Как найти длину параллелограмма зная его стороны

Параллелограмм. Формулы, признаки и свойства параллелограмма

Определение.

Параллелограмм — это четырехугольник у которого противоположные стороны попарно параллельны (лежат на параллельных прямых).

Параллелограммы отличаются между собой как размером прилегающих сторон, так и углами, однако противоположные углы одинаковые.

Признаки параллелограмма

Четырехугольник ABCD будет параллелограммом, если выполняется хотя бы одно из следующих условий:

1. Четырехугольник имеет две пары параллельных сторон:

AB||CD, BC||AD

2. Четырехугольник имеет пару параллельных и равных сторон:

AB||CD, AB = CD (или BC||AD, BC = AD)

3. В четырехугольнике противоположные стороны попарно равны:

AB = CD, BC = AD

4. В четырехугольнике противоположные углы попарно равны:

∠DAB = ∠BCD, ∠ABC = ∠CDA

5. В четырехугольнике диагонали точкой пересечения делятся пополам:

AO = OC, BO = OD

6. Сумма углов четырехугольника прилегающих к любой стороне равна 180°:

∠ABC + ∠BCD = ∠BCD + ∠CDA = ∠CDA + ∠DAB = ∠DAB + ∠DAB = 180°

7. В четырехугольнике сумма квадратов диагоналей равна сумме квадратов его сторон:

AC2 + BD2 = AB2 + BC2 + CD2 + AD2

Основные свойства параллелограмма

Квадрат, прямоугольник и ромб — есть параллелограммом.

1. Противоположные стороны параллелограмма имеют одинаковую длину:

AB = CD, BC = AD

2. Противоположные стороны параллелограмма параллельны:

AB||CD,   BC||AD

3. Противоположные углы параллелограмма одинаковые:

∠ABC = ∠CDA, ∠BCD = ∠DAB

4. Сумма углов параллелограмма равна 360°:

∠ABC + ∠BCD + ∠CDA + ∠DAB = 360°

5. Сумма углов параллелограмма прилегающих к любой стороне равна 180°:

∠ABC + ∠BCD = ∠BCD + ∠CDA = ∠CDA + ∠DAB = ∠DAB + ∠DAB = 180°

6. Каждая диагональ делит параллелограмма на два равных треугольника

7. Две диагональ делят параллелограмм на две пары равных треугольников

8. Диагонали параллелограмма пересекаются и точкой пересечения делят друг друга пополам:

AO = CO =  d1
2
BO = DO =  d2
2

9. Точка пересечения диагоналей называется центром симметрии параллелограмма

10. Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон:

AC2 + BD2 = 2AB2 + 2BC2

11. Биссектрисы противоположных углов параллелограмма всегда параллельны

12. Биссектрисы соседних углов параллелограмма всегда пересекаются под прямым углом (90°)

Стороны параллелограмма

Формулы определения длин сторон параллелограмма:

1. Формула сторон параллелограмма через диагонали и угол между ними:

a = 

d12 + d22 — 2d1d2·cosγ
2
=

d12 + d22 + 2d1d2·cosδ
2

b = 

d12 + d22 + 2d1d2·cosγ
2
=

d12 + d22 — 2d1d2·cosδ
2

2. Формула сторон параллелограмма через диагонали и другую сторону:

3. Формула сторон параллелограмма через высоту и синус угла:

4. Формула сторон параллелограмма через площадь и высоту:

Диагонали параллелограмма

Определение.

Диагональю параллелограмма называется любой отрезок соединяющий две вершины противоположных углов параллелограмма.

Параллелограмм имеет две диагонали — длинную d1, и короткую — d2

Формулы определения длины диагонали параллелограмма:

1. Формулы диагоналей параллелограмма через стороны и косинус угла β (по теореме косинусов)

d1 = √a2 + b2 — 2ab·cosβ

d2 = √a2 + b2 + 2ab·cosβ

2. Формулы диагоналей параллелограмма через стороны и косинус угла α (по теореме косинусов)

d1 = √a2 + b2 + 2ab·cosα

d2 = √a2 + b2 — 2ab·cosα

3. Формула диагонали параллелограмма через две стороны и известную другую диагональ:

d1 = √2a2 + 2b2d22

d2 = √2a2 + 2b2d12

4. Формула диагонали параллелограмма через площадь, известную диагональ и угол между диагоналями:

d1 =  2S  =  2S
d2·sinγ d2·sinδ
d2 =  2S  =  2S
d1·sinγ d1·sinδ

Периметр параллелограмма

Определение.

Периметром параллелограмма называется сумма длин всех сторон параллелограмма.

Формулы определения длины периметра параллелограмма:

1. Формула периметра параллелограмма через стороны параллелограмма:

P = 2a + 2b = 2(a + b)

2. Формула периметра параллелограмма через одну сторону и две диагонали:

P = 2a + √2d12 + 2d22 — 4a2

P = 2b + √2d12 + 2d22 — 4b2

3. Формула периметра параллелограмма через одну сторону, высоту и синус угла:

Площадь параллелограмма

Определение.

Площадью параллелограмма называется пространство ограниченный сторонами параллелограмма, т.е. в пределах периметра параллелограмма.

Формулы определения площади параллелограмма:

1. Формула площади параллелограмма через сторону и высоту, проведенную к этой стороне:

S = a · ha
S = b · hb

2. Формула площади параллелограмма через две стороны и синус угла между ними:

S = ab sinα

S = ab sinβ

3. Формула площади параллелограмма через две диагонали и синус угла между ними:

Периметр параллелограмма зависит от длины его сторон. И хотя формула для расчета несложная, мы сделали калькулятор, который позволяет рассчитать периметр параллелограмма в режиме онлайн. Наш калькулятор рассчитает периметр параллелограмма по двум сторонам или по двум диагоналям и одной из сторон.

Содержание:
  1. калькулятор периметра параллелограмма
  2. формула периметра параллелограмма через две стороны
  3. формула периметра параллелограмма через диагонали и одну из сторон
  4. примеры задач

Параллелограмм — четырехугольник, у которого противолежащие стороны попарно параллельны.

На сайте вы можете рассчитать периметры других четырехугольников: квадрат, ромб, прямоугольник.

Формула периметра параллелограмма через две стороны

Периметр параллелограмма через две стороны

{P = 2 (a + b)}

a и b — стороны параллелограмма

Формула периметра параллелограмма через диагонали и сторону

Периметр параллелограмма через диагонали и одну сторону

{P = 2a+ sqrt{2{d_1}^2 + 2{d_2}^2 — 4a^2}}

или

{P = 2b+ sqrt{2{d_1}^2 + 2{d_2}^2 — 4b^2}}

a и b — стороны параллелограмма

d1 и d2 — диагонали параллелограмма

Примеры задач на нахождение периметра параллелограмма

Задача 1

Найдите периметр параллелограмма со сторонами 3см и 4.5см.

Решение

Так как из условия задачи мы знаем длины сторон, то воспользуемся первой формулой. Подставим в нее значения длин сторон и произведем расчет:

P = 2 (a + b) = 2 (3 + 4.5) = 2 (7.5) = 15 : см

Ответ: 15см

Воспользуемся калькулятором для проверки полученного ответа.

Задача 2

Найдите периметр параллелограмма, если его стороны равны 5см и 80мм.

Решение

Для начала переведем 80мм в сантиметры и получим, что 80мм = 8см. В остальном задача аналогична предыдущей, так что повторим процесс ее решения:

P = 2 (a + b) = 2 (5 + 8) = 2 (13) = 26 : см

Ответ: 26см

Для проверки снова используем калькулятор . При этом мы можем не переводить 80мм в сантиметры, а просто задать длину стороны в миллиметрах.

Учебный курс Решаем задачи по геометрии 

Параллелограмм  — четырёхугольник, у которого противолежащие стороны попарно параллельны, то есть лежат на параллельных прямых.

Частными случаями параллелограмма являются прямоугольник, квадрат и ромб.

Как выглядит параллелограмм

Параллелограмм с проведенной высотой к одному из оснований и диагоналями  

На приведенном рисунке параллелограмм обозначен синими линиями.

Элементы параллелограмма, указанные на рисунке:
ABCD — параллелограмм, у которого противолежащие стороны попарно параллельны ( AB параллельна CD, а BC параллельна AD)
BH — высота параллелограмма, опущенная из точки B на основание AD (на рисунке обозначена красным цветом)
AC и BD — диагонали параллелограмма.

Свойства параллелограмма

  • Противоположные стороны параллелограмма равны
  • Противоположные углы параллелограмма равны
  • Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам. Точка пересечения диагоналей называется центром симметрии параллелограмма
  • Диагональ делит параллелограмм на два равных треугольника
  • Сумма углов, прилежащих к одной стороне, равна 180°. (см. формулу ниже)
  • Сумма всех углов равна 360°
  • Средние линии параллелограмма пересекаются в точке пересечения его диагоналей и делятся этой точкой пополам
  • Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его сторон (см. формулу ниже)

Параллелограмм, с обозначенными длинами сторон a и b, а также углами альфа и бета, а также диагоналями d1 и d2
Основные тождества параллелограмма. Сумма квадратов диагоналей равна удвоенной сумме квадратов смежных сторон. Сумма углов, прилежащих к одной стороне равна 180 градусам

Признаки параллелограмма

Четырёхугольник ABCD является параллелограммом, если выполняется одно из следующих условий:

  • Противоположные стороны попарно равны
  • Противоположные стороны попарно параллельны и равны
  • Противоположные углы попарно равны
  • Диагонали делятся в точке их пересечения пополам
  • Сумма соседних углов равна 180 градусов
  • Две стороны равны и параллельны

Как найти площадь параллелограмма

Параллелограмм, с отмеченными на чертеже основаниями a и b, диагоналями d1 и d2, а также высотой h, проведенной к основанию a
Формулы нахождения площади параллелограмма приведены ниже:

 Формулы нахождения площади параллелограмма через стороны, углы, высоту и диагонали и углы между ними
То есть:

  1. Площадь параллелограмма равна произведению длины одной из его сторон на высоту, опущенную на эту сторону
  2. Площадь параллелограмма равна произведению двух его смежных сторон на синус угла между ними. Как видно из чертежа, произведение b sin α равно высоте, опущенной на другую сторону, что в итоге дает нам предыдущую формулу
  3. Площадь параллелограмма равна произведению двух его смежных сторон на синус угла между ними
  4. Площадь параллелограмма равна половине произведения его диагоналей на синус угла между ними 
  5. Площадь параллелограмма также можно найти через формулу Герона, рассмотрев одну из диагоналей как треугольник и вычислив удвоенную площадь этого треугольника
  6. Для нахождения полупериметра треугольника из предыдущей формулы мы используем две стороны параллелограмма и его диагональ. Поскольку каждая диагональ разбивает его на два равных треугольника, то не имеет значения, какую из диагоналей мы выберем

Как найти стороны параллелограмма

Параллелограмм с отмеченными высотами h опущенными на соответствующую сторону, отмеченными углами между сторонами и углом между диагоналями, обозначенными диагоналями d1 и d2
Формулы для нахождения сторон параллелограмма через его диагонали и углы, а также через площадь и высоту
Стороны параллелограмма можно найти через:

  • Размеры диагоналей и угол между ними (формулы 1 и 2) 
  • Через длины диагоналей и одну из сторон можно найти вторую (формулы 3 и 4)
  • Через высоту, опущенную на сторону и угол между сторонами (формулы 5 и 6)
  • Через площадь и высоту, опущенную на заданную сторону, можно найти величину этой стороны (Формулы 7 и 8)

Как найти диагонали параллелограмма

Параллелограмм с отмеченными высотами h опущенными на соответствующую сторону, отмеченными углами между сторонами и углом между диагоналями, обозначенными диагоналями d1 и d2
Формулы нахождения диагоналей параллелограмма через известные значения длин его сторон, углов, площади или других сторон

  • Диагональ параллелограмма можно найти через длины его сторон и косинус угла между ними (Формулы 1-4)
  • Также диагональ может быть найдена через длины сторон и размер второй диагонали (Формулы 5-6)
  • Диагональ может быть найдена из площади, длины второй диагоналями и угла между ними (Формулы 7-8)

Как найти периметр параллелограмма

Параллелограмм с отмеченными высотами h опущенными на соответствующую сторону, отмеченными углами между сторонами и углом между диагоналями, обозначенными диагоналями d1 и d2
Формулы для нахождения периметра параллелограмма через его стороны, высоты, опущенными на эти стороны и угол между сторонами
Периметр параллелограмма может быть найден:

  • через его стороны (Формула 1)
  • через одну из сторон и длину двух диагоналей (Формулы 2 и 3)
  • через сторону, высоту и угол между сторонами (Формулы 4-6)

Задачи с решениями про параллелограмм смотрите в уроках ниже:


0
 

 Трапеция, описанная вокруг окружности |

Описание курса

| Параллелограмм. Задачи про площадь и стороны 

Обсудить на форуме
Записаться на курсы
Обратиться к консультанту
Пройти тест
Полный список курсов обучения
Бесплатные видеоуроки
Нужна информация!

Что такое периметр параллелограмма

Периметр параллелограмма — это сумма длин всех его сторон.

Параллелограмм — это четырехугольник, у которого противоположные стороны попарно равны и параллельны друг другу. Таким образом, его периметр — это удвоенная сумма двух его смежных ребер.

Свойства

  • противоположные стороны равны и параллельны;
  • противоположные углы попарно равны;
  • сумма соседних углов равна 180 градусов;
  • сумма всех углов равна 360 градусов;
  • диагонали фигуры делятся пополам в точке пересечения;
  • точка пересечения диагоналей — центр симметрии параллелограмма;

Свойства параллелограмма

Источник: egemaximum.ru
  • биссектриса образует равнобедренный треугольник.

Биссектриса

Источник: egemaximum.ru

Как найти периметр

Существует несколько основных способов, с помощью которых можно найти сумму длин всех сторон заданной фигуры. Все они зависят от изначально известных параметров.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

По сумме всех сторон

Периметр по сумме всех сторон

Источник: microexcel.ru

Так как периметр параллелограмма — это удвоенная сумма двух его смежных ребер, используем  формулу:

P=2(a+b),

где a и b — это две смежные стороны данного четырехугольника.

По стороне и двум диагоналям

По стороне и двум диагоналям

 

Если в задаче дана лишь одна сторона, но обе диагонали четырехугольника, мы можем найти вторую сторону. Для этого используем формулу:

(a=frac{sqrt{2d_1^2+2d_2^2-4b^2}}2,)

где (d_1) и (d_2) — это обе диагонали фигуры.

Получается, что расчет суммы длин всех сторон для параллелограмма будет выглядеть так:

(P=2(frac{sqrt{2d_1^2+2d_2^2-4b^2}}2+b).)

По стороне, высоте и синусу угла

По стороне, высоте и углу

Источник: ru.onlinemschool.com

В случае, если нам известны лишь одно ребро, высота и один из углов, можем узнать длину второго ребра таким образом:

(a=frac{h_b}{sinalpha})

где (h_b) — высота, проведенная к известной стороне, а (sinalpha) — известный нам угол.

Таким образом, формула для нахождения периметра параллелограмма будет выглядеть так:

(P=2(frac{h_b}{sinalpha}+b))

Примеры решения задач

Попробуем применить полученные знания на практике и рассмотрим несколько задач на периметр параллелограмма.

Задача 1

Дан параллелограмм со сторонами 5 см и 9 см. Вычислить его периметр.

Решение:

Воспользуемся формулой P=2(a+b), так как нам известны обе стороны фигуры. Подставляем значения: P=2(5+9)=28 см.

Ответ: 28 см.

Задача 2

Известно, что одна из сторон параллелограмма равна 4 см, а две его диагонали равны 6 см и 8 см. Найти периметр фигуры.

Решение:

Для расчета суммы длин всех сторон используем формулу:

(P=2(frac{sqrt{2d_1^2+2d_2^2-4b^2}}2+b))

Подставляем известные значения:

(P=2(frac{sqrt{2d_1^2+2d_2^2-4b^2}}2+b)=2(frac{sqrt{2times6^2+2times8^2-4times4^2}}2+4)=2(frac{sqrt{72+128-64}}2+4)=2(frac{2sqrt{34}}2+4)=2sqrt{34}+8) см.

Ответ:( 2sqrt{34}+8) см.

Задача 3

Сторона b параллелограмма равна 2 см, высота, проведенная к b 1 см, а угол α равен (fracpi6). Найти сумму длин всех сторон фигуры.

Решение:

Для расчета будем использовать уравнение:

(P=2(frac{h_b}{sinalpha}+b))

Подставим известные величины:

(P=2(frac1{sin{displaystylefracpi6}}+2)=2(frac1{displaystylefrac12}+2)=8;)см.

Ответ: 8 см.

Онлайн калькулятор длины сторон параллелограмма  напишет подробное решение с ответом и пояснениями.
Калькулятор может:

  1. Сторона параллелограмма через площадь и высоту.
  2. Сторона параллелограмма через высоту и угол.

Сторона параллелограмма через площадь и высоту.

Где S — площадь параллелограмма,h — его высота.

Сторона параллелограмма через высоту и угол.

Где h — его высота,α — острый угол.

параллелограмма

  • Параллелограмм- это четырехугольник у которого противоположные стороны параллельны. 
  • Противоположные стороны параллелограмма равны.
  • Диагональные углы параллелограмма равны.

Как найти длину стороны параллелограмма ?

Сторона параллелограмма может быть легко найдена с помощью нашего онлайн калькулятора. Так же Вы можете воспользоваться формулами ниже для самостоятельного расчета.

Сторона ромба через площадь ромба и высоту.

a =

Сторона ромба через диагонали.

a =

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как составить исковое заявление в суд на пенсионный фонд образцы
  • Как найти квартиру в микрорайоне
  • Как найти пациента для стоматолога
  • Как найти мои карты в приложении кошелек
  • Титульный лист как составить образцы

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии