, вычесть три попарных произведений второй и первой координат тех же вершин. Результат поделить пополам. Например: (x1; y1) (x2; y2) (x3; y3) (x1; y1). S = ½*(x1*y2 + x2*y3 + x3*y1 — y1*x2 — y2*x3 — y3*x1).
Решение задачи
Дана фигура АВС. Найдите площадь треугольника, вершины которого имеют координаты A (1; -3), B (2; 5), C (-2; -2).
Для нахождения решения следует обратиться за помощью к универсальному способу. Сначала необходимо выбрать два вектора, образующих стороны треугольника. Пусть это будут AB- и BC-. Теперь нужно знать их координаты. Они равны:
Чтобы рассчитать площадь, достаточно вычислить полупроизведение векторное для выбранных направленных отрезков: S = ½*[AB-*BC-] = ½*(1*(-7)-8*(-4)) = 12,5 квадратных единиц.
Таким образом, существует несколько методик вычисления площади треугольника, если известны координаты его вершин. Все они сводятся к использованию свойств векторов и известных формул. Существуют также выражения, которые следует запомнить, чтобы решать подобные задачи.
Площадь треугольника по координатам вершин — формулы для расчета
Использование координатной плоскости в математике является удобным изобретением для расчета различных геометрических характеристик фигур. Одной из них является площадь треугольника. По координатам вершин фигуры это свойство можно рассчитать несколькими различными способами.
Самый простой многоугольник и вектор
Чтобы найти площадь треугольника через векторы и известные координаты его вершин, необходимо подробнее познакомиться с этими геометрическими объектами. Знание их свойств позволяет легко вычислять разные характеристики изучаемой фигуры, включая периметр, высоту, углы при вершинах и другие. При этом используются универсальные математические операции, которые можно применять с успехом не только для треугольника, но и для других многоугольников.
Фигура на плоскости
Треугольник в геометрии представляет собой самый простой многоугольник, который лежит всегда в одной плоскости, даже если фигура рассматривается в трехмерном пространстве. Состоит он из сторон и вершины.
Сторон и вершин у фигуры по три. Сторона является отрезком, а вершина — это точка пересечения этих отрезков. Для нее характерен определенный угол. Все углы треугольника являются разными в общем случае, их сумма всегда соответствует 180°. Однако, существуют специальные типы фигуры, для которых либо два угла равны друг другу (равнобедренный), либо все три (равносторонний). В задачах называют треугольники по имени их трех вершин, обозначенных латинскими буквами, например, ABC или NPQ.
Для треугольника важное значение имеют следующие отрезки:
- делящий противоположную углу сторону пополам — медиана;
- разделяющий угол при вершине на два равных — биссектриса;
- падающий под прямым углом на противоположную углу сторону — высота.
Высота, например, используется для расчета площади фигуры. Для равностороннего треугольника все эти отрезки совпадают друг с другом для любой вершины, а для равнобедренного они одинаковы лишь для угла, образованного равными сторонами.
Направленный отрезок
Вектором называют линейный элемент, который имеет начало и конец. Для его определения удобнее всего использовать координатную плоскость. Она представляет собой две направленные оси, имеющие шкалу и пересекающиеся под углом 90°. Точка пересечения является началом координат и обозначается буквой O (0; 0). Здесь каждая из цифр указывает точку пересечение перпендикуляра, опущенного из рассматриваемого объекта к каждой из двух осей.
Если начало A (x0; y0) и конец B (x1; y1) вектора известны, тогда легко можно вычислить его собственные координаты. Делается это так:
AB- = B-A = (x1-x0; y1-y0).
Иными словами, чтобы получить вектор AB-, следует из соответствующих координат его конца вычесть его начало. Эта операция эквивалентна параллельному перемещению AB- в начало координатной плоскости, что говорит о существовании бесконечного количества одинаковых AB-векторов.
Направленные отрезки можно складывать, вычитать и умножать. Для каждой из операций существуют определенные правила. Если для сложения и вычитания речь идет о геометрических особенностях, то в случае умножения применяются исключительно алгебраические выражения. Вектор a- можно умножить на b- двумя принципиально разными способами:
Методы вычисления площади по координатам
Задачи на вычисление площадей, периметров или объемов фигур по известным координатам их вершин являются типичными для школьного курса геометрии. В связи с развитием современных технологий школьники часто ищут в интернете, как решить треугольник онлайн по координатам. Тем не менее, существует ряд простых способов, которые позволяют быстро найти площадь фигуры, если известно расположение трех его вершин на координатной плоскости.
Универсальный подход
Этот метод можно применять всегда, независимо от того, какой тип треугольника рассматривается. Известно, что площадь фигуры вычисляется, как произведение половины стороны на опущенную на нее высоту: S = ½*a*h.
Пусть имеются координаты вершин заданного треугольника ABC:
Тогда координаты его векторов AB- и AC- выразятся так:
Если провести высоту h треугольника ABC к любой из этих сторон, например, к AC, то ее длина может быть рассчитана с использованием тригонометрической функции синуса:
Здесь α является углом между векторами-сторонами AB- и AC-. Тогда формулу площади можно переписать в следующем виде: S = ½*a*h = ½*AC* AB*sin (α).
Можно заметить, что записанное выражение является не чем иным, как векторным произведением для AB- и AC-, поэтому можно переписать формулу для S так:
S = ½*[ AB-* AC- ] = ½*((x2-x1)*(y3-y1) — (y2-y1)*(x3-x1)).
Можно аналогично показать, что подобные выражения получаются для пар векторов AC-, BC- и AB-, BC-.
Рекомендуется не запоминать конечные выражения для площади треугольника, поскольку они являются несколько громоздкими, и при их использовании ученики могут запутаться. Для решения подобного рода задач достаточно понять свойства векторов и единственную универсальную формулу для S для любого типа треугольников.
Любопытно отметить, что векторное произведение при вычислении площади можно применять не только для треугольников, но и для любых четырехугольников. Так, в случае параллелограмма рассматриваемая характеристика будет точно равна векторному произведению любых смежных (непараллельных) его сторон.
Использование формулы Герона
Этот способ также может считаться универсальным, поскольку он применим к любым типам треугольников. В работе Герона Александрийского, которая называется «Метрика» и относится к I веку нашей эры, впервые было обнаружено выражение, позволяющее по длинам сторон рассматриваемой фигуры определить ее площадь. Формула имеет следующий вид:
Здесь p — полупериметр, a, b, c — длины сторон.
Последовательность этапов решения задачи можно выразить таким образом:
Ключевым этапом является определение длины вектора. Пусть AB- имеет координаты (x1; y1), тогда его длина вычисляется так:
|AB-| = (x1 2 + y1 2 )^0,5.
Длина любого вектора как на плоскости, так и в пространстве, вычисляется, как сумма квадратов всех его координат, взятых под корень.
Очевидно, что можно записать общее выражение для площади треугольника через координаты с использованием формулы Герона, но оно будет слишком громоздким, поэтому нет никакого смысла запоминать его.
Другие способы
Существуют эмпирические правила, которые можно запомнить и легко решать задачи на определение площади треугольника. Пусть координаты его вершин задаются так: A (x1; y1), B (x2; y2), C (x3; y3). Предположим, что порядок вершин A, B, C расположен против часовой стрелки, тогда существуют следующие правила определения площади ABC:
Решение задачи
Дана фигура АВС. Найдите площадь треугольника, вершины которого имеют координаты A (1; -3), B (2; 5), C (-2; -2).
Для нахождения решения следует обратиться за помощью к универсальному способу. Сначала необходимо выбрать два вектора, образующих стороны треугольника. Пусть это будут AB- и BC-. Теперь нужно знать их координаты. Они равны:
Чтобы рассчитать площадь, достаточно вычислить полупроизведение векторное для выбранных направленных отрезков: S = ½*[AB-*BC-] = ½*(1*(-7)-8*(-4)) = 12,5 квадратных единиц.
Таким образом, существует несколько методик вычисления площади треугольника, если известны координаты его вершин. Все они сводятся к использованию свойств векторов и известных формул. Существуют также выражения, которые следует запомнить, чтобы решать подобные задачи.
http://mathhelpplanet.com/static.php?p=onlain-reshit-treugolnik
http://b4.cooksy.ru/articles/koordinaty-vershin-treugolnika-vektory
A ( ; ), B ( ; ), C ( ; ) |
Примечание: дробные числа записывайте Округлять до -го знака после запятой. Координаты вершин треугольника векторыРешить треугольник Онлайн по координатам1) длины и уравнения сторон, медиан, средних линий, высот, серединных перпендикуляров, биссектрис; 2) система линейных неравенств, определяющих треугольник; 2) уравнения прямых, проходящих через вершины параллельно противолежащим сторонам; 3) внутренние углы по теореме косинусов; 4) площадь треугольника; 5) точка пересечения медиан (центроид) и точки пересечения медиан со сторонами; 10) параметры вписанной и описанной окружностей и их уравнения. Внимание! Этот сервис не работает в браузере IE (Internet Explorer). Запишите координаты вершин треугольника и нажмите кнопку. |
A ( ; ), B ( ; ), C ( ; ) |
2.9. Типовая задача с треугольником
Многие помнят из школы признаки равенства треугольников, признаки подобия треугольников и мучительное заучивание доказательств теорем. Как в
сердцАх сказал один мой одноклассник, «не понимаю, на### доказывать равенство треугольников, если и так видно, что они одинаковые». Мы тоже не
будем ничего доказывать, поскольку аналитическая геометрия рассматривает треугольник совсем с другой стороны.
Типовая задача, как правило, формулируется так: Даны три вершины треугольника. Требуется найти… много чего требуется
найти…. Повезёт, если будет пункта 3-4, но чаще всего их 5-6 и даже больше. И вам повезло – разберём всё! Или почти всё:
Задача 95
Даны вершины треугольника . Требуется:
1) составить уравнения сторон и найти их угловые коэффициенты;
2) найти длину стороны ;
3) найти ;
4) составить прямой , проходящей через точку
параллельно прямой
;
5) составить уравнение высоты и найти её длину;
6) вычислить площадь треугольника ;
7) составить уравнение медианы ;
найти точку пересечения
.
и для особо опасных энтузиастов:
9) найти уравнение биссектрисы ;
10) найти центр тяжести треугольника;
11) составить систему линейных неравенств, определяющих треугольник.
С чего начать решение? Начать целесообразно с выполнения чертежа. По условию этого можно не делать, но для самоконтроля и
самопроверки всегда строим чертёж на черновике, не устану это рекомендовать:
Ещё раз напоминаю, что самый выгодный масштаб 1 единица = 1
см (2 тетрадные клетки). Всё хорошо видно, и расстояния удобно измерять линейкой.
Вперёд без страха и сомнений:
1) Составим уравнения сторон и найдём их угловые
коэффициенты.
Поскольку известны вершины треугольника, то уравнения каждой стороны составим по двум
точкам.
Составим уравнение стороны по точкам
:
Для проверки мысленно либо на черновике подставляем координаты каждой точки в полученное уравнение.
Теперь
найдём угловой коэффициент. Для этого перепишем общее уравнение в виде уравнения с угловым коэффициентом:
Таким образом, угловой коэффициент:
Самостоятельно разбираемся со сторонами и сверяемся, что
получилось:
2) Найдём длину стороны . Используем соответствующую формулу для точек
:
Сторону легко измерить обычной линейкой, хотя это не сильно строгая проверка
3) Найдём . Это Задача 31, повторим:
Используем формулу .
Найдём векторы:
Таким образом:
, и сам угол:
, ну что же, похоже на правду, желающие могут приложить транспортир, у кого
он есть.
Внимание! При выполнении этого пункта лучше не использовать формулы ориентированного угла
между прямыми, так как они всегда дают острый угол.
4) Составим уравнение прямой , проходящей через точку
параллельно прямой
. Это стандартная задача, и мы ленимся отработать её вновь!
Из общего уравнения прямой вытащим направляющий вектор
.
Составим уравнение прямой по точке
и направляющему вектору
:
5) Составим уравнение высоты и найдём её длину.
Первую часть задания мы тоже решали:
Из уравнения стороны снимаем вектор нормали
. Уравнение высоты
составим по точке
и направляющему вектору
:
Обратите внимание, что координаты точки нам не известны.
Иногда уравнение высоты находят из соотношения угловых коэффициентов перпендикулярных прямых: . В данном случае
, тогда:
. Уравнение высоты
составим по точке
и угловому коэффициенту
:
Длину высоты можно найти двумя способами.
Существует окольный путь:
а) находим – точку
пересечения высоты и стороны ;
б) находим длину отрезка по двум
известным точкам.
Но зачем? – ведь есть удобная формула расстояния от точки до прямой
:
6) Вычислим площадь треугольника. Используем «школьную» формулу:
7) Уравнение медианы составим в два шага:
а) Найдём точку – середину стороны
. Используем формулы координат середины отрезка.
Известны концы , и тогда середина:
б) Уравнение медианы составим по точкам
:
– для проверки подставим координаты точек
.
Найдём точку пересечения
высоты и медианы:
в
Первое уравнение умножили на 5, складываем их почленно:
– подставим в первое уравнение:
9) Биссектриса делит угол пополам:
Из свойств биссектрисы внутреннего угла следует соотношение длин следующих отрезков:
Длины сторон уже найдены в предыдущих пунктах: .
Таким образом, . Координаты точки
найдём по формулам деления отрезка в данном отношении. Да,
параметр «лямбда» получился просто сказочным, ну а кому сейчас легко? Точки известны и понеслась нелёгкая:
Примечание: на последнем шаге я умножил числитель и знаменатель на сопряжённое выражение – чтобы использовать формулу
и
избавиться от иррациональности в знаменателе.
Разбираемся со второй координатой:
аким образом:
И предчувствие вас не обмануло, уравнение биссектрисы составим по точкам
по формуле
:
обратите внимание на технику упрощений:
Проверил, всё сходится. На практике, конечно, вычисления почти всегда будут проще. Никого не хотел запугать, так уж получилось =)
10) Найдём центр тяжести треугольника.
Но сначала поймём, что такое центр тяжести плоской фигуры. Мысленно вырежьте из тонкого однородного картона любую фигуру. …Почему-то фигура зайца
в голову пришла. Так вот: если слегка насадить данную фигуру центром тяжести (какой же я изверг =)) на вертикально расположенную иголку, то
теоретически фигура не должна свалиться.
Центром тяжести треугольника является точка пересечения его медиан. В треугольнике три медианы и пересекаются они в одной точке.
Из пункта 7 нам уже известна одна из медиан: . Как решить задачу?
Напрашивается очевидный алгоритм: можно найти уравнение второй медианы (любой из двух оставшихся) и точку пересечения этих медиан. Но есть путь
короче! Нужно только знать полезное свойство:
Точка пересечения медиан делит каждую из медиан в
отношении , считая от вершины треугольника. Поэтому справедливо
отношение
Нам известны концы отрезка – точки и
.
По формулам деления отрезка в данном отношении:
Таким образом, центр тяжести треугольника:
И заключительный пункт задачи, для освоения которого нужно уметь решать недавно разобранные линейные
неравенства:
11) Составим систему линейных неравенств, определяющих треугольник.
Для удобства я перепишу найденные уравнения сторон:
Рассмотрим прямую . Треугольник лежит в полуплоскости, где находится
вершина . Составим вспомогательный многочлен
и вычислим его значение в точке
:
. Поскольку сторона
принадлежит треугольнику, то неравенство будет нестрогим:
Внимание! Если вам не понятен этот алгоритм, то обратитесь к
Задаче 90.
Рассмотрим прямую . Треугольник расположен ниже данной прямой, поэтому
очевидно неравенство .
И, наконец, для составим многочлен
, в который подставим координаты точки
:
.
Таким образом, получаем третье неравенство: .
Итак, треугольник определяется следующей системой линейных
неравенств:
Готово.
Какой можно сделать вывод?
Многие задачи аналитической геометрии прозрачны и просты,
главное, не допустить вычислительных ошибок.
Следует отметить, что по настоящему трудные задачи в аналитической геометрии встречаются редко, и вы справитесь практически с любой из них!
Главное, придерживаться методики решения и проявить маломальское упорство.
Ну что, может ещё задачку? Да ладно, не надо стесняться, я же по глазам вижу, что хотите =)
Но сейчас на очереди другая увлекательная тема, продолжаем изучать геометрию плоскости:
3.1. Алгебраическая линия и её порядок
2.8. Как научиться решать задачи по геометрии?
| Оглавление |
Автор: Aлeксaндр Eмeлин
Пример 1:
Построить треугольник, вершины которого находятся в точках А (2; 4), В (-3; 2), С (-3; -4). Найти:
1) уравнения сторон треугольника АВС;
2) координаты точки пересечения медиан;
3) длину и уравнение высоты, опущенной из вершины А;
4) площадь треугольника.
Решение от преподавателя:
Уравнение, прямой проходящей через две точки
1) Уравнения сторон треугольника АВС
2) Координаты точки пересечения медиан
Медиана – отрезок, соединяющий вершину треугольника с серединой противоположной стороны.
Координаты т. E как середины отрезка ВС.
Уравнение АЕ
Координаты т. К как середины отрезка АВ.
Уравнение СК
3) Длина и уравнение высоты, опущенной из вершины А
Расстояние от точки до прямой
Уравнение прямой, проходящей через точку перпендикулярно другой прямой
Уравнение AN
4) Площадь треугольника
Длина ВС
Пример 2:
Решение от преподавателя:
Пример 3:
По координатам вершин треугольника ABC найти:
- периметр треугольника;
- уравнения сторон AB и BC;
- уравнение высоты AD; угол ABC;
- площадь треугольника.
Сделать чертеж.
А(1; 2); В (–1; 2); С(3; 0).
Решение от преподавателя:
Пример 4:
Даны координаты вершин треугольникаА, В, С.
Требуется найти:
1) уравнение и длину стороны ВС;
2) уравнение и длину высоты, проведённой из вершиныА;
3) уравнение медианы, проведённой из вершиныА;
4) площадь треугольника.
Сделать чертёж.
А(4;-3), B(-2;-1), C(3;-2).
Решение от преподавателя:
Пример 5:
Решение от преподавателя:
1)
2)
3) Находим координаты точки М – середины стороны ВС:
Определяем длину медианы АМ:
4) Составляем уравнение медианы – прямой АМ:
5) Если ВН – высота, проведенная из вершины В к стороне АС, то, поскольку ВН проходит через точку В перпендикулярно вектору , то составляем уравнение высоты по формуле
, где (a,b) – координаты вектора перпендикулярного искомой прямой,
– координаты точки, принадлежащей этой прямой. Находим координаты вектора АС:
и подставляем в формулу, ,
6) Длину высоты ВН находим как расстояние от точки В до прямой АС:
7) Площадь треугольника АВС:
Находим угол ВАС треугольника:
9) Составляем уравнение прямой, проходящей через т.А параллельно ВС:
Ответ:
Пример 6:
Решение от преподавателя:
- Уравнение прямой
Прямая, проходящая через точки A1(x1; y1) и A2(x2; y2), представляется уравнениями:
Уравнение прямой AB
Каноническое уравнение прямой:
или
или
y = -3/7x + 16/7 или 7y + 3x — 16 = 0 - Обозначим середину стороны AB буквой М. Тогда координаты точки M найдем по формулам деления отрезка пополам.
M(3;1)
Уравнение медианы CM найдем, используя формулу для уравнения прямой, проходящей через две заданные точки. Медиана CМ проходит через точки C(-8;2) и М(3;1), поэтому:
Каноническое уравнение прямой:
или
или
y = -1/11x + 14/11 или 11y + x — 14 = 0 - Уравнение высоты через вершину C
Прямая, проходящая через точку N0(x0;y0) и перпендикулярная прямой Ax + By + C = 0 имеет направляющий вектор (A;B) и, значит, представляется уравнениями:
Найдем уравнение высоты через вершину C
y = 7/3x + 62/3 или 3y -7x — 62 = 0 - уравнение параллельной прямой AB, проходящей через точку (-8,2)
Уравнение прямой AB: y = -3/7x + 16/7
Уравнение KN параллельно AB находится по формуле:
y — y0 = k(x — x0)
Подставляя x0 = -8, k = -3/7, y0 = 2 получим:
y-2 = -3/7(x-(-8))
или
y = -3/7x — 10/7 или 7y + 3x +10 = 0
Пример 7:
Даны координаты вершин треугольника: A(1,1), B(4,13), C(10,5).
Решение от преподавателя:
4) Уравнение высоты через вершину C
Прямая, проходящая через точку N0(x0;y0) и перпендикулярная прямой Ax + By + C = 0 имеет направляющий вектор (A;B) и, значит, представляется уравнениями:
Найдем уравнение высоты через вершину C
y = -1/4x + 15/2 или 4y +x -30 = 0
Данное уравнение можно найти и другим способом. Для этого найдем угловой коэффициент k1 прямой AB.
Уравнение AB: y = 4x -3, т.е. k1 = 4
Найдем угловой коэффициент k перпендикуляра из условия перпендикулярности двух прямых: k1*k = -1.
Подставляя вместо k1 угловой коэффициент данной прямой, получим:
4k = -1, откуда k = -1/4
Так как перпендикуляр проходит через точку C(10,5) и имеет k = -1/4,то будем искать его уравнение в виде: y-y0 = k(x-x0).
Подставляя x0 = 10, k = -1/4, y0 = 5 получим:
y-5 = -1/4(x-10)
или
y = -1/4x + 15/2 или 4y + x — 30 = 0
Найдем точку пересечения с прямой AB:
Имеем систему из двух уравнений:
y -4x +3 = 0
4y + x — 30 = 0
Из первого уравнения выражаем y и подставим во второе уравнение.
Получаем:
x = 42/17
y = 117/17
D(42/17;117/17)
Длина высоты треугольника, проведенной из вершины C
Расстояние d от точки M1(x1;y1) до прямой Ax + By + С = 0 равно абсолютному значению величины:
Найдем расстояние между точкой C(10;5) и прямой AB (y -4x +3 = 0)
5,7) Уравнение медианы треугольника
Обозначим середину стороны BC буквой Е. Тогда координаты точки Е найдем по формулам деления отрезка пополам.
Е(7;9)
Уравнение медианы AЕ найдем, используя формулу для уравнения прямой, проходящей через две заданные точки A(1;1) иЕ(7;9), поэтому:
Каноническое уравнение прямой:
или
или
y = 4/3x -1/3 или 3y -4x +1 = 0
Найдем длину медианы.
Расстояние между двумя точками выражается через координаты формулой:
6) CD—диаметр окружности. Центр окружности точка О лежит в середине отрезка CD
Уравнение окружности (x-x0)2+(y-y0)2=r2
(x-106/17)2+(y-101/17)2=256/17
Уравнение прямой, параллельной CD, проходящей через точку A
Так как прямая проходит через точку А(1,1) и имеет k = -1/4, ( так как уравнение CD:y = -1/4x + 15/2 или 4y + x — 30 = 0 ),
то будем искать уравнение в виде: y-y0 = k(x-x0).
Подставляя x0 = 1, k = -1/4, y0 = 1получим:
y-1 = -1/4(x-1)
или
y = -1/4x + ¼+1 или 4y + x — 5 = 0
Пример 8:
Решение от преподавателя:
Точка D – середина стороны АВ , ее координаты равны полусумме координат А и В. Получим D(1, -1)
Пример 9:
Даны координаты вершин треугольника АВС: А (3,-2), В (-5,-4), С (-1,6).
Найдите: 1) уравнения сторон треугольника АВ, ВС и АС;
2) периметр (сумму длин) треугольника;
3) уравнение высоты СН;
4) расстояние d от точки С до прямой АВ;
5) сделайте чертеж.
Решение от преподавателя:
Решение.
1) уравнения сторон треугольника АВ, ВС и АС
Уравнение, прямой проходящей через две точки
2) периметр (сумму длин) треугольника
Расстояние между двумя точками
3) уравнение высоты СН
Уравнение прямой, проходящей через точку перпендикулярно другой прямой
4) расстояние d от точки С до прямой АВ
Расстояние от точки до прямой
Пример 10:
Даны вершины A (x1; y1), B (x2; y2), C (x3; y3) треугольника.
Найти: 1) уравнение стороны AB;
2) уравнение медианы, проведенной из вершины C;
3) уравнение высоты, проведенной из вершины C ;
4) уравнение прямой, проходящей через вершину C параллельно стороне AB .
A (6; 0), B (2; − 6), C (−3; −9).
Решение от преподавателя:
Пример 11:
Решение от преподавателя:
Пример 12:
Дан треугольник с координатами вершин найти:
а) длину стороны AB;
б) косинус угла ABC;
в) площадь треугольника ABC (через векторное произведение);
Решение от преподавателя:
Пример 13:
Решение от преподавателя:
Даны координаты вершин треугольника: A(6,0), B(2,-6), C(-3,-9).
1) Уравнение прямой
Прямая, проходящая через точки A1(x1; y1) и A2(x2; y2), представляется уравнениями:
Уравнение прямой AB
Каноническое уравнение прямой:
или
или
y = 3/2x -9 или 2y -3x +18 = 0
2) Уравнение медианы треугольника
Обозначим середину стороны AB буквой М. Тогда координаты точки M найдем по формулам деления отрезка пополам.
M(4;-3)
Уравнение медианы CM найдем, используя формулу для уравнения прямой, проходящей через две заданные точки. Медиана CМ проходит через точки C(-3;-9) и М(4;-3), поэтому:
Каноническое уравнение прямой:
или
или
y = 6/7x -45/7 или 7y -6x +45 = 0
3) Уравнение высоты через вершину C
Прямая, проходящая через точку N0(x0;y0) и перпендикулярная прямой Ax + By + C = 0 имеет направляющий вектор (A;B) и, значит, представляется уравнениями:
Найдем уравнение высоты через вершину C
y = -2/3x -11 или 3y +2x + 33 = 0
4) Уравнение прямой, параллельной AB, проходящей через С(-3,-9)
Уравнение прямой AB: 2y -3x +18 = 0
Уравнение СN параллельно AB находится по формуле:
Или 2y -3x +9 = 0
Пример 14:
Даны вершины треугольника А(8,1), В(0,3), С(-2,-3). Напишите уравнения стороны AB, медианы AD, высоты BE.
Решение от преподавателя:
Даны координаты вершин треугольника: A(8,1), B(0,3), C(-2,-3).
1) Уравнение прямой (АВ)
Прямая, проходящая через точки A1(x1; y1) и A2(x2; y2), представляется уравнениями:
Уравнение прямой AB
или
или
4y + x — 12 = 0
2)Уравнение медианы (АD)
Обозначим середину стороны BC буквой М. Тогда координаты точки M найдем по формулам деления отрезка пополам.
M(-1;0)
Уравнение медианы AM найдем, используя формулу для уравнения прямой, проходящей через две заданные точки. Медиана AМ проходит через точки A(8;1) и М(-1;0), поэтому:
или
или
y = 1/9x + 1/9 или 9y -x — 1 = 0
3) Уравнение высоты через вершину B
Найдем уравнение высоты через вершину B
Для этого найдем угловой коэффициент k1 прямой AC.
Уравнение прямой AC
уравнение прямой, проходящей через 2 точки:
или
или
y = 2/5x -11/5 т.е. k1 = 2/5
Найдем угловой коэффициент k перпендикуляра из условия перпендикулярности двух прямых: k1*k = -1.
Подставляя вместо k1 угловой коэффициент данной прямой, получим:
2/5k = -1, откуда k = -5/2
Так как перпендикуляр проходит через точку B(0,3) и имеет k = -5/2,то будем искать его уравнение в виде: y-y0 = k(x-x0).
Подставляя x0 = 0, k = -5/2, y0 = 3 получим:
y-3 = -5/2(x-0)
или
y = -5/2x + 3 или 2y + 5x — 6 = 0 — уравнение (ВЕ)
Пример 15:
Дан треугольник АВС. Найти:
а) величину угла А;
б) уравнение стороны АС;
в) уравнение высоты и медианы, опущенных из вершины В.
Сделать чертеж.
А(-1,2); В(1,3); С(3,-4).
Решение от преподавателя:
Пример 16:
Треугольник задан вершинами А(-6; -2); В(4; 8); С(2; -8). Найти:
а) уравнение прямой BN, параллельной стороне АС;
б) уравнение медианы CD;
в) уравнение высоты АЕ;
Решение от преподавателя:
а) уравнение прямой BN, параллельной стороне АС;
Уравнение прямой AC:
Каноническое уравнение прямой:
или
или
y = -3/4x -13/2 или 4y + 3x +26 = 0
Уравнение BN параллельно AC находится по формуле:
y — y0 = k(x — x0)
Подставляя x0 = 4, k = -3/4, y0 = 8 получим:
y-8 = -3/4(x-4)
или
y = -3/4x + 11 или 4y + 3x — 44 = 0
б) уравнение медианы CD;
Обозначим середину стороны AB буквой М. Тогда координаты точки M найдем по формулам деления отрезка пополам.
M(-1;3)
Уравнение медианы CM найдем, используя формулу для уравнения прямой, проходящей через две заданные точки. Медиана CМ проходит через точки C(2;-8) и М(-1;3), поэтому:
Каноническое уравнение прямой:
или
или
y = -11/3x -2/3 или 3y + 11x +2 = 0
в) уравнение высоты АЕ;
Прямая, проходящая через точку Е0(x0;y0) и перпендикулярная прямой Ax + By + C = 0 имеет направляющий вектор (A;B) и, значит, представляется уравнениями:
Найдем уравнение высоты через вершину A
y = -1/8x — 11/4 или 8y +x + 22 = 0
Пример 17:
A(1, 2), В(5, 8), С(11, 3).
Решение от преподавателя:
Пример 18:
В ∆ABC вершины имеют координаты точки А (-3;4), точки В (-4;-3), точки С (8;1).
Составить уравнения стороны (AB), высоты (ВК) и медианы (CМ).
Решение от преподавателя:
Уравнение прямой AB
Каноническое уравнение прямой:
или
или
x +4 = 0 или x = -4
Уравнение прямой AC
Каноническое уравнение прямой:
или
или
y = -1/4x + 3 или 4y + x — 12 = 0
Найдем уравнение высоты через вершину B
y = 4x + 13 или y -4x — 13 = 0
Уравнение медианы CM найдем, используя формулу для уравнения прямой, проходящей через две заданные точки. Медиана CМ проходит через точки C(8;1) и М(-4;1/2), поэтому:
Каноническое уравнение прямой:
или
или
y = 1/24x + 2/3 или 24y -x — 16 = 0
Пример 19:
Дан треугольник ABC с координатами вершин A(-5;-3; 2), B(-2;-6;-3) и C(-2; 2;-1).
Найти:
а) длину стороны АВ;
б) косинус угла ABC;
в) площадь треугольника АВС (через векторное произведение).
Решение от преподавателя:
Решить треугольник Онлайн по координатам
Данный онлайн-сервис вычисляет (показываются промежуточные расчёты) следующие параметры треугольника:
1) длины и уравнения сторон, медиан, средних линий, высот, серединных перпендикуляров, биссектрис;
2) система линейных неравенств, определяющих треугольник;
2) уравнения прямых, проходящих через вершины параллельно противолежащим сторонам;
3) внутренние углы по теореме косинусов;
4) площадь треугольника;
5) точка пересечения медиан (центроид) и точки пересечения медиан со сторонами;
10) параметры вписанной и описанной окружностей и их уравнения.
Внимание! Этот сервис не работает в браузере IE (Internet Explorer).
Запишите координаты вершин треугольника и нажмите кнопку.
Математический форум (помощь с решением задач, обсуждение вопросов по математике).
Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.
Уравнение длины сторон треугольника
4.7
Средняя оценка: 4.7
Всего получено оценок: 181.
4.7
Средняя оценка: 4.7
Всего получено оценок: 181.
Уравнение длин сторон треугольника – это первые вкрапления высшей математики в математику школьного курса. Понимание данной тематики приближает ученика к университетскому уровню, вместе с тем делая более понятной тему функции.
Функция
Что такое функция? Это зависимость одной величины от другой. В математической функции чаще всего две неизвестных: независимая и зависимая или х и у соответственно.
Что это значит? Это значит, что х может принимать абсолютно любое значение, а у будет под него подстраиваться, меняясь в соответствии с коэффициентами функции.
Существуют ситуации, когда функция имеет несколько переменных. Зависимая у всегда 1, но факторов, которые влияют на неё может быть несколько. Не всегда такую функцию получается отразить на графике. В лучшем случае графически можно отобразить зависимость у от 2 переменных.
Как проще всего представить зависимость у(х)?
Да очень просто. Представьте себе избалованного ребенка и богатую любящую мать. Они вместе приходят в магазин и начинают клянчить конфеты. Кто знает, сколько конфет мальчик потребует сегодня?
Никто, но в зависимости от количества конфет увеличится сумма, которую мама оплатит на кассе. В этом случае, зависимой величиной является сумма в чеке, а независимой – количество конфет, которое захочет мальчик сегодня.
Очень важно понимать, что одному значению функции у, всегда соответствует 1 значение аргумента х. Но, как и с корнями квадратного уравнения, эти значения могут совпадать.
Уравнение прямой линии
Зачем нам нужно уравнение прямой, если мы говорим об уравнении длин сторон треугольника?
Да затем, что каждая из сторон треугольника это отрезок. А отрезок это ограниченная часть прямой. То есть мы можем задать уравнения прямых. А в точках их пересечения ограничить линии, тем самым обрезав прямые и превратив их в отрезки.
Уравнение прямой выглядит следующим образом:
$$y_1=a_1x+b_1$$
$$y_2=a_2x+b_2$$
$$y_3=a_3x+b_3$$
Уравнение сторон треугольника
Необходимо найти уравнение длин сторон треугольника с вершинами в точках А(3,7) ; В(5,3); С(12;9)
Все координаты положительны, значит, треугольник будет расположен в 1 координатной четверти.
Поочередно составим уравнения каждой из линий треугольника.
- Первой будет линия АВ. Координаты точек подставим в уравнение прямой на место х и у. Таким образом мы получим систему из двух линейных уравнений. Решив ее можно найти значение коэффициентов для функции:
А(3,7) ; В(5,3):
7=3а+b
3=5a+b
Из первого уравнения выразим b и подставим во второе.
b=7-3a
3=5a+7-3a
2a=-4
a=-2
Подставим значение а и найдем b.
b=7-3a=7-3*(-2)=7+6=13
Составим уравнение прямой.
у=-2х+13
- Аналогично составим два оставшихся уравнения.
В(5,3); С(12;9)
3=5а+b
9=12a+b
b=3-5a
9=12a+b=12a+3-5a
9=7a+3
7a=6
$$a={6over7}$$
$$b=3-5*{6over7}=-{9over7}$$
$$y={6over7}x-{9over7}$$
- А(3,7) ; С(12;9)
7=3а+b
9=12a+b
b=7-3a
9=12a+b=12a+7-3a=9a+7
9a=2
$$a={2over9}$$
$$b=7-{6over9}={57over9}$$
$$y={2over9}x+{57over9}$$
- Запишем уравнение длин сторон треугольника:
у=-2х+13
$$y={6over7}x-{9over7}$$
$$y={2over9}x+{57over9}$$
Что мы узнали?
Мы узнали, что такое функция, поговорили у функции прямой линии и научились выводить уравнения сторон треугольника по координатам его вершин.
Тест по теме
Доска почёта
Чтобы попасть сюда — пройдите тест.
Пока никого нет. Будьте первым!
Оценка статьи
4.7
Средняя оценка: 4.7
Всего получено оценок: 181.
А какая ваша оценка?