Все формулы биссектрисы в треугольнике
L — биссектриса, отрезок |OB|, который делит угол ABC пополам
a, b — стороны треугольника
с — сторона на которую опущена биссектриса
d, e — отрезки полученные делением биссектрисы
γ — угол ABC , разделенный биссектрисой пополам
p — полупериметр, p =(a+b+ c )/2
Длина биссектрисы через две стороны и угол, ( L ):
Длина биссектрисы через полупериметр и стороны, ( L ):
Длина биссектрисы через три стороны, ( L ):
Длина биссектрисы через стороны и отрезки d , e , ( L ):
Точка пересечения всех трех биссектрис треугольника ABC, совпадает с центром О, вписанной окружности.
Длина биссектрисы треугольника
Длина биссектрисы треугольника может быть найдена разными способами, в зависимости от исходных данных.
I. Через длины двух сторон и отрезки, на которые биссектриса делит третью сторону.
Квадрат биссектрисы треугольника равен разности между произведением двух его сторон и произведением отрезков, на которые эта биссектриса делит третью сторону.
Соответственно, длина биссектрисы равна квадратному корню из разности между произведением двух его сторон и произведением отрезков, на которые эта биссектриса делит третью сторону.
Дано:
СF — биссектриса ∠ABC
Доказательство:
Опишем около треугольника ABC окружность и продлим биссектрису CF до пересечения с окружностью в точке D. Соединим точки A и D отрезком.
Рассмотрим треугольники BCF и DCA.
∠BCF=∠DCA (по условию);
Значит, треугольники BFC и DCA подобны (по двум углам).
Из подобия треугольников следует пропорциональность соответствующих сторон:
Что и требовалось доказать.
II. Через три стороны треугольника
Длина биссектрисы треугольника выражается через длины его сторон a, b и c по формуле
По свойству биссектрисы треугольника:
Согласно утверждению 1,
Что и требовалось доказать.
III Через две стороны треугольника и угол между ними.
Длина биссектрисы треугольника через две стороны, образующие угол, из вершины которого исходит биссектриса, и угол между этими сторонами выражается по формуле
Вычисление биссектрисы треугольника с известными свойствами
Математика, как известно, царица наук. Неслучайно это выражение так любят учителя, особенно старой формации. Математика открывается исключительно тем, кто умеет, во-первых, логически мыслить, а во-вторых, тем, кто любит всегда добиваться ответа, оперируя изначальными условиями, не жульничая, а основывая решения на анализе, построение опять-таки логических связей. Эти качества, вынесенные со школьной скамьи, способны модулироваться и к взрослой серьезной жизни как в рабочих, так и в иных сложных моментах.
- Свойства
- Свойства в равнобедренных треугольниках
- Определение биссектрисы треугольника
- Определение длины
- Нахождение величины угла
Сегодня многие сталкиваются с проблемами при решении математических задач еще в начальной школе.
Однако даже те школьники, которые успешно осваивают первичную математическую программу, переходя на новый школьный и жизненный этап, где алгебра отделяется от геометрии, бывает, сталкиваются с серьезными затруднениями. Между тем, один раз выучив и, главное, поняв, как найти биссектрису треугольника, ученик навсегда запомнит эту формулу. Рассмотрим треугольник ABC с тремя проведенными биссектрисами. Как видно из рисунка, все они сходятся в одной точке.
Во-первых, определим, что биссектриса треугольника, и это одно из важнейших ее свойств, делит угол, из которого такой отрезок исходит, пополам. То есть в приведенном примере угол BAD равен углу DAC.
Это интересно: Как найти периметр треугольника.
Свойства
- Биссектриса треугольника разделяет сторону, к которой она проведена на два отрезка, обладающие свойствами пропорциональности к сторонам, которые прилегают к каждому отрезку, соответственно. Таким образом, BD/CD = AB/AC.
- Каждый треугольник способен обладать тремя данными отрезками. Другие значимые свойства касаются как частных, так и общих случаев конкретных рассматриваемых треугольников.
Свойства в равнобедренных треугольниках
Первое свойство биссектрис равнобедренного треугольника формулируется в том, что равенство двух биссектрис свидетельствует о равнобедренности этого треугольника. Третья же его биссектриса медиана, а также высота его угла.
- Разумеется, что будет верным и обратное свойство. То есть в равнобедренном треугольнике неизменно наблюдается равенство двух его биссектрис.
- Из сказанного ранее вытекает вывод о том, что биссектриса, исходящая из противоположного основанию, служит также медианой и высотой.
- Все биссектрисы равностороннего треугольника обладают равенством.
Определение биссектрисы треугольника
Допустим, что в рассматриваемом треугольнике ABC сторона AB = 5 cm, AC = 4 cm. Отрезок CD = 3 cm.
Определение длины
Определить длину можно по следующей формуле. AD = квадратный корень из разности произведения сторон и произведения пропорциональный отрезков.
Найдем длину стороны BC.
- Из свойств известно, что BD/CD = AB/AC.
- Значит, BD/CD = 5/4 = 1,25.
- BD/3 = 5/4.
- Значит, BD = 3,75.
- ABxAC = 54=20.
- CDxBD = 33,75 = 11,25.
Так, для того чтобы рассчитать длину, требуется вычесть из 20 11,25 и извлечь квадратный корень из получившегося 8,75. Результат с учетом тысячных долей получится 2,958.
Данный пример призван также эксплицитно указать на ситуацию, когда значения длины биссектрисы, как и все другие значения в математике, будут выражены не в натуральных числах, однако бояться этого не стоит.
Это интересно: в чем выражается эволюционный характер развития общества?
Нахождение величины угла
Для нахождения углов, образующихся биссектрисой, важно, прежде всего, помнить о сумме углов, неизменно составляющей 180 градусов. Предположим, что угол ABC равен 70 градусам, а угол BCA 50 градусам. Значит, путем простейших вычислений получим, что CAB = 180 (70+50) = 60 градусов.
Если использовать главное свойство, в соответствии с которым угол, из которого она исходит, делится пополам, получим равные значения углов BAD и CAD, каждый из которых будет 60/2 = 30 градусов.
Если требуется дополнительный наглядный пример, рассмотрим ситуацию, когда известен лишь угол BAD равный 28 градусам, а также угол ABC равный 70 градусам. Используя свойство биссектрисы, сразу найдем угол CAB путем умножения значения угла BAD на два. CAB = 282 =56. Значит, BAC = 180 (70+56) или 180 (70+282)= 180 126 = 54 градуса.
Специально не рассматривалась ситуация, когда данный отрезок выступает в качестве медианы или высоты, оставив для этого другие специализированные статьи.
Таким образом, мы рассмотрели такое понятие, как биссектриса треугольника, формула для нахождения длины и углов которой заложена и реализована в приведенных примерах, имеющих целью наглядно показать, каким образом можно использовать для решения тех или иных задач в геометрии. Также к данной теме относятся такие понятия, как медиана и высота. Если данный вопрос прояснился, следует обращаться к дальнейшему изучению различных других свойств треугольника, без которых немыслимо дальнейшее изучение геометрии.
Биссектриса треугольника
http://tvercult.ru/nauka/vyichislenie-bissektrisyi-treugolnika-s-izvestnyimi-svoystvami
Длина биссектрисы треугольника может быть найдена разными способами, в зависимости от исходных данных.
I. Через длины двух сторон и отрезки, на которые биссектриса делит третью сторону.
Утверждение 1
Квадрат биссектрисы треугольника равен разности между произведением двух его сторон и произведением отрезков, на которые эта биссектриса делит третью сторону.
Соответственно, длина биссектрисы равна квадратному корню из разности между произведением двух его сторон и произведением отрезков, на которые эта биссектриса делит третью сторону.
Дано:
ΔABC,
СF — биссектриса ∠ABC
Доказать:
Доказательство:
Опишем около треугольника ABC окружность и продлим биссектрису CF до пересечения с окружностью в точке D. Соединим точки A и D отрезком.
Рассмотрим треугольники BCF и DCA.
∠BCF=∠DCA (по условию);
∠CBF=∠CDA (как вписанные углы, опирающиеся на одну дугу AC).
Значит, треугольники BFC и DCA подобны (по двум углам).
Из подобия треугольников следует пропорциональность соответствующих сторон:
По свойству пересекающихся хорд
Отсюда
Что и требовалось доказать.
II. Через три стороны треугольника
Утверждение 2
Длина биссектрисы треугольника выражается через длины его сторон a, b и c по формуле
Доказательство:
По свойству биссектрисы треугольника:
a1+b1=c, b1=c-a1, поэтому
Согласно утверждению 1,
откуда
Что и требовалось доказать.
Аналогично,
III Через две стороны треугольника и угол между ними.
Утверждение 3
Длина биссектрисы треугольника через две стороны, образующие угол, из вершины которого исходит биссектриса, и угол между этими сторонами выражается по формуле
Доказательство:
Найдем площади треугольников BCF, ACF и ABC.
Так как
то
Что и требовалось доказать.
L— биссектриса, отрезок |OB|, который делит угол ABC пополам
a, b — стороны треугольника
с — сторона на которую опущена биссектриса
d, e — отрезки полученные делением биссектрисы
γ — угол ABC , разделенный биссектрисой пополам
p — полупериметр, p=(a+b+c)/2
Длина биссектрисы через две стороны и угол, (L):
Длина биссектрисы через полупериметр и стороны, (L):
Длина биссектрисы через три стороны, (L):
Длина биссектрисы через стороны и отрезки d, e, (L):
Точка пересечения всех трех биссектрис треугольника ABC, совпадает с центром О, вписанной окружности.
- Подробности
-
Опубликовано: 06 октября 2011
-
Обновлено: 13 августа 2021
Биссектриса, как известно, бегает по углам и грызет угол пополам.
Если есть транспортир, найти биссектрису треугольника достаточно просто: сначала определяем величину угла треугольника, затем делим эту величину пополам, и проводим прямую, служащую стороной найденного угла.
Если есть только циркуль, а нужно найти биссектрису треугольника, то нужно провести из вершины угла окружность, пересекающую стороны угла, затем провести из точек пересечения еще две окружности. Прямая, проходящая через две точки пересечения этих окружностей, и будет биссектрисой треугольника.
БИССЕКТРИСА УГЛА
Слово «биссектриса» с французского переводится как «надвое рассекающая». Биссектриса угла – это «равноделящая» угол, т.е. делящая угол пополам.
Биссектриса угла – луч, проведенный из вершины угла между его сторонами и делящий угол пополам.
Биссектрису угла можно построить по градусной мере угла с помощью транспортира. Для этого градусную меру заданного угла делят пополам и на одной из сторон от вершины откладывают градусную меру половинного угла. Вторая сторона такого угла будет биссектрисой заданного угла.
Если заданный угол имеет градусную меру 60°, то два построенных с помощью биссектрисы угла – по 30°, так как 60°:2=30°.
Развернутый угол разбивается биссектрисой на два прямых угла (180°:2=90°), любой тупой угол разбивается биссектрисой на два острых угла.
Построение биссектрисы угла с помощью циркуля и линейки
Чтобы построить биссектрису угла без транспортира, используя только циркуль и линейку, нужно выполнить следующие действия (см. рисунок выше).
- Из вершины угла, любым радиусом, необходимо провести дугу окружности, чтобы она пересекла стороны угла
- Из каждой точки (их две) пересечения дуги и стороны угла, снова провести души окружности (другим радиусом)
- Через любую из точек пересечения дуг дополнительно построенных окружностей, провести луч из вершины угла, который и будет биссектрисой этого угла
Биссектриса углов треугольника
Биссектрисой угла треугольника называется отрезок биссектрисы угла, проведенный от вершины угла до её пересечения с противолежащей стороной.
У треугольника существуют три биссектрисы, проведенные из каждой его вершины.
У биссектрисы угла треугольника существует масса особенных свойств, которые описаны в отдельной статье «Биссектриса углов треугольника».
В любом треугольнике ABC, кроме внутренней или просто биссектри́сы, можно провести и внешние биссектрисы, то есть биссектрисы углов, смежных с внутренними углами треугольника. При этом внутренняя и внешняя биссектриса одного и того же угла перпендикулярны. Подробнее об этом см. в статье «Биссектриса внешнего угла треугольника»
0
Вертикальные и смежные углы |
Описание курса
| Биссектриса углов треугольника