Как найти длину большей стороны ромба

Укажите размеры:

Результат:

Решение:

Скопировать

Ссылка на страницу с результатом:

# Теория

Ромб — это параллелограмм у которой все стороны равны, а углы непрямые.

Диагональ ромба — это прямой отрезок соединяющий вершины противоположных углов ромба.

Свойства ромба:

  • Все стороны ромба равны;
  • Диагонали ромба пересикаются под прямым углом;
  • Диагонали ромба в точке пересечения делятся пополам;
  • Сумма углов, прилежащих к одной стороне ромба, равна 180°;
  • Противоположные углы ромба равны.

Как найти сторону ромба через диагонали

D
d
a
a
a
a

a = dfrac{ sqrt{D^2 + d^2} }{2}

  • a — сторона ромба
  • D — большая диагональ ромба
  • d — меньшая диагональ ромба

Похожие калькуляторы:

Войдите чтобы писать комментарии

Сторона ромба через площадь ромба и высоту.

Где S — площадь ромба,h — его высота.

Сторона ромба через диагонали.

Где d1 — большая диагональ,d2 — меньшая диагональ.

Сторона ромба через длинную диагональ и острый угол.

Где d1 — большая диагональ,α — острый угол.

Сторона ромба через короткую диагональ и тупой угол.

Где d2 — меньшая диагональ,β — тупой угол.

Сторона ромба через площадь и синус угла.

Где S — площадь ромба, α°,β° — его углы.

Сторона ромба через площадь и радиус вписанной окружности.

Где S — площадь ромба,r — радиус вписанной окружности.

Сторона ромба через периметр.

Где P — периметр ромба.

Ромб

  • Ромб  — это параллелограмм у которого все стороны равны. 
  • Противоположные стороны ромба параллельны.
  • Все ромбы различаются между собой только размером стороны и углов.

Как найти длину стороны ромба?

Сторона ромба может быть легко найдена с помощью нашего онлайн калькулятора. Так же Вы можете воспользоваться формулами ниже для самостоятельного расчета.

Сторона ромба через площадь ромба и высоту.

a =

S

h

Сторона ромба через диагонали.

a =

d12d22

2

Сторона ромба через длинную диагональ и острый угол.

a =

d1

2 + 2·cos(α°)

Сторона ромба через короткую диагональ и тупой угол.

a =

d2

2 — 2·cos(β°)

Сторона ромба через площадь и синус угла.

a =

S

sin(α°)

=

S

sin(β°)

Сторона ромба через площадь и радиус вписанной окружности.

a =

S

2r

Сторона ромба через периметр.

a =

P

4

Ромб. Формулы, признаки и свойства ромба

Определение.

Ромб — это параллелограмм, который имеет равные стороны. Если у ромба все углы прямые, тогда он называется квадратом.

Ромбы отличаются между собой размером стороны и размером углов.

Признаки ромба

Параллелограмм ABCD будет ромбом, если выполняется хотя бы одно из следующих условий:

1. Две его смежные стороны равны (отсюда следует, что все стороны равны):

АВ = ВС = СD = AD

2. Его диагонали пересекаются под прямым углом:

ACBD

3. Одна из диагоналей (биссектриса) делит содержащие её углы пополам:

∠BAC = ∠CAD или ∠BDA = ∠BDC

4. Если все высоты равны:

BN = DL = BM = DK

5. Если диагонали делят параллелограмм на четыре равных прямоугольных треугольника:

Δ ABO = Δ BCO = Δ CDO = Δ ADO

6. Если в параллелограмм можно вписать круг.

Основные свойства ромба

2. Диагонали перпендикулярны:

ACBD

3. Диагонали являются биссектрисами его углов:

∠BAC = ∠CAD, ∠ABD = ∠DBC, ∠BCA = ∠ACD, ∠ADB = ∠BDC

4. Сумма квадратов диагоналей равна квадрату стороны умноженному на четыре:

AC2 + BD2 = 4AB2

5. Точка пересечения диагоналей называется центром симметрии ромба.

6. В любой ромб можно вписать окружность.

7. Центром окружности вписанной в ромб будет точка пересечения его диагоналей.

Сторона ромба

Формулы определения длины стороны ромба:

1. Формула стороны ромба через площадь и высоту:

2. Формула стороны ромба через площадь и синус угла:

3. Формула стороны ромба через площадь и радиус вписанной окружности:

4. Формула стороны ромба через две диагонали:

5. Формула стороны ромба через диагональ и косинус острого угла (cos α) или косинус тупого угла (cos β):

6. Формула стороны ромба через большую диагональ и половинный угол:

7. Формула стороны ромба через малую диагональ и половинный угол:

8. Формула стороны ромба через периметр:

Диагонали ромба

Определение.

Диагональю ромба называется любой отрезок соединяющий две вершины противоположных углов ромба.

Ромб имеет две диагонали — длинную d1, и короткую — d2

Формулы определения длины диагонали ромба:

1. Формулы большой диагонали ромба через сторону и косинус острого угла (cosα) или косинус тупого угла (cosβ)

d1 = a2 + 2 · cosα

d1 = a2 — 2 · cosβ

2. Формулы малой диагонали ромба через сторону и косинус острого угла (cosα) или косинус тупого угла (cosβ)

d2 = a2 + 2 · cosβ

d2 = a2 — 2 · cosα

3. Формулы большой диагонали ромба через сторону и половинный угол:

d1 = 2a · cos(α/2)

d1 = 2a · sin(β/2)

4. Формулы малой диагонали ромба через сторону и половинный угол:

d2 = 2a · sin(α/2)

d2 = 2a · cos(β/2)

5. Формулы диагоналей ромба через сторону и другую диагональ:

d1 = √4a2d22

d2 = √4a2d12

6. Формулы диагоналей через тангенс острого tgα или тупого tgβ угла и другую диагональ:

d1 = d2 · tg(β/2)

d2 = d1 · tg(α/2)

7. Формулы диагоналей через площадь и другую диагональ:

8. Формулы диагоналей через синус половинного угла и радиус вписанной окружности:

Периметр ромба

Определение.

Периметром ромба называется сумма длин всех сторон ромба.

Длину стороны ромба можно найти за формулами указанными выше.

Формула определения длины периметра ромба:

Формула периметра ромба через сторону ромба:

P = 4a

Площадь ромба

Определение.

Площадью ромба называется пространство ограниченное сторонами ромба, т.е. в пределах периметра ромба.

Формулы определения площади ромба:

1. Формула площади ромба через сторону и высоту:

S = a · ha

2. Формула площади ромба через сторону и синус любого угла:

S = a2 · sinα

3. Формула площади ромба через сторону и радиус:

S = 2a · r

4. Формула площади ромба через две диагонали:

5. Формула площади ромба через синус угла и радиус вписанной окружности:

6. Формулы площади через большую диагональ и тангенс острого угла (tgα) или малую диагональ и тангенс тупого угла (tgβ):

Окружность вписанная в ромб

Определение.

Кругом вписанным в ромб называется круг, который примыкает ко всем сторонам ромба и имеет центр на пересечении диагоналей ромба.

Формулы определения радиуса круга вписанного в ромб:

1. Формула радиуса круга вписанного в ромб через высоту ромба:

2. Формула радиуса круга вписанного в ромб через площадь и сторону ромба:

3. Формула радиуса круга вписанного в ромб через площадь и синус угла:

4. Формулы радиуса круга вписанного в ромб через сторону и синус любого угла:

5. Формулы радиуса круга вписанного в ромб через диагональ и синус угла:

6. Формула радиуса круга вписанного в ромб через две диагонали:

7. Формула радиуса круга вписанного в ромб через две диагонали и сторону:

Стороны ромба

Стороны фигур

Ромб является четырехугольником, представляет собой частный случай параллелограмма. У этого четырехугольника все стороны равны, противоположные — параллельны. У ромба 2 диагонали — большая и меньшая, они пересекаются друг с другом под прямым углом и делят углы пополам.
Если известны длины обеих диагоналей ромба, длину стороны можно рассчитать по формуле:
Стороны ромба
где где d1 — большая диагональ, d2 — меньшая диагональ, a — сторона ромба. Т.е. сторона ромба равна половине корня из суммы квадратов его диагоналей.

Расчет длины сторон ромба через диагонали

СДАМ ГИА: РЕШУ ОГЭ

Образовательный портал для подготовки к экзаменам

Математика

математика

Математика

Информатика

≡ Русский язык

Письменный экзамен

Устное собеседование

Английский язык

Немецкий язык

Французский язык

Испанский язык

Физика

Химия

Биология

География

Обществознание

Литература

История

сайты — меню — вход — новости

СДАМ ГИАРЕШУ ЕГЭРЕШУ ОГЭРЕШУ ВПРРЕШУ ЦТ

Об экзамене

Каталог заданий

Варианты

Ученику

Учителю

Школа

Справочник

Сказать спасибо

Вопрос — ответ

Чужой компьютер

Зарегистрироваться

Восстановить пароль

Войти через ВКонтакте

НАШИ БОТЫ

На сайте что-то не так? Отключите адблок

Новости

24 мая

Обновлённая панель инструментов

1 мая

Беседы для подготовки к ОГЭ по всем предметам

1 мая

Новый сервис: можно исправить ошибки!

29 апреля

Разместили актуальные шкалы ОГЭ  — 2023

24 апреля

Учителю: обновленный классный журнал

21 апреля

Разместили варианты из заданий открытого банка ФИПИ ОГЭ по русскому языку

7 апреля

Новый сервис: ссылка, чтобы записаться к учителю

6 марта

Изменения ВПР 2023

31 октября

Сертификаты для учителей о работе на Решу ЕГЭ, ОГЭ, ВПР

ЧУЖОЕ НЕ БРАТЬ!

Зайчиков и Поваляев стащили наши тесты

Наша группа

Задания

Версия для печати и копирования в MS Word

Тип 18 № 348586

i

На клетчатой бумаге с размером клетки 1х1 изображён ромб. Найдите длину его большей диагонали.

Спрятать решение

Решение.

Из рисунка видно, что длина большей диагонали ромба  — 6.

Ответ: 6.

Аналоги к заданию № 348446: 348586 349027 349478 … Все

Раздел кодификатора ФИПИ: 5.1 Пла­ни­мет­рия. На­хож­де­ние гео­мет­ри­че­ских ве­ли­чин.

Спрятать решение

·

Прототип задания

·

Помощь

О проекте · Редакция · Правовая информация · О рекламе

© Гущин Д. Д., 2011—2023

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти размах в выборке
  • Как можно найти стороны трапеции
  • Как составить образец правового акта
  • Исправляем raw формат hdd дисков как исправить
  • Как исправить ошибку в требовании накладной

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии