На чтение 10 мин Просмотров 1.1к. Опубликовано 09.06.2019
Содержание
- Измерение параметров жесткости пружин разных типов
- Что такое жесткость?
- Какие вводные данные требуются?
- Насколько важен показатель, и на что он влияет?
Мы уже неоднократно пользовались динамометром – прибором для измерения сил. Познакомимся теперь с законом, позволяющим измерять силы динамометром и обуславливающим равномерность его шкалы.
Известно, что под действием сил возникает деформация тел – изменение их формы и/или размеров. Например, из пластилина или глины можно вылепить предмет, форма и размеры которого будут сохраняться и после того, когда мы уберём руки. Такую деформацию называют пластической. Однако, если наши руки деформируют пружину, то когда мы их уберём, возможны два варианта: пружина полностью восстановит форму и размеры или же пружина сохранит остаточную деформацию.
Если тело восстанавливает форму и/или размеры, которые были до деформации, то деформация упругая. Возникающая при этом в теле сила – это сила упругости, подчиняющаяся закону Гука:
F упр – модуль силы упругости тела, Н
| D l| – модуль удлинения тела, м
k – коэффициент жёсткости тела, Н/м
Поскольку удлинение тела входит в закон Гука по модулю, этот закон будет справедлив не только при растяжении, но и при сжатии тел.
Опыты показывают: если удлинение тела мало по сравнению с его длиной, то деформация всегда упругая; если удлинение тела велико по сравнению с его длиной, то деформация, как правило, будет пластической или даже разрушающей. Однако, некоторые тела, например, резинки и пружины деформируются упруго даже при значительных изменениях их длины. На рисунке показано более чем двухкратное удлинение пружины динамометра.
Для выяснения физического смысла коэффициента жёсткости, выразим его из формулы закона. Получим отношение модуля силы упругости к модулю удлинения тела. Вспомним: любое отношение показывает, сколько единиц величины числителя приходится на единицу величины знаменателя. Поэтому коэффициент жёсткости показывает силу, возникающую в упруго деформированном теле при изменении его длины на 1 м.
- Динамометр является .
- Благодаря закону Гука в динамометре наблюдается .
- Явлением деформации тел называют .
- Пластически деформированным мы назовём тело, .
- В зависимости от модуля и/или направления приложенной к пружине силы, .
- Деформацию называют упругой и считают подчиняющейся закону Гука, .
- Закон Гука носит скалярный характер, так как с его помощью можно определить только .
- Закон Гука справедлив не только при растяжении, но и при сжатии тел, .
- Наблюдения и опыты по деформации различных тел показывают, что .
- Ещё со времени детских игр мы хорошо знаем, что .
- По сравнению с нулевым штрихом шкалы, то есть недеформированным начальным состоянием, справа .
- Чтобы понять физический смысл коэффициента жёсткости, .
- В результате выражения величины «k» мы .
- Ещё из математики начальной школы мы знаем, что .
- Физический смысл коэффициента жёсткости состоит в том, что он .
Задача. К пружине, начальная длина которой 10 см, подвесили груз массой 1 кг. При этом пружина удлинилась до 15 см. Определите коэффициент жёсткости для данной пружины. С каким периодом подвешенный груз будет совершать вертикальные колебания на такой пружине?
Решение. Эта задача будет иметь решение, только если мы убедимся, что деформация пружины упруга. То есть при снятии груза пружина должна принять первоначальную длину, равную 10 см. Ответ на этот вопрос даст только опыт, то есть задача – отчасти экспериментальная.
Используя третий закон Ньютона в скалярной форме, а также закон Гука, подсчитаем коэффициент упругости пружины:
F тяж = F упр = k·| D l| = k · |l–l o | = k · ( l–l o )
Подставив жёсткость пружины 200 Н/м в формулу для периода колебаний пружинного маятника (см. § 11-б), вычислим период:
Ответ. Жёсткость пружины равна 200 Н/м, и 10 колебаний маятника будут совершены за 4 секунды, что можно проверить секундомером.
Пока мы вели речь только о твёрдых телах. Однако сила упругости возникает и в жидкостях, и в более сложных телах, например, воздушном шарике, состоящем из резиновой оболочки и воздуха. Можно ли к таким телам применять закон Гука (и если можно, то при насколько больших деформациях), нам даст ответ только эксперимент. Он же позволит вычислить коэффициенты жёсткости для этих тел.
- Какова длина недеформированной пружины?
- Чему равно удлинение пружины?
- В каком случае мы имеем право применить закон Гука?
- Проверить это можно следующим образом: .
- Коэффициент жёсткости по результатам вычислений равен .
- Проверить полученное значение мы можем путём измерения .
- При проверке нам нужно убедиться, что .
- Сила упругости возникает не только в .
- Закон Гука позволяет найти силу упругости .
- Важно: только предварительный эксперимент по изучению характера деформации позволит нам выяснить, .
- В случае упругой деформации тел, следующий эксперимент .
Физика.ru • Клуб для учителей физики, учащихся 7-9 классов и их родителей
Измерение параметров жесткости пружин разных типов
При производстве на предприятии и для применения необходимо определить способность пружины выдерживать определенные типы нагрузок. Для этого высчитывается т.н. коэффициент Гука – обозначение жесткости пружины, от которого зависит её надёжность. На этот параметр влияет материал, выбранный для изготовления. Это может быть сталь, легированная кремнием, ванадием, марганцем, другими добавками. Также применяются нержавейка, бериллиевая и кремнемарганцевая бронза, сплавы на основе никеля и титана.
Если деталь выпускается для применения при высоких нагрузках, экстремальных температурах, используются специальные марки легированной стали. Нижегородская метизная корпорация имеет возможность производить пружины под заказ, создавая изделия с заданными характеристиками.
Что такое жесткость?
Говоря о практике, а не физических терминах, это сила, приложив которую, можно сжать пружину. Если вы знаете прилагаемое усилие, можно определить, какой будет деформация, и наоборот. Это существенно облегчает вычисления.
Коэффициент высчитывается для пружин кручения, растяжения, изгиба, сжатия – всех наиболее популярных в промышленности разновидностей этого изделия. Также следует отметить два основных типа:
- С линейной (постоянной) жесткостью;
- С прогрессивной (зависящей от положения витков) жесткостью.
Часто производитель наносит на готовую продукцию пометку краской. Если такого обозначения нет, применяется формула определения жесткости пружины через массу и длину, упрощающая задачу. Она изначально разрабатывалась для пружин растяжения, была получена методом измерения соответствия массы грузы с изменениями геометрии.
Также данный параметр может быть прогрессирующим – растущим — или регрессирующим – убывающим. Во втором случае параметр «жесткости» принято называть «мягкостью». В отдельных механизмах, например, в автомобилестроении, этот параметр особенно актуален.
Какие вводные данные требуются?
При расчёте важно знать следующую информацию:
- Из какого материала выполнено изделие;
- Точный диаметр витков – Dw;
- Общий диаметр самой пружины – Dm;
- Количество витков – Na.
Таким образом, к коэффициенту жесткости пружинного механизма может применяться формула:
Переменная G означает модуль сдвига. Это значение можно найти в таблицах для разных материалов. К примеру, у пружинной стали G=78,5 ГПа.
Далее разберемся, как определить жесткость пружины по формуле:
Длина L бывает двух типов:
- L1 – измеренная в вертикальном положении без груза;
- L2 – полученная при подвешивании груза с точно известной массой.
Например, 100-граммовая гиря, закреплённая в нижней части, воздействует с силой F, равной 1 Н. Получаем разницу между двумя показателями длины:
При этом следует уточнить, что степень жесткости не определяет распрямление в исходное состояние. На него воздействуют сразу несколько факторов.
Насколько важен показатель, и на что он влияет?
Характеристики пружины важны не только для соответствия ГОСТам и проведения сертификации. Они влияют на сроки эксплуатации изделий, в которых используются, а это огромное количество приборов, деталей, механизмов, от мебели, до различных транспортных средств.
Поэтому данная величина напрямую влияет на надёжность готовых изделий, оборудования, техники, в которых используются элементы, содержащие пружины.
Часто люди интересуются, как рассчитать жесткость пружины цилиндрической винтовой. Для таких случаев учитывается не только модуль сдвига, но и параметр Rs – напряжение, допускаемое при кручении. Здесь в расчёт берётся тип материала, его физические свойства, механические характеристики.
Следующий вопрос – в чем измеряется коэффициент жесткости пружины при расчётах. Традиционно в системе измерений, принятой в нашей стране принято записывать значение в Н/м – ньютонах на один метр. Также это значение в качестве альтернативного варианта может записываться в килограммах на квадратный сантиметр, дин/см, граммах на квадратный сантиметр (расчёты в системе СГС).
В 1635 году родился Роберт Гук, английский физик, член Лондонского королевского общества, его секретарь. В 1660 году открыл закон упругости для твердых тел (закон Гука).
В курсе 7 класса одной из сложных тем является условие равновесия груза на пружине: kx=mg, но предварительно для более эффективного понимания этой темы проводится эксперимент по закону Гука, а затем комментируются формулы: Fу=kx и Fт=mg .
Задачи на данную тему
1) Какова жесткость пружины , если груз массой 10 кг растягивает пружину на 10 см.
2) Используя полученный Ответет из предыдущей задачи определите какой груз нужно подвесить к пружине , чтобы растянуть ее на 20 см.
3) Груз массой 3 кг растягивает пружину на 5 см . Каким должен быть груз , который растянет пружину на 8см.
III. Изучение нового материала:
Вам уже известно, что на все тела, находящиеся на Земле, действует сила тяжести. В результате действия силы тяжести на Землю падает подброшенный камень, выпущенная из лука стрела, снежинки.
Почему же покоятся тела, подвешенные на нити или лежащие на опоре? По-видимому, сила тяжести уравновешивается какой-то другой силой. Что это за сила и как она возникает.
Проведем опыт: на упругий подвес поместим гирю. Под действием силы тяжести гиря начнет двигаться вниз, и подвес деформируется – его длина увеличится. При этом возникнет сила, с которой подвес действует на тело. Когда эта сила уравновесит силу тяжести, тело остановится. Из этого опыта можно сделать вывод, что на гирю, кроме силы тяжести, направленной вертикально вниз, действует другая сила. Эта сила направлена вертикально вверх. Она и уравновешивает силу тяжести. Эту силу называют силой упругости. Аналогичные явления происходят с любым телом которое мы положили на опору.
Ребята, запишите, пожалуйста, в тетрадях определение силы упругости: Сила, возникающая в теле в результате его деформации, и стремящаяся вернуть тело в исходное положение называется силой упругости.
– Проведем эксперимент: линейка и пружина с указателем закреплены на штативе. Будем поочередно подвешивать грузы на пружину и фиксировать ее удлинение. Заносим данные в таблицу . Для расчета силы упругости используем равенство сил, действующих на груз: Fупр = Fтяж = mg. По данным таблицы строим график зависимости Fупр(∆l).
– Какую линию получили на графике?
– Как называется такая зависимость в математике?
– Что происходит с силой упругости, если длина пружины увеличивается? Уменьшается?
– Как изменится сила упругости, если длина пружины увеличится в 2 раза? Посмотрим на график.
– Найдем отношение силы упругости к удлинению пружины (первый результат считаю я, остальные вы – по вариантам):
– Какой вывод можно сделать об отношении силы упругости к удлинению пружины?
– Мы с вами получили закон, открытый английским физиком Робертом Гуком в 1660г.
– Закон Гука: Fупр = k∆l – сила упругости прямо пропорциональна величине деформации. Обсудим формулу закона и попытаемся определить, какие величины в нее входят (обсуждение формулы, записи величин и единиц их измерения).
Теперь мы можем написать условие равновесия груза на пружине : mg = k∆l , используем это условие при решении задачи №1:
1) Какова жесткость пружины , если груз массой 10 кг растягивает пружину на 0,1 м.
М=10кг
L=0,1м
k-?
Решение:
mg = k∆l
mg : ∆l = k
После подстановки получаем ответ: 1000Н/м
Теперь зная жесткость пружины, разберем ситуацию каким образом мы можем узнать массу тела, рассмотрим задачу №2:
2) Используя полученный ответ из предыдущей задачи определите какой груз нужно подвесить к пружине, чтобы растянуть ее на 20 см.
k =1000Н/м
L=0,2м
М – ?
Решение:
mg = k ∆l
m = k ∆l:g
После подстановки получаем ответ: 20 кг
А теперь используем наши умения и навыки для решения более сложной задачи:
3) Груз массой 3 кг растягивает пружину на 5 см. Каким должен быть груз, который растянет пружину на 8см.
М1=3кг
L1=0,05м
L2=0,08м
М2=?
Решение:
М1 g = k L1
М1 g : L1 = k =600 Н/м
Нашли жесткость, теперь можем написать условие равновесия груза на пружине и найти массу груза:
Сила упругости широко используется в технике. Эта сила возникает в упругих телах при их деформации. Деформация – это изменение формы тела, под действием приложенных сил.
Виды деформации
Деформация – это изменение формы, или размеров тела.
Есть несколько видов деформации:
- сдвиг;
- кручение;
- изгиб;
- сжатие/растяжение;
Деформация сдвига возникает, когда одни части тела сдвигаются относительно других его частей. Если подействовать на верхнюю часть картонного ящика, наполненного различными предметами, горизонтальной силой, то вызовем сдвиг верхней части ящика относительно его нижней части.
Сжатие или растяжение легко представить на примере прямоугольного куска тонкой резины. Такая деформация используется, к примеру, в резинках для одежды.
Примеры изгиба и кручения показаны на рисунке 1. Пластиковая линейка, деформированная изгибом, представлена на рис. 1а, а на рисунке 1б – эта же линейка, деформируемая кручением.
Рис. 1. пластиковая линейка, деформированная изгибом – а) и кручением – б)
В деформируемом теле возникают силы, имеющие электромагнитную природу и препятствующие деформации.
Растяжение пружины
Рассмотрим подробнее деформацию растяжения на примере пружины.
Давайте прикрепим пружину к некоторой поверхности (рис. 2). На рисунке слева указана начальная длина (L_{0}) пружины.
Рис. 2. Сравнивая длину свободной пружины с длиной нагруженной, можно найти ее удлинение
Подвесим теперь к пружине груз. Пружина будет иметь длину (L), указанную на рисунке справа.
Сравним длину нагруженной пружины с длиной свободно висящей пружины.
[ large L_{0} + Delta L = L ]
Найдем разницу (разность) между длинами свободно висящей пружины и пружины с грузом. Вычтем для этого из обеих частей этого уравнения величину (L_{0}).
[ large boxed{ Delta L = L — L_{0} }]
( L_{0} left(text{м} right) ) – начальная длина пружины;
( L left(text{м} right) ) – конечная длина растянутой пружины;
( Delta L left(text{м} right) ) – кусочек длины, на который растянули пружину;
Величину ( Delta L ) называют удлинением пружины.
Иногда рассчитывают относительное удлинение. Это относительное удлинение часто выражают десятичной дробью. Или дробью, в знаменателе которой находится число 100 — такую дробь называют процентом.
Примечание: Отношение – это дробь. Относительное – значит, дробное.
[ large boxed{ frac{Delta L }{ L_{0}} = frac{ L — L_{0}}{L_{0} } = varepsilon } ]
( varepsilon ) – это отношение (доля) растяжения пружины к ее начальной длине. Измеряют в процентах и называют относительным удлинением.
Расчет силы упругости
Если растягивать пружину вручную, мы можем заметить: чем больше мы растягиваем пружину, тем сильнее она сопротивляется.
Значит, с удлинением пружины связана сила, которая сопротивляется этому удлинению.
Конечно, если пружина окажется достаточно упругой, чтобы сопротивляться. Например, разноцветная пружина-игрушка (рис. 3), изготовленная из пластмассы, сопротивляться растяжению, увеличивающему ее длину в два раза, практически не будет.
Разноцветная пластмассовая пружина-игрушка растяжению сопротивляется слабо
Закон Гука
Английский физик Роберт Гук, живший во второй половине 17-го века, установил, что сила сопротивления пружины и ее удлинение связаны прямой пропорциональностью. Силу, с которой пружина сопротивляется деформации, он назвал ( F_{text{упр}} ) силой упругости.
[ large boxed{ F_{text{упр}} = k cdot Delta L }]
Эту формулу назвали законом упругости Гука.
( F_{text{упр}} left( H right) ) – сила упругости;
( Delta L left(text{м} right) ) – удлинение пружины;
( displaystyle k left(frac{H}{text{м}} right) ) – коэффициент жесткости (упругости).
Какие деформации называют малыми
Закон Гука применяют для малых удлинений (деформаций).
Если убрать деформирующую силу и тело вернется к первоначальной форме (размерам), то деформации называют малыми.
Если же тело к первоначальной форме не вернется – малыми деформации назвать не получится.
Как рассчитать коэффициент жесткости
Груз, прикрепленный к концу пружины, растягивает ее (рис. 4). Измерим удлинение пружины и составим силовое уравнение для проекции сил на вертикальную ось. Вес груза направлен против оси, а сила упругости, противодействующая ему – по оси.
Рис. 4. Вес подвешенного на пружине груза уравновешивается силой упругости
Так как силы взаимно компенсируются, в правой части уравнения находится ноль.
[ large F_{text{упр}} — m cdot g = 0 ]
Подставим в это уравнение выражение для силы упругости
[ large k cdot Delta L — m cdot g = 0 ]
Прибавим к обеим частям вес груза и разделим на измеренное изменение длины (Delta L ) пружины. Получим выражение для коэффициента жесткости:
[ large boxed{ k = frac{ m cdot g }{Delta L} }]
(g) – ускорение свободного падения, оно связано с силой тяжести.
Соединяем две одинаковые пружины
В задачниках по физике и пособиях для подготовки к ЕГЭ встречаются задачи, в которых одинаковые пружины соединяют последовательно, либо параллельно.
Параллельное соединение пружин
На рисунке 5а представлена свободно висящая пружина. Нагрузим ее (рис. 5б), она растянется на величину (Delta L). Соединим две такие пружины параллельно и подвесим груз в середине перекладины (рис. 5в). Из рисунка видно, что конструкция из двух параллельных пружин под действием груза растянется меньше, нежели единственная такая пружина.
Рис. 5. Две пружины, соединенные параллельно, деформируются меньше одной такой пружины
Сравним растяжение двух одинаковых пружин, соединенных параллельно, с растяжением одной пружины. К пружинам подвешиваем один груз весом (mg).
Одна пружина:
[ large k_{1} cdot Delta L = m cdot g ]
Две параллельные пружины:
[ large k_{text{параллел}} cdot Delta L cdot frac{1}{2}= m cdot g ]
Так как правые части уравнений совпадают, левые части тоже будут равны:
[ large k_{text{параллел}} cdot Delta L cdot frac{1}{2}= k_{1} cdot Delta L ]
Обе части уравнения содержат величину (Delta L ). Разделим обе части уравнения на нее:
[ large k_{text{параллел}} cdot frac{1}{2}= k_{1} ]
Умножим обе части полученного уравнения на число 2:
[ large boxed{ k_{text{параллел}} = 2k_{1} } ]
Коэффициент жесткости (k_{text{параллел}}) двух пружин, соединенных параллельно, увеличился вдвое, в сравнении с одной такой пружиной
Последовательное соединение пружин
Рисунок 6а иллюстрирует свободно висящую пружину. Нагруженная пружина (рис. 6б), растянута на длину (Delta L). Теперь возьмем две такие пружины и соединим их последовательно. Подвесим груз к этим (рис. 6в) пружинам.
Практика показывает, что конструкция из двух последовательно соединенных пружин под действием груза растянется больше единственной пружины.
На каждую пружину в цепочке действует вес груза. Под действием веса пружина растягивается и передает далее по цепочке этот вес без изменений. Он растягивает следующую пружину. А та, в свою очередь, растягивается на такую же величину (Delta L).
Примечание: Под действием силы пружина растягивается и передает эту растягивающую силу далее по цепочке без изменений
Рис. 6. Система, состоящая из двух одинаковых пружин, соединенных последовательно, деформируются больше одной пружины
Сравним растяжение двух одинаковых последовательно соединенных пружин и растяжение единственной пружины. В обоих случаях к пружинам подвешиваем одинаковый груз весом (mg).
Одна пружина:
[ large k_{1} cdot Delta L = m cdot g ]
Две последовательные пружины:
[ large k_{text{послед}} cdot Delta L cdot 2 = m cdot g ]
Так как правые части уравнений совпадают, левые части тоже будут равны:
[ large k_{text{послед}} cdot Delta L cdot 2 = k_{1} cdot Delta L ]
Обе части уравнения содержат величину (Delta L ). Разделим обе части уравнения на нее:
[ large k_{text{послед}} cdot 2 = k_{1} ]
Разделим обе части полученного уравнения на число 2:
[ large boxed{ k_{text{послед}} = frac{k_{1}}{2} } ]
Коэффициент жесткости (k_{text{послед}}) двух пружин, соединенных последовательно, уменьшится вдвое, в сравнении с одной такой пружиной
Потенциальная энергия сжатой или растянутой пружины
Пружина сжатая (левая часть рис. 7), или растянутая (правая часть рис. 7) на длину (Delta L ) обладает потенциальной возможностью вернуться в первоначальное состояние и при этом совершить работу, например, по перемещению груза. В таких случаях физики говорят, что пружина обладает потенциальной энергией.
Рис. 7. Деформированная — сжатая или растянутая пружина обладает потенциальной энергией
Эта энергия зависит от коэффициента жесткости пружины и от ее удлинения (или укорочения при сжатии).
Чем больше жесткость (упругость) пружины, тем больше ее потенциальная энергия. Увеличив удлинение пружины получим повышение ее потенциальной энергии по квадратичному закону:
[ large boxed{ E_{p} = frac{k}{2} cdot left( Delta L right)^{2} }]
( E_{p} left( text{Дж} right)) – потенциальная энергия сжатой или растянутой пружины;
( Delta L left(text{м} right) ) – удлинение пружины;
( displaystyle k left(frac{H}{text{м}} right) ) – коэффициент жесткости (упругости) пружины.
Выводы
- Упругие тела – такие, которые сопротивляются деформации;
- Во время деформации в упругих телах возникает сила, она препятствует деформации, ее называют силой упругости;
- Деформация – изменение формы, или размеров тела;
- Есть несколько видов деформации: изгиб, кручение, сдвиг, растяжение/сжатие;
- Удлинение пружины – это разность ее конечной и начальной длин;
- Сжатая или растянутая пружина обладает потенциальной энергией (вообще, любое упруго деформированное тело обладает потенциальной энергией);
- Система, состоящая из нескольких одинаковых пружин, будет иметь коэффициент жесткости, отличный от жесткости единственной пружины;
- Если пружины соединяют параллельно – коэффициент жесткости системы увеличивается;
- А если соединить пружины последовательно – коэффициент жесткости системы уменьшится.
Каталог заданий
Версия для печати и копирования в MS Word
1
Задания Д23 № 2510
i
На графике представлены результаты измерения длины пружины при различных значениях массы грузов, лежащих в чашке пружинных весов. С учётом погрешностей измерений =
найдите приблизительную длину пружины при пустой чашке весов. (Ответ дайте в сантиметрах с точностью до 0,5 см.)
Решение
·
4 комментария
·
Помощь
Как найти L0(начальная длина пружины) если известны L, масса и коофицент жесткости пружины.
На этой странице сайта вы найдете ответы на вопрос Как найти L0(начальная длина пружины) если известны L, масса и коофицент жесткости пружины?,
относящийся к категории Физика. Сложность вопроса соответствует базовым
знаниям учеников 5 — 9 классов. Для получения дополнительной информации
найдите другие вопросы, относящимися к данной тематике, с помощью поисковой
системы. Или сформулируйте новый вопрос: нажмите кнопку вверху страницы, и
задайте нужный запрос с помощью ключевых слов, отвечающих вашим критериям.
Общайтесь с посетителями страницы, обсуждайте тему. Возможно, их ответы
помогут найти нужную информацию.
Содержание материала
- Сила упругости и закон Гука
- Видео
- Примеры задач на нахождение жесткости
- Вычисление коэффициента жесткости опытным методом
- Коэффициент жесткости соединений пружин
- Основные характеристики пружин
- Материал и сила жесткости пружины
- Как связана жесткость пружины с диаметром и формой сечения проволоки, из которой она сделана
- Какой формулой определяется коэффициент жесткости соединения из двух параллельных пружин?
- Вчемизмеряется жесткость
- Как появился первый вариант формулы
- Что такое жесткость в физике?
- Практические занятия
- Основная методика для вычислений
- Решение задач
- Определение коэффициента жесткости
- Единицы измерения
- Деформация
- Расчет жесткости цилиндрической пружины
- Параллельное и последовательное соединение пружин
- Последовательное соединение системы пружин
- Параллельное соединение системы пружин
- Особенности расчета жесткости соединений пружин
Сила упругости и закон Гука
Для начала определим основные термины, которые будут использоваться в данной статье. Известно, если воздействовать на тело извне, оно либо приобретет ускорение, либо деформируется. Деформация — это изменение размеров или формы тела под влиянием внешних сил. Если объект полностью восстанавливается после прекращения нагрузки, то такая деформация считается упругой; если же тело остается в измененном состоянии (например, согнутом, растянутом, сжатым и т. д. ), то деформация пластическая.
Примеры задач на нахождение жесткости
Задача 1
На пружину длиной 10 см действует сила F = 100 Н. Длина растянутой пружины составила 14 см. Найти коэффициент жесткости.
- Рассчитываем длину абсолютного удлинения: x = 14—10 = 4 см = 0,04 м.
- По формуле находим коэффициент жесткости: k = F/x = 100 / 0,04 = 2500 Н/м.
Ответ: жесткость пружины составит 2500 Н/м.
Задача 2
Груз массой 10 кг при подвешивании на пружину растянул ее на 4 см. Рассчитать, на какую длину растянет ее другой груз массой 25 кг.
- Найдем силу тяжести, деформирующей пружину: F = mg = 10 · 9.8 = 98 Н.
- Определим коэффициент упругости: k = F/x = 98 / 0.04 = 2450 Н/м.
- Рассчитаем, с какой силой действует второй груз: F = mg = 25 · 9.8 = 245 Н.
- По закону Гука запишем формулу для абсолютного удлинения: x = F/k.
- Для второго случая подсчитаем длину растяжения: x = 245 / 2450 = 0,1 м.
Ответ: во втором случае пружина растянется на 10 см.
Видео
Вычисление коэффициента жесткости опытным методом
С помощью несложного опыта можно самостоятельно рассчитать, чему будет равен коэффициент Гука. Для проведения эксперимента понадобятся:
- линейка;
- пружина;
- груз с известной массой.
Последовательность действий для опыта такова:
- Необходимо закрепить пружину вертикально, подвесив ее к любой удобной опоре. Нижний край должен остаться свободным.
- При помощи линейки измеряется ее длина и записывается как величина x1.
- На свободный конец нужно подвесить груз с известной массой m.
- Длина пружины измеряется в нагруженном состоянии. Обозначается величиной x2.
- Подсчитывается абсолютное удлинение: x = x2-x1. Для того чтобы получить результат в международной системе единиц, лучше сразу перевести его из сантиметров или миллиметров в метры.
- Сила, которая вызвала деформацию, — это сила тяжести тела. Формула для ее расчета — F = mg, где m — это масса используемого в эксперименте груза (переводится в кг), а g — величина свободного ускорения, равная приблизительно 9,8.
- После проведенных расчетов остается найти только сам коэффициент жесткости, формула которого была указана выше: k = F/x.
Коэффициент жесткости соединений пружин
Приведенный выше показатель коэффициента жесткости детали при параллельном или последовательном соединении определяет многие характеристики соединения. Довольно часто проводится определение тому, чему равно удлинение пружины. Среди особенностей параллельного или последовательного соединения можно отметить нижеприведенные моменты:
- При параллельном подключении удлинение обоих изделий будет равным. Не стоит забывать о том, что оба варианта должны характеризоваться одинаковой длиной в свободном положении. При последовательном показатель увеличивается в два раза.
- Свободное положение – ситуация, в которой деталь находится без прикладывания нагрузки. Именно оно в большинстве случаев учитывается при проведении расчетов.
- Коэффициент жесткости изменяется в зависимости от применяемого способа подсоединения. В случае параллельного соединения показатель увеличивается в два раза, при последовательном уменьшается.
Для проведения расчетов нужно построить схему подключения всех элементов. Основание представлено линией со штриховкой, изделие обозначается схематически, а тело в упрощенном виде. Кроме этого, от упругой деформации во многом зависит кинетическая и другая энергия.
Основные характеристики пружин
Зная материал и диаметр проволоки, форму её сечения, длину и диаметр пружины, как единого целого, можно с очень высокой достоверностью судить, насколько пружина может сопротивляться попыткам деформировать себя. Существуют также другие характеристики, от которых работоспособность пружины может зависеть очень серьёзно. К таковым относятся усталость материала проволоки, шаг витка, индекс пружины и т. д.
Материал и сила жесткости пружины
Зависимость между этими характеристиками пружин индивидуальная и вычисляется опытным путём. Чаще всего для изготовления металлических пружин используют высокоуглеродистые стали, легированные ванадием, кремнием и марганцем. Для изделий, предназначенных для длительной работы в агрессивных средах используют нержавеющую сталь, оловянносвинцовую, бериллиевую и кремнемарганцевую бронзу, различные чугуны, а также некоторые из титановых сплавов.
Небольшие пружины изготавливают из уже закалённой проволоки. Крупные изделия делают из отожжённой стали, а закалку проводят уже после формовки.
Как связана жесткость пружины с диаметром и формой сечения проволоки, из которой она сделана
Чем он меньше, тем пружина более эластична. Способность запасать энергию с уменьшением диаметра тоже становится меньше. Пружины сжатия, как правило, делают из более толстой проволоки.
Следует отметить, что не всегда сечение проволоки для пружин бывает круглым, в пружинах сжатия оно иногда бывает уплощённым. Это обеспечивает лучшую посадку одного витка на другой и делает конструкцию более устойчивой.
Какой формулой определяется коэффициент жесткости соединения из двух параллельных пружин?
Параллельное соединение системы пружин В случае когда пружины соединены параллельно, величина общего коэффициента упругости системы будет увеличиваться. Формула для расчета будет выглядеть так: k = k1 + k2 + … + ki.
Вчемизмеряется жесткость
Жесткость пружины в системе СИ измеряется в ньютонах на метр, Н/м. Также встречается единица измерения ньютон на миллиметр, Н/мм. Численно жесткость равна величине силы, изменяющей размер пружины на метр длины.
Как появился первый вариант формулы
Формула для расчета жесткости пружины, которая получила название закона Гука, была установлена экспериментально. В процессе опытов с подвешенными на упругом элементе грузами разной массы замерялась величина его растяжения. Так и выяснилось, что одна и та же испытуемая деталь под разными нагрузками претерпевает различные деформации. Причем подвешивание определенного количества гирек, одинаковых по массе, показало, что каждая добавленная/снятая гирька увеличивает/уменьшает длину упругого элемента на одинаковую величину.
В итоге этих экспериментов появилась такая формула: kx=mg, где k – некий постоянный для данной пружины коэффициент, x – изменение длины пружины, m – ее масса, а g – ускорение свободного падения (примерное значение – 9,8 м/с²).
Так было открыто свойство жесткости, которое, как и формула для определения коэффициента упругости, находит самое широкое применение в любой отрасли промышленности.
Что такое жесткость в физике?
Механи́ческая жёсткость (также жёсткость) — способность твёрдого тела, конструкции или её элементов сопротивляться деформации (изменению формы и/или размеров) от приложенного усилия вдоль выбранного направления в заданной системе координат. Обратная к характеристике называется механической податливостью.
Практические занятия
Механики и физики обозначают с помощью k, c и D коэффициент упругости, пропорциональности, жесткости. Смысл математической записи одинаковый. Численно показатель равняется силе, которая создаёт колебания на одну единицу длины. На практических работах по физике используется в качестве последней величины 1 метр.
Чем выше k, тем больше сопротивление предмета относительно деформации. Дополнительно коэффициент показывает степень устойчивости тела к колебаниям со стороны внешней нагрузки. Параметр зависит от длины и диаметра винтового изделия, количества витков, сырья. Единица измерения жесткости пружины — Н/м.
На практике перед школьниками и механиками может стоять более сложная задача, к примеру, найти общую жёсткость. В таком случае пружины соединены последовательным либо параллельным способом. В первом случае уменьшается суммарная жесткость. Если пружины расположены последовательно, используется следующая формула: 1/k = 1/k1 + 1/k2 + … + 1/ki, где:
- k — суммарная жёсткость соединений;
- k1 …ki — жёсткость каждого элемента системы;
- i — число пружин в цепи.
Если невесомые (расположены горизонтально) предметы соединены параллельно, значение общего k будет увеличиваться. Величина вычисляется по следующей формуле: k = k1 + k2 + … + ki.
Основная методика для вычислений
На практике коэффициент Гука определяется самостоятельно. Для эксперимента потребуется пружина, линейка, груз с определённой массой. Необходимо соблюдать следующую последовательность действий:
- Пружина фиксируется вертикально. Для этого используется любая удобная опора со свободной нижней частью.
- Линейкой измеряется длина предмета. Результат записывается как х1.
- На свободный конец подвешивается груз с известной массой m.
- Измеряется длина изделия под воздействием амплитуды. Вывод записывается как х2.
- Производит подсчёт абсолютного удлинения: x = x2-x1. Для определения энергии (силы) и k в международной системе СИ осуществляется перевод длины из разных единиц измерения в метры.
- Сила, спровоцировавшая деформацию, считается силой тяжести тела. Она рассчитывается по формуле: F = mg, где м является массой используемого груза (вес переводится в килограммы), а g (равен 9,8) — постоянная величина, с помощью которой отмечается ускорение свободного падения.
Если вышеописанные вычисления произведены, необходимо найти значение коэффициента жёсткости. Используется закон Гука, из которого следует, что k=F/x.
Решение задач
Для нахождения жёсткости в случае использования разных предметов, включая пружинные маятники с разной частотой колебаний, применяется формула Гука либо следствие, вытекающее из неё.
Задача № 1. Пружина имеет длину 10 см. На неё оказывается сила в 100 Н. Изделие растянулось на 14 см. Нужно найти k.
Решение: предварительно вычисляется абсолютное удлинение: 14−10=4 см. Результат переводится в метры: 0,04 м. Используя основную формулу, находится k. Его значение равняется 2500 Н/м.
Задача № 2. На пружину подвешивается груз массой 10 кг. Изделие растягивается на 4 см. Нужно найти длину, на которую растянется пружина, если использовать груз массой в 25 кг.
Решение: Определяется сила тяжести путем умножения 10 кг на 9.8. Результат записывается в Ньютонах. Определяется k=98/0.04=2450 Н/м. Рассчитывается, с какой силой воздействует второй груз: F=mg=245 Н. Для нахождения абсолютного удлинения используется формула x=F/k. Во втором случае х равняется 0,1 м.
Определение коэффициента жесткости
Коэффициент жесткости (он также имеет названия коэффициента упругости или пропорциональности) чаще всего записывается буквой k, но иногда можно встретить обозначение D или c. Численно жесткость будет равна величине силы, которая растягивает пружину на единицу длины (в случае СИ — на 1 метр). Формула для нахождения коэффициента упругости выводится из частного случая закона Гука:
k = F/x.
Чем больше величина жесткости, тем больше будет сопротивление тела к его деформации. Также коэффициент Гука показывает, насколько устойчиво тело к действию внешней нагрузки. Зависит этот параметр от геометрических параметров (диаметра проволоки, числа витков и диаметра намотки от оси проволоки) и от материала, из которого она изготовлена.
Единица измерения жесткости в СИ — Н/м.
Единицы измерения
При проводимых расчетах также должно учитываться то, в каких единицах измерениях проводятся вычисления. При рассмотрении того, чему равно удлинение пружины уделяется внимание единице измерения в Ньютонах.
Для того чтобы упростить выбор детали многие производители указывают его цветовым обозначением.
Разделение пружины по цветам проводится в сфере автомобилестроения.
Среди особенностей подобной маркировки отметим следующее:
- Класс А обозначается белым, желтым, оранжевым и коричневым оттенками.
- Класса В представлен синим, голубым, черным и желтым цветом.
Как правило, подобное свойство отмечается на внешней стороне витка. Производители наносят небольшую полоску, которая и существенно упрощает процесс выбора.
Деформация
Деформация — это изменение формы и размеров тела (или части тела) под действием внешних сил
Происходит деформация из-за различных факторов: при изменении температуры, влажности, фазовых превращениях и других воздействиях, вызывающих изменение положения частиц тела.
На появление того или иного вида деформации большое влияние оказывает характер приложенных к телу сил. Одни процессы деформации связаны с преимущественно перпендикулярно (нормально) приложенной силой, а другие — преимущественно с силой, приложенной по касательной.
По характеру приложенной к телу нагрузки виды деформации подразделяют следующим образом:
-
Деформация растяжения
-
Деформация сжатия
-
Деформация сдвига
-
Деформация при кручении
-
Деформация при изгибе
Расчет жесткости цилиндрической пружины
Довольно просто понять как работает плоская пружина. Если положить на край письменного стола линейку и прижать один ее конец рукой к поверхности, но второй можно упруго изгибать, запасая и высвобождая энергию. Очевидно, что в момент изгиба расстояния между молекулами материала в некоторых фрагментах линейки увеличиваются, в некоторых уменьшаются. Электромагнитные связи, действующие между молекулами, стремятся вернуть вещество к прежнему геометрическому состоянию.
Несколько сложнее дело обстоит с цилиндрической пружиной. В ней энергия запасается не благодаря деформации изгиба, а за счет скручивания проволоки, из которой пружина навита, относительно продольной оси этой проволоки.
Представим сильно увеличенное сечение проволоки, из которой навита цилиндрическая пружина, выполненное перпендикулярной ее оси плоскостью. При таком рассмотрении можно абстрагироваться от спиральной формы и мысленно разбить весь объем проволоки на множество соприкасающихся торцевыми поверхностями «цилиндров», диаметр которых равен диаметру проволоки, а высота стремится к нулю. Между соприкасающимися торцами действуют молекулярные силы, препятствующие деформации.
При растяжении или сжатии пружины угол наклона между витками изменяется. Соседние «цилиндры» при этом вращаются друг относительно друга в противоположных направлениях вокруг общей оси. В каждом таком сечении запасается энергия. Отсюда следует, что чем из более длинного куска проволоки навита пружина (здесь играют роль диаметр и высота цилиндра, а также шаг витка), тем большее количество энергии она способна запасти. Увеличение диаметра проволоки также повышает ее энергоемкость. В целом формула, учитывающая основные факторы жесткости пружины, выглядит так:
$k = frac{r^4}{4R^3} cdot frac{G}{n}$,
где:
- $R$ — радиус цилиндра пружины,
- $n$ — количество витков проволоки радиуса $r$,
- $G$ — коэффициент, зависящий от материала.
Пример 1
Рассчитать коэффициент жесткости пружины, выполненной из стальной проволоки с $G = 8 cdot 10^{10}$ Па и диаметром 1 мм. Радиус пружины 20 мм, количество витков — 25.
Подставим в формулу числовые значения, попутно переведя их в единицы системы СИ:
$k = frac{(10^{-3})^4}{4 cdot (2 cdot 10^{-2})^3} cdot frac{8 cdot 10^{10}}{25} = frac{8 cdot 10^{-2}}{10^2 cdot 2^3 cdot 10^{-6}} = 100$
Ответ: $100 frac{Н}{м}$
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Параллельное и последовательное соединение пружин
В Законе Гука есть такая величина, как коэффициент жесткости— это характеристика тела, которая показывает его способность сопротивляться деформации. Чем больше коэффициент жесткости, тем больше эта способность, а как следствие из Закона Гука — и сила упругости.
Чаще всего эта характеристика используется для описания жесткости пружины. Но если мы соединим несколько пружин, то их суммарная жесткость нужно будет рассчитать. Разберемся, каким же образом.
Последовательное соединение системы пружин
Последовательное соединение характерно наличием одной точки соединения пружин.
При последовательном соединении общая жесткость системы уменьшается. Формула для расчета коэффициента упругости будет иметь следующий вид:
Коэффициент жесткости при последовательном соединении пружин
k — общая жесткость системы [Н/м]
k1, k2, …, ki — отдельные жесткости каждого элемента [Н/м]
i — общее количество всех пружин, задействованных в системе [-]
Параллельное соединение системы пружин
Последовательное соединение характерно наличием двух точек соединения пружин.
В случае когда пружины соединены параллельно величина общего коэффициента жесткости системы будет увеличиваться. Формула для расчета будет выглядеть так:
Коэффициент жесткости при параллельном соединении пружин
k — общая жесткость системы [Н/м]
k1, k2, …, ki — отдельные жесткости каждого элемента [Н/м]
i — общее количество всех пружин, задействованных в системе [-]
Задачка
Какова жесткость системы из двух пружин, жесткости которых k1 = 100 Н/м, k2 = 200 Н/м, соединенных: а) параллельно; б) последовательно?
Решение:
а) Рассмотрим параллельное соединение пружин.
При параллельном соединении пружин общая жесткость
k = k₁ + k₂ = 100 + 200 = 300 Н/м
б) Рассмотрим последовательное соединение пружин.
При последовательном соединении общая жесткость двух пружин
66,7 Н/м
Очень-очень важно!
Не забудь при расчете жесткости при последовательном соединении в конце перевернуть дробь.
Особенности расчета жесткости соединений пружин
Важный моментом является расчет нескольких упругих элементов, соединенных последовательно или параллельно.
При параллельном расположении нескольких деталей общая жесткость этой системы определяется простой суммой коэффициентов отдельных комплектующих. Как нетрудно заметить, жесткость системы больше, чем отдельной детали.
При последовательном расположении формула более сложная: величина, обратная суммарной жесткости, равна сумме величин, обратных к жесткости каждой комплектующей. В этом варианте сумма меньше слагаемых.
Используя эти зависимости, легко определиться с правильным выбором упругих комплектующих для конкретного случая.