Как найти диагональ прямоугольника через ребра

Параллелепипед — это частный случай призмы, в основании которой лежит прямоугольник с длиной a и шириной b. Двигаясь по вертикальной или наклонной оси на определенную высоту c, данный прямоугольник создает объемное тело, именуемое параллелепипедом.

Параллелепипед по определению может быть наклонным или прямым, то есть угол между высотой и прямоугольником в основании варьируется от 0 до 90 градусов. Прямой параллелепипед имеет в качестве граней исключительно прямоугольники, и даже иногда квадрат (в основании), поэтому решение задач с его участием значительно облегчено. В случае с наклонным параллелепипедом в формулах необходимо учитывать, что боковой гранью является параллелограмм, строение которого зависит также от угла его наклона.

Помимо трех вышеуказанных параметров параллелепипеда — длины, ширины высоты, являющихся его ребрами, в данном теле можно также провести еще несколько отрезков, соединяющих его вершины. Как и в геометрических фигурах на плоскости, линии, проходящие внутри основного каркаса через вершины, называются диагоналями. Диагонали боковых граней прямоугольного параллелепипеда идентичны диагоналям прямоугольников, которыми представлены грани — их, соответственно, можно вычислить, используя подходящий онлайн калькулятор для прямоугольников.

Другое дело — диагональ, проходящая не по внешней поверхности прямоугольного параллелепипеда, а сквозь него, соединяя противоположные вершины верхнего и нижнего оснований. При этом, какая именно пара противоположных вершин соединена, не имеет значения для расчетов, так как если рассмотреть сечения, можно увидеть, что обе диагонали параллелепипеда идентичны и найти их можно одним и тем же способом.

Итак, для того чтобы вывести формулу диагонали через длину, ширину и высоту, необходимо заключить диагональ в плоскую геометрическую фигуру, свойства которой можно будет использовать. Для этого в любом основании — верхнем или нижнем, проводится диагональ, которая образует с диагональю параллелепипеда и боковым ребром (высотой) прямоугольный треугольник. Применив одну лишь теорему Пифагора, можно найти диагональ основания через ширину и длину,а затем диагональ прямоугольного параллелепипеда, добавив в расчеты высоту.

Используя последнюю и предпоследнюю формулу, можно также успешно найти длину, ширину или высоту прямоугольного параллелепипеда, имея в заданных условиях три параметра из четырех, включая диагональ параллелепипеда.
Например:

×

Пожалуйста напишите с чем связна такая низкая оценка:

×

Для установки калькулятора на iPhone — просто добавьте страницу
«На главный экран»

Для установки калькулятора на Android — просто добавьте страницу
«На главный экран»

Смотрите также


Загрузить PDF


Загрузить PDF

Диагональ — это отрезок, который соединяет две противолежащие вершины прямоугольника.[1]
В прямоугольнике две равные диагонали.[2]
Если известны стороны прямоугольника, диагональ можно найти по теореме Пифагора, потому что диагональ делит прямоугольник на два прямоугольных треугольника. Если стороны не даны, но известны другие величины, например, площадь и периметр или отношение сторон, можно найти стороны прямоугольника, а затем по теореме Пифагора вычислить диагональ.

  1. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 1

    1

  2. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 2

    2

  3. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 3

    3

    Длину и ширину возведите в квадрат, а затем сложите полученные результаты. Помните, что при возведении числа в квадрат оно умножается на себя.

  4. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 4

    4

    Извлеките квадратный корень из обеих сторон уравнения. Воспользуйтесь калькулятором, чтобы быстро извлечь квадратный корень. Также можно воспользоваться онлайн-калькулятором.[5]
    Вы найдете c, то есть гипотенузу треугольника, а значит и диагональ прямоугольника.

    Реклама

  1. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 5

    1

    Запишите формулу для вычисления площади прямоугольника. Формула: S=lw, где S — площадь прямоугольника, l — длина прямоугольника, w — ширина прямоугольника.[6]
    (На рисунке вместо S использовано обозначение А.)

  2. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 6

    2

    В формулу подставьте значение площади прямоугольника. Это значение подставляется вместо S.

    • Например, если площадь прямоугольника равна 35 квадратных сантиметров, формула запишется так: 35=lw.
  3. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 7

    3

    Перепишите формулу так, чтобы обособить w. Для этого разделите обе стороны уравнения на l. Затем полученное выражение нужно подставить в формулу для вычисления периметра.

  4. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 8

    4

    Запишите формулу для вычисления периметра прямоугольника. Формула: P=2(w+l), где l — длина прямоугольника, w — ширина прямоугольника.[7]

  5. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 9

    5

    В формулу подставьте значение периметра прямоугольника. Это значение подставляется вместо P.

    • Например, если периметр прямоугольника равен 24 сантиметра, формула запишется так: 24=2(w+l).
  6. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 10

    6

    Разделите обе стороны уравнения на 2. Вы получите сумму сторон прямоугольника, а именно w+l.

  7. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 11

    7

    В формулу подставьте выражение для вычисления w. Это выражение, полученное при обособлении w.

  8. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 12

    8

    Избавьтесь от дроби. Для этого обе части уравнения умножьте на l.

  9. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 13

    9

    Приравняйте уравнение к 0. Для этого из обеих сторон уравнения вычтите член с переменной первого порядка.

  10. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 14

    10

    Упорядочьте члены уравнения. Первым членом будет член с переменной второго порядка, затем член с переменной первого порядка, а затем свободный член. При этом не забудьте про знаки («плюс» и «минус»), которые стоят перед членами. Обратите внимание, что уравнение запишется в виде квадратного уравнения.

  11. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 15

    11

    Разложите квадратное уравнение на множители. Чтобы получить подробные инструкции, прочитайте эту статью.

  12. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 16

    12

    Найдите l. Для этого приравняйте каждый множитель к нулю и вычислите l. Вы получите два значения (это корни уравнения), которые в случае прямоугольника являются его длиной и шириной.

  13. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 17

    13

  14. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 18

    14

  15. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 19

    15

    Длину и ширину возведите в квадрат, а затем сложите полученные результаты. Помните, что при возведении числа в квадрат оно умножается на себя.

  16. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 20

    16

    Извлеките квадратный корень из обеих сторон уравнения. Воспользуйтесь калькулятором, чтобы быстро извлечь квадратный корень. Также можно воспользоваться онлайн-калькулятором.[10]
    Вы найдете c, то есть гипотенузу треугольника, а значит, и диагональ прямоугольника.

    Реклама

  1. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 21

    1

  2. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 22

    2

  3. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 23

    3

    В формулу подставьте значение площади прямоугольника. Это значение подставляется вместо S.

    • Например, если площадь прямоугольника равна 35 квадратных сантиметров, формула примет вид: 35=lw.
  4. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 24

    4

    В формулу подставьте выражение, характеризующее отношение сторон. В случае прямоугольника можно подставить выражение для вычисления l или w.

  5. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 25

    5

    Запишите квадратное уравнение. Для этого раскройте скобки и приравняйте уравнение к нулю.

  6. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 26

    6

    Разложите квадратное уравнение на множители. Чтобы получить подробные инструкции, прочитайте эту статью.

  7. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 27

    7

    Найдите w. Для этого приравняйте каждый множитель к нулю и вычислите w. Вы получите два значения (так называемые корни уравнения).

  8. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 28

    8

    Подставьте найденное значение ширины (или длины) в уравнение, характеризующее отношение сторон. Так можно найти другую сторону прямоугольника.

  9. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 29

    9

  10. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 30

    10

  11. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 31

    11

    Длину и ширину возведите в квадрат, а затем сложите полученные результаты. Помните, что при возведении числа в квадрат оно умножается на себя.

  12. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 32

    12

    Извлеките квадратный корень из обеих сторон уравнения. Воспользуйтесь калькулятором, чтобы быстро извлечь квадратный корень. Также можно воспользоваться онлайн-калькулятором.[16]
    Вы найдете c, то есть гипотенузу треугольника, а значит и диагональ прямоугольника.

    Реклама

Об этой статье

Эту страницу просматривали 557 104 раза.

Была ли эта статья полезной?

Диагональ прямоугольного параллелепипеда

Диагональ

Параллелепипедом является призма, основанием которой служит многогранник, чаще всего — параллелограмм. У него имеются грани, вершины, ребра. Параллелепипеды могут быть прямыми и наклонными. Гранями прямоугольного параллелепипеда являются прямоугольники. Две грани, не имеющие общего ребра, называются противоположными, а грани с общим ребром — смежными. Противоположные грани попарно параллельны, имеют равные измерения. Вершины параллелепипеда, не относящиеся к одной грани, называются противоположными. Отрезок, соединяющий противоположные вершины, называется диагональю параллелепипеда. Четыре его диагонали в точке пересечения делятся пополам. Три ребра прямоугольного параллелепипеда с общей вершиной являются его измерениями. Все диагонали прямоугольного параллелепипеда равны. Квадрат его диагонали равен сумме квадратов трех его измерений:

D2 = a2 + b2 + с2

где D — диагональ, a, b, c — длины трех измерений прямоугольного параллелепипеда (ребер).

Диагональ прямоугольного параллелепипеда равна корню квадратному из суммы квадратов трех его измерений.

Диагональ прямоугольного параллелепипеда

где d — диагональ прямоугольного параллелепипеда, a, b, c — длины трех его измерений (ребер).

Если известна диагональ и длина двух измерений (ребер) прямоугольного параллелепипеда, можно найти длину третьего измерения (ребра) по формуле:

a = √D2 — b2 + с2

Зная длину ребер прямоугольного параллелепипеда, можно вычислить все диагонали его боковых граней, воспользовавшись теоремой Пифагора. Диагональ боковой стороны (грани) прямоугольного параллелепипеда делит ее на два одинаковых прямоугольных треугольника, у которых гипотенузой будет искомая нами диагональ, а катетами — ребра параллелепипеда. Тогда, диагональ, как гипотенуза прямоугольного треугольника, будет равна корню квадратному из суммы квадратов катетов (двух ребер параллелепипеда):

d2 = a2 + b2

d = √a2 + b2

где d — диагональ грани, а, b — длина и ширина (величина двух смежных ребер).

Рассчитать диагональ прямоугольного параллелепипеда зная длину ребер

Как найти длину диагонали прямоугольного параллелепипеда ? По какой формуле найти диагональ параллелепипеда ?

текст при наведении

Диагональ прямоугольного параллелепипеда — это отрезок, соединяющий его противоположные вершины . Итак, у нас есть прямоугольный параллелепипед с диагональю d и со сторонами a, b, c . Одно из свойств параллелепипеда гласит, что квадрат длины диагонали d равен сумме квадратов трёх его измерений a, b, c. Отсюда вывод, что длина диагонали может быть легко рассчитана по следующей формуле :

текст при наведении

Также :

Как найти высоту параллелепипеда?

модератор выбрал этот ответ лучшим

Nonse­nse
[63.5K]

7 лет назад 

Прямоугольным параллелепипедом (ПП) является ни что иное, как призма, основанием у которой прямоугольник. У ПП все диагонали равны, значит любая его диагональ рассчитывается по формуле:

где

  • а, в — стороны основания ПП;

  • с — его высота.

Можно дать и другое определение, рассматривая декартову прямоугольную систему координат:

Диагональ ПП это радиус-вектор любой точки пространства, заданной координатами x, y и z в декартовой системе координат. Этот радиус вектор к точке проводится из начала координат. А координатами точки будут проекции радиус-вектора (диагонали ПП) на координатные оси. Проекции совпадают с вершинами данного параллелепипеда.

Zolot­ynka
[551K]

8 лет назад 

Если у прямоугольного параллелепипеда известны длина, высота и ширина (a,b,c) то формула для расчета диагонали будет выглядеть таким образом:

Обычно учителя не предлагают своим ученикам «голую» формулу, а прилагают усилия, чтобы те могли самостоятельно ее вывести, задавая наводящие вопросы:

  • что нужно узнать, какими данными мы располагаем?
  • какие свойства имеет прямоугольный параллелепипед?
  • применима ли здесь Теорема Пифагора? Как?
  • достаточное ли данных для применения теоремы Пифагора, или нужны еще какие-то расчеты?

Обычно после ответа на поставленные вопросы, ученики без труда самостоятельно выводят данную формулу.

Лолоч­ка611
[15.4K]

8 лет назад 

Прямоугольный параллелепипед это один из так званных многогранников, который состоит из 6 граней, каждая из которых является прямоугольником. А диагональ — это отрезок, который соединяет противоположные вершины параллелограмма. Если длину, ширину и высоту прямоугольного параллелепипеда принять за a, b, c соответственно, то формула его диагонали ( D ) будет выглядеть следующим образом: D^2=a^2+b^2+c^2.

дольф­аника
[379K]

8 лет назад 

Нашлась в интернете неплохая схема-таблица с полным перечислением всего, что есть в параллепипеде. Есть формула, чтобы найти диагональ, которая обозначается d.

Есть изображение грани, вершины и других важных для параллепипеде вещей.

Багир­а999
[4.8K]

8 лет назад 

Прямоугольный параллелепипед — это разновидность многогранника, состоящая из 6 граней, в основании которого — прямоугольник. Диагональ — это отрезок, который соединяет противоположные вершины параллелограмма.

Формула нахождения длины диагонали — квадрат диагонали равен сумме квадратов трех измерений параллелограмма.

Koluc­hiy
[12.3K]

8 лет назад 

Диагонали прямоугольного параллелепипеда равны. Также как и диагонали его противоположных граней. Длину диагонали можно вычислить, зная длину рёбер параллелограмма, исходящих из одной вершины. Эта длина равна корню квадратному из суммы квадратов длин его рёбер.

ДРЕСС­ИРОВЩ­ИК
[56.5K]

9 лет назад 

Квадрат диагонали, квадратного параллилепипеда (смотрите свойства квадратного параллепипеда) равна сумме квадратов трёх его разных сторон (ширине, высоте, толщине), а соответственно диагонали квадратного параллепипеда равна корню из этой суммы.

haler­on
[8.8K]

8 лет назад 

Насколько мне известно еще со школьной программы, класс 9 если не ошибаюсь, и если не изменяет память , то диагональ прямоугольного параллелепипеда ровна корню квадратному суммы квадратов его всех трех сторон.

[поль­зоват­ель забло­киров­ан]
[-93]

8 лет назад 

квадрат диагонали равен, сумме квадратов ширины , высоты и длинны , исходя с этой формулы получаем ответ , диагональ равно корню квадратному с суммы его трех разных измерений , буквами они позначаюnсz abc

Космо­с111
[6.8K]

7 лет назад 

Вспоминаю школьную программу по геометрии, можно сказать так: диагональ параллелепипеда равняется корню квадратному полученному из суммы его всех трех сторон (обозначаются они маленькими буквами a, b, c).

Никол­ай Л
[10K]

10 лет назад 

Длина диагонали прямоугольного параллепипеда равна корню квадратному из суммы квадратов его сторон.

Знаете ответ?

Геометрический калькулятор для прямоугольного параллелепипеда можно запустить также, зная два из трех ребер тела и его диагональ. Поскольку диагональ параллелепипеда равна по теореме Пифагора квадратному корню из суммы квадратов всех трех его ребер, то из этого выражения алгебраически можно вывести формулу для третьего неизвестного ребра. (рис.22.4)
d_4=√(a^2+b^2+c^2 )
b=√(a^2+c^2-〖d_4〗^2 )

Имея возможность вычислить неизвестное ребро параллелепипеда, можно следом найти все остальные диагонали его боковых граней. (рис.22.1, 22.2, 22.3)
d_1=√(a^2+c^2 )
d_2=√(a^2+b^2 )=√(a^2+a^2+c^2-〖d_4〗^2 )=√(2a^2+c^2-〖d_4〗^2 )
d_3=√(b^2+c^2 )=√(a^2+c^2-〖d_4〗^2+c^2 )=√(a^2+2c^2-〖d_4〗^2 )

Чтобы найти угол α между диагональю прямоугольного параллелепипеда и диагональю его основания, необходимо воспользоваться отношением синуса — известного бокового ребра а к диагонали параллелепипеда. (рис.22.5)
sin⁡α=a/d_4

Периметр прямоугольного параллелепипеда равен учетверенной сумме ребер, составляющих параллелепипед. Для неизвестного ребра в формулу подставляется полученное из теоремы Пифагора выражение через диагональ параллелепипеда.
P=4(a+b+c)

Площадь полной поверхности прямоугольного параллелепипеда через диагональ также можно вычислить посредством замены неизвестной переменной на соответствующее выражение. Изначально площадь параллелепипеда равна удвоенной сумме попарных произведений его ребер.
S=2(ab+bc+ac)=2((a+c) √(a^2+c^2-〖d_4〗^2 )+ac)

Чтобы найти объем прямоугольного параллелепипеда, зная диагональ, нужно умножить два известных ребра параллелепипеда на квадратный корень из разности квадрата диагонали от суммы квадратов этих ребер.
V=abc=ac√(a^2+c^2-〖d_4〗^2 )

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Холодец не застыл что делать как исправить с желатином пропорции
  • Как найти вредоносные программы на виндовс 10
  • Как найти свой телефон через имейл
  • Error please select a valid python interpreter как исправить pycharm
  • Как найти блок парктроников

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии