Как найти центр тяжести треугольника пример


Загрузить PDF


Загрузить PDF

Центр тяжести треугольника (центроид) – это точка центра масс. Представьте себе треугольную линейку, положенную на кончик карандаша. Линейка будет балансировать, если кончик карандаша будет находиться в ее центре тяжести. Расположение центроида, которое легко находится с помощью геометрии, необходимо знать при работе над дизайнерским или инженерным проектом.

  1. Изображение с названием Calculate the Center of Gravity of a Triangle Step 1

    1

    Найдите середину одной стороны треугольника. Для этого измерьте сторону и разделите ее длину пополам. Середину отметьте точкой A.

    • Например, если сторона треугольника равна 10 см, то середина находится на расстоянии 5 см (10/2=5) от вершины треугольника.
  2. Изображение с названием Calculate the Center of Gravity of a Triangle Step 2

    2

    Найдите середину второй стороны треугольника. Для этого измерьте сторону и разделите ее длину пополам. Середину отметьте точкой В.

    • Например, если вторая сторона треугольника равна 12 см, то середина находится на расстоянии 6 см (12/2=6) от вершины треугольника.
  3. Изображение с названием Calculate the Center of Gravity of a Triangle Step 3

    3

    Соедините середины сторон с противолежащими вершинами. Вы получите две медианы.[1]

    • Вершина – это точка, в которой сходятся две стороны треугольника.
  4. Изображение с названием Calculate the Center of Gravity of a Triangle Step 4

    4

    Отметьте точку пересечения двух медиан. Эта точка является центром тяжести треугольника.[2]
    [3]

    • Центр тяжести находится на пересечении трех медиан, но так как медианы всегда пересекаются в одной точке, можно работать только с двумя медианами.

    Реклама

  1. Изображение с названием Calculate the Center of Gravity of a Triangle Step 5

    1

    Проведите медиану. Медиана – это отрезок, который соединяет вершину треугольника с серединой противолежащей стороны. Можно работать с любой медианой.

  2. Изображение с названием Calculate the Center of Gravity of a Triangle Step 6

    2

    Измерьте длину медианы. Сделайте это аккуратно и точно.

    • Например, медиана равна 3,6 см.
  3. Изображение с названием Calculate the Center of Gravity of a Triangle Step 7

    3

    Найдите третью часть (треть) медианы. Для этого разделите длину медианы на три. Сделайте это аккуратно и точно. Округлив полученное значение, вы не найдете центроид.

    • В нашем примере медиана равна 3,6 см. Поэтому разделите 3,6 на 3:
      3,6/3=1,2. Таким образом, треть медианы равна 1,2 см.
  4. Изображение с названием Calculate the Center of Gravity of a Triangle Step 8

    4

    Треть медианы отметьте точкой. Эта точка является центроидом, потому что он всегда делит медиану треугольника в отношении 2:1. То есть центр тяжести находится на расстоянии, которое равно ⅓ длины медианы, от середины стороны, или на расстоянии, которое равно ⅔ длины медианы, от вершины треугольника.[4]

    • Например, если медиана равна 3,6 см, то центроид находится на расстоянии 1,2 см от середины стороны.

    Реклама

  1. Изображение с названием Calculate the Center of Gravity of a Triangle Step 9

    1

    Определите координаты трех вершин треугольника. Координаты могут быть даны; в противном случае будет дан треугольник, построенный на координатной плоскости. Координаты представляются в виде (x,y).

    • Например, дан треугольник PQR, вершины которого имеют следующие координаты: P (3,5), Q (4,1), R (1,0).
  2. Изображение с названием Calculate the Center of Gravity of a Triangle Step 10

    2

    Сложите значения координат «х». Не забудьте сложить все три значения. Вы не найдете центр тяжести, если будете работать только с двумя значениями.

    • Например, если координаты «х» равны 3, 4 и 1, сложите эти значения: 3+4+1=8.
  3. Изображение с названием Calculate the Center of Gravity of a Triangle Step 11

    3

    Сложите значения координат «у». Не забудьте сложить все три значения.

    • Например, если координаты «у» равны 5, 1 и 0, сложите эти значения: 5+1+0=6.
  4. Изображение с названием Calculate the Center of Gravity of a Triangle Step 12

    4

    Найдите средние значения сумм координат «х» и «у». Полученные значения будут соответствовать центру тяжести треугольника.[5]
    Чтобы найти среднее значение, разделите каждую сумму на 3.

  5. Изображение с названием Calculate the Center of Gravity of a Triangle Step 13

    5

    Нанесите точку центра тяжести на треугольник. Центр тяжести находится в точке, координаты которой равны средним значениям сумм координат «х» и «у».

    • В нашем примере центр тяжести – это точка с координатами (8/3,2).

    Реклама

Советы

  • Не имеет значения, с какой стороной треугольника вы работаете – центр тяжести будет находится в одной и той же точке. Если построить медианы для всех трех сторон, они пересекутся в одной точке.

Реклама

Похожие статьи

Об этой статье

Эту страницу просматривали 145 472 раза.

Была ли эта статья полезной?


Download Article


Download Article

The center of gravity, or centroid, is the point at which a triangle’s mass will balance. To help visualize this, imagine you have a triangular tile suspended over the tip of a pencil. The tile will balance if the pencil tip is placed at its center of gravity. Finding the centroid might be necessary in various design and engineering applications, and can be found by using simple geometry.

  1. Image titled Calculate the Center of Gravity of a Triangle Step 1

    1

    Find the midpoint of one side of the triangle. To find the midpoint, measure the side, and divide the length in half. Label the midpoint A.

    • For example, if one side of the triangle is 10 cm long, the midpoint will be at 5 cm, since 10/2=5.
  2. Image titled Calculate the Center of Gravity of a Triangle Step 2

    2

    Find the midpoint of a second side of the triangle. Measure the length of the side, and divide the length in half. Label the midpoint B.[1]

    • For example, if the side of the triangle is 12 cm long, the midpoint will be at 6 cm, since 12/2=6.

    Advertisement

  3. Image titled Calculate the Center of Gravity of a Triangle Step 3

    3

    Draw a line from the midpoint of each side to its opposite vertex. These two lines are the median of each side.[2]

    • A vertex is the point at which two sides of a triangle meet.
  4. Image titled Calculate the Center of Gravity of a Triangle Step 4

    4

    Draw a point where the two medians intersect. This point is the triangle’s center of gravity, also called the centroid, or center of mass.[3]

    • The center of gravity is where the three medians intersect, but since the medians only intersect in one point, you can use a shortcut and find the center of gravity by only finding the intersection of two medians.
  5. Advertisement

  1. Image titled Calculate the Center of Gravity of a Triangle Step 5

    1

    Draw a median of your triangle. Remember, the median is a line drawn from the midpoint of a side to the opposite vertex. You can use any median in the triangle.

  2. Image titled Calculate the Center of Gravity of a Triangle Step 6

    2

    Measure the length of the median. Make sure the measurement is exact.

    • For example, you might have a median that is 3.6 cm long.
  3. Image titled Calculate the Center of Gravity of a Triangle Step 7

    3

    Divide the length of the median into thirds. To do this, divide the length by three. Again, make an exact calculation. If you round, you will not find the center of gravity.

    • For example, if your median is 3.6 cm long, you would divide 3.6 by 3:
      3.6cm/3=1.2cm, so ⅓ of the median is 1.2 cm.
  4. Image titled Calculate the Center of Gravity of a Triangle Step 8

    4

    Mark a point on the median ⅓ from the midpoint. This point is the triangle’s centroid, which will always divide a median into a 2:1 ratio; that is, the centroid is ⅓ the median’s distance from the midpoint, and ⅔ the median’s distance from the vertex.[4]

    • For example, on a median that is 3.6 cm long, the centroid will be 1.2 cm up from the midpoint.
  5. Advertisement

  1. Image titled Calculate the Center of Gravity of a Triangle Step 9

    1

    Determine the coordinates of the three vertices of the triangle. This method only works if you are working with a coordinate plane. The coordinates may already be given, or you may have a triangle drawn on a graph without the coordinates labeled. Remember that coordinates should be listed (x,y).[5]

    • For example, you might be given triangle PQR, and you need to find and label point P (3, 5), point Q (4, 1), and R (1, 0).
  2. Image titled Calculate the Center of Gravity of a Triangle Step 10

    2

    Add the value of the x-coordinates. Remember to add all three coordinates. You will not calculate the correct center of gravity if you only use two coordinates.[6]

    • For example, if your three x-coordinates are 3, 4, and 1, add these three values together: 3+4+1=8.
  3. Image titled Calculate the Center of Gravity of a Triangle Step 11

    3

    Add the value of the y-coordinates. Remember to add all three coordinates.[7]

    • For example, if your three y-coordinates are 5, 1, and 0, add these three values together: 5+1+0=6.
  4. Image titled Calculate the Center of Gravity of a Triangle Step 12

    4

    Find the average of the x- and y-coordinates. These coordinates will correspond to the triangle’s center of gravity, also known as the centroid or center of mass.[8]
    To find the average, divide the sum of the coordinates by 3.

  5. Image titled Calculate the Center of Gravity of a Triangle Step 13

    5

    Plot the center of gravity on the triangle. The center of gravity, or centroid, is the average of the x- and y-coordinates.[9]

    • In the example problem, the center of gravity is the point (8/3,2).
  6. Advertisement

Add New Question

  • Question

    The length of a rectangle is x units and the width is x-5. How do I find an equation for the perimeter and area of the rectangle?

    Donagan

    For the perimeter, add the four sides together and simplify. For the area, multiply the length by the width.

  • Question

    Is the center of gravity of triangular cardboard outside or on the body?

    Donagan

    The center of gravity is always inside the triangle.

  • Question

    How can I determine the center of gravity of an Isoceles triangle without knowing the mass?

    Community Answer

    The horizontal coordinate will be half of the base, and the vertical will be one third of the height.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

  • It does not matter which side you select, the center of gravity will be at the same point. If you perform this process on all three sides, the lines will cross at a single point.

Thanks for submitting a tip for review!

Advertisement

References

About This Article

Article SummaryX

To calculate the center of gravity of a triangle, start by drawing a line from the midpoint of any 1 of the sides to the opposite vertex to create a median. Next, measure the median and divide it into thirds. For example, if the median is 3.6 cm long, mark the spots that are 1.2 cm and 2.4 cm along the median, starting from the midpoint. The spot that’s 1.2 inches from the midpoint is the centroid, or the center of gravity of the triangle. To learn more, like how to find the center of gravity of a triangle using intersecting medians, scroll down.

Did this summary help you?

Thanks to all authors for creating a page that has been read 274,504 times.

Did this article help you?

В этой статье и разберу как нарисовать центр тяжести треугольника и найти его координаты.

1) Рисуем треугольник ABC
2) Ставим точку M — середина BC
3) Ставим точку H — середина AC
4) Пересечение BH и AM — и есть центр тяжести треугольника ABC
5) Найдем его координаты (координаты точки O

(x_(o), y_(o), z_(o))

)

[x_{0}=frac{x_{1}+x_{2}+x_{3}}{3}, y_{0}=frac{y_{1}+y_{2}+y_{3}}{3}, z_{0}=frac{z_{1}+z_{2}+z_{3}}{3}]

Пример: Найти координаты центра тяжести треугольника с вершинами A(2;3;4), B(3;1;2) и C(4;-1;3). Решение.

Просмотры: 42859 |
Статью добавил: slava191 |
Категория: аналитическая_геометрия

Как определить центр треугольника?

Как найти середину у треугольника?

Пересекающиеся медианы Найдите середину одной стороны треугольника. Для этого измерьте сторону и разделите ее длину пополам. Середину отметьте точкой A.

Как найти центр тяжести в треугольнике?

Центроид треугольника (также барицентр треугольника и центр тяжести треугольника) — точка пересечения медиан в треугольнике. . Центроид треугольника относится к замечательным точкам треугольника и он перечислен в энциклопедии центров треугольника Кларка Кимберлинга, как точка X(2).

Как найти центр тяжести в прямоугольном треугольнике?

Как найти координаты центра тяжести треугольника?

  1. Рисуем треугольник ABC.
  2. Ставим точку M — середина BC.
  3. Ставим точку H — середина AC.
  4. Пересечение BH и AM — и есть центр тяжести треугольника ABC.
  5. Найдем его координаты (координаты точки O (xo, yo, zo) )

Как найти Инцентр?

Биссектрисы треугольника пересекаются в одной точке, которая является центром окружности, вписанной в этот треугольник. Инцентр лежит ближе к вершине, расположенной напротив большей стороны треугольника.

Как найти центр тяжести тела неправильной формы?

Центр тяжести тела неправильной формы можно определить так: подвесить его за любую точку, и провести вертикальную линию по отвесу. Затем повернуть тело и повторить операцию. Точка пересечения двух прямых и есть центр тяжести тела.

Где находится центр тяжести призмы?

Так, центр тяжести призмы и цилиндра лежит на середине линии, соединяющей центры тяжести оснований. Центр тяжести шара совпадает с его геометрическим центром. Центр тяжести пирамиды (рис. 18, а) лежит на прямой, соединяющей центр тяжести площади основания с противоположной вершиной на расстоянии /4 высоты от основания.

Где находится центр тяжести у кольца?

Так, центр тяжести однородных диска и шара расположен в их центре, однородного цилиндра в точке на середине его оси; однородного параллелепипеда на пересечении его диагоналей и т, д. У всех однородных тел центр тяжести совпадает с центром симметрии. Центр тяжести может находиться вне тела, например, у кольца.

Как найти Центроид фигуры?

Центроид (барицентр или центр масс) вершин произвольного четырёхугольника лежит в точке пересечения 3-х отрезков: 1-й отрезок соединяет середины диагоналей, два другие — середины противополежащих сторон. Точка пересечения делит все три отрезка пополам.

Где находится центр тяжести однородного треугольника?

Таким образом, центр тяжести треугольника лежит в точке пересечения его медиан, которая, как известно, отделяет от каждой медианы третью часть, считая от соответствующей стороны.

Где находится центр тяжести у трапеции?

Для произвольной трапеции (то есть она может быть прямоугольной, тупоугольной, равнобокой или любой другой) справедливо то, что центр ее тяжести лежит на прямой, которая соединяет середины оснований трапеции.

Как найти центр масс треугольника?

Как найти центр треугольника

Если известны координаты его вершин, найдем сумму трех значений координат «х» и трех значений координат «у». Поделим каждую сумму на 3, получим среднее значение сумм координат «х» и «у», что и будет координатами центра тяжести.

Как найти длину медианы в прямоугольном треугольнике?

Медиана, проведенная к гипотенузе прямоугольного треугольника, равняется половине квадратного корня из суммы квадратов катетов.

Где находится центр круга?

Центр вписанной окружности треугольника (инцентр) — одна из замечательных точек треугольника, точка пересечения биссектрис треугольника. Центр вписанной в треугольник окружности также иногда называют инцентром.

Где лежит центр равнобедренного треугольника?

В равнобедренном треугольнике высота, проведенная к основанию, является серединным перпендикуляром. Следовательно, центр описанной около равнобедренного треугольника окружности будет лежать на серединном перпендикуляре, который является и высотой, и медианой, и биссектрисой угла при вершине.

Где лежит центр окружности?

Окружность, проходящая через все три вершины треугольника, называется его описанной окружностью. Центр описанной окружности лежит на пересечении серединных перпендикуляров к сторонам треугольника.

Центр тяжести треугольника

Этот онлайн калькулятор находит центроид, или барицентр (центр тяжести) треугольника по координатам его вершин

Центр тяжести (центр масс, барицентр) треугольника для треугольника с равномерно распределённой массой (или в вершинах которого находятся равные массы) находится в центроиде треугольника. Центроидом называется точка пересечения медиан треугольника. Центроид относится к так называемым замечательным точкам треугольника. Например, помимо того, что он является центром тяжести, он также делит каждую медиану в отношении 2:1, считая от вершины, а три отрезка прямых, соединяющих вершины треугольника с центроидом, разбивают данный треугольник на три равновеликих треугольника.

Чтобы вычислить положение центра тяжести по координатам вершин треугольника, достаточно вычислить среднее арифметическое координат вершин по оси x и по оси y, что и делает калькулятор ниже.

Как найти центр тяжести?

Опубликовано 21 Окт 2013
Рубрика: Механика | 3 комментария

В инженерной практике случается, что возникает необходимость вычислить координаты центра тяжести сложной плоской фигуры, состоящей из простых элементов, для которых расположение центра тяжести известно. Такая задача является частью задачи определения.

. геометрических характеристик составных поперечных сечений балок и стержней. Часто с подобными вопросами приходится сталкиваться инженерам-конструкторам вырубных штампов при определении координат центра давления, разработчикам схем погрузки различного транспорта при размещении грузов, проектировщикам строительных металлических конструкций при подборе сечений элементов и, конечно, студентам при изучении дисциплин «Теоретическая механика» и «Сопротивление материалов».

Библиотека элементарных фигур.

Для симметричных плоских фигур центр тяжести совпадает с центром симметрии. К симметричной группе элементарных объектов относятся: круг, прямоугольник (в том числе квадрат), параллелограмм (в том числе ромб), правильный многоугольник.

Из десяти фигур, представленных на рисунке выше, только две являются базовыми. То есть, используя треугольники и сектора кругов, можно скомбинировать почти любую фигуру, имеющую практический интерес. Любые произвольные кривые можно, разбив на участки, заменить дугами окружностей.

Оставшиеся восемь фигур являются самыми распространенными, поэтому они и были включены в эту своеобразную библиотеку. В нашей классификации эти элементы не являются базовыми. Прямоугольник, параллелограмм и трапецию можно составить из двух треугольников. Шестиугольник – это сумма из четырех треугольников. Сегмент круга — это разность сектора круга и треугольника. Кольцевой сектор круга — разность двух секторов. Круг – это сектор круга с углом α=2*π=360˚. Полукруг – это, соответственно, сектор круга с углом α=π=180˚.

Расчет в Excel координат центра тяжести составной фигуры.

Передавать и воспринимать информацию, рассматривая пример, всегда легче, чем изучать вопрос на чисто теоретических выкладках. Рассмотрим решение задачи «Как найти центр тяжести?» на примере составной фигуры, изображенной на рисунке, расположенном ниже этого текста.

Составное сечение представляет собой прямоугольник (с размерами a1 =80 мм, b1 =40 мм), к которому слева сверху добавили равнобедренный треугольник (с размером основания a2 =24 мм и высотой h2 =42 мм) и из которого справа сверху вырезали полукруг (с центром в точке с координатами x03 =50 мм и y03 =40 мм, радиусом r3 =26 мм).

В помощь для выполнения расчета привлечем программу MS Excel или программу OOo Calc. Любая из них легко справится с нашей задачей!

В ячейках со светло-желтой заливкой считаем результаты .

Начинаем решение задачи – начинаем поиск координат центра тяжести сечения.

Исходные данные:

1. Названия элементарных фигур, образующих составное сечение впишем соответственно

в ячейку D3: Прямоугольник

в ячейку E3: Треугольник

в ячейку F3: Полукруг

2. Пользуясь представленной в этой статье «Библиотекой элементарных фигур», определим координаты центров тяжести элементов составного сечения xci и yci в мм относительно произвольно выбранных осей 0x и 0y и запишем

в ячейку D4: =80/2=40,000

xc 1 = a 1 /2

в ячейку D5: =40/2=20,000

yc 1 = b 1 /2

в ячейку E4: =24/2=12,000

xc 2 = a 2 /2

в ячейку E5: =40+42/3=54,000

yc 2 = b 1 + h 2 /3

в ячейку F4: =50=50,000

xc 3 = x03

в ячейку F5: =40-4*26/3/ПИ()=28,965

yc 3 = y 03 -4* r3 /3/π

3. Рассчитаем площади элементов F 1 , F 2 , F3 в мм2, воспользовавшись вновь формулами из раздела «Библиотека элементарных фигур»

в ячейке D6: =40*80=3200

в ячейке E6: =24*42/2=504

в ячейке F6: =-ПИ()/2*26^2=-1062

F3 = -π/2* r3 ^2

Площадь третьего элемента – полукруга – отрицательная потому, что это вырез – пустое место!

Расчет координат центра тяжести:

4. Определим общую площадь итоговой фигуры F0 в мм2

в объединенной ячейке D8E8F8: =D6+E6+F6=2642

5. Вычислим статические моменты составной фигуры Sx и Sy в мм3 относительно выбранных осей 0x и 0y

в объединенной ячейке D9E9F9: =D5*D6+E5*E6+F5*F6=60459

в объединенной ячейке D10E10F10: =D4*D6+E4*E6+F4*F6=80955

6. И в завершение рассчитаем координаты центра тяжести составного сечения Xc и Yc в мм в выбранной системе координат 0x — 0y

в объединенной ячейке D11E11F11: =D10/D8=30,640

в объединенной ячейке D12E12F12: =D9/D8=22,883

Задача решена, расчет в Excel выполнен — найдены координаты центра тяжести сечения, составленного при использовании трех простых элементов!

Заключение.

Пример в статье был выбран очень простым для того, чтобы легче было разобраться в методологии расчетов центра тяжести сложного сечения. Метод заключается в том, что любую сложную фигуру следует разбить на простые элементы с известными местами расположения центров тяжести и произвести итоговые вычисления для всего сечения.

Если сечение составлено из прокатных профилей – уголков и швеллеров, то их нет необходимости разбивать на прямоугольники и квадраты с вырезанными круговыми «π/2»- секторами. Координаты центров тяжести этих профилей приведены в таблицах ГОСТов, то есть и уголок и швеллер будут в ваших расчетах составных сечений базовыми элементарными элементами (о двутаврах, трубах, прутках и шестигранниках говорить нет смысла – это центрально симметричные сечения).

Расположение осей координат на положение центра тяжести фигуры, конечно, не влияет! Поэтому выбирайте систему координат, упрощающую вам расчеты. Если, например, я развернул бы в нашем примере систему координат на 45˚ по часовой стрелке, то вычисление координат центров тяжести прямоугольника, треугольника и полукруга превратилось бы в еще один отдельный и громоздкий этап расчетов, который «в уме» не выполнишь.

Представленный ниже расчетный файл Excel в данном случае программой не является. Скорее – это набросок калькулятора, алгоритм, шаблон по которому следует в каждом конкретном случае составлять свою последовательность формул для ячеек с яркой желтой заливкой.

Итак, как найти центр тяжести любого сечения вы теперь знаете! Полный расчет всех геометрических характеристик произвольных сложных составных сечений будет рассмотрен в одной из ближайших статей в рубрике «Механика». Следите за новостями на блоге.

Для получения информации о выходе новых статей и для скачивания рабочих файлов программ прошу вас подписаться на анонсы в окне, расположенном в конце статьи или в окне вверху страницы.

После ввода адреса своей электронной почты и нажатия на кнопку «Получать анонсы статей» НЕ ЗАБЫВАЙТЕ ПОДТВЕРЖДАТЬ ПОДПИСКУ кликом по ссылке в письме, которое тут же придет к вам на указанную почту (иногда — в папку «Спам»)!

Несколько слов о бокале, монете и двух вилках, которые изображены на «значке-иллюстрации» в самом начале статьи. Многим из вас, безусловно, знаком этот «трюк», вызывающий восхищенные взгляды детей и непосвященных взрослых. Тема этой статьи – центр тяжести. Именно он и точка опоры, играя с нашим сознанием и опытом, попросту дурачат наш разум!

Центр тяжести системы «вилки+монета» всегда располагается на фиксированном расстоянии по вертикали вниз от края монеты, который в свою очередь является точкой опоры. Это положение устойчивого равновесия! Если покачать вилки, то сразу становится очевидным, что система стремится занять свое прежнее устойчивое положение! Представьте маятник – точка закрепления (=точка опоры монеты на кромку бокала), стержень-ось маятника (=в нашем случае ось виртуальная, так как масса двух вилок разведена в разные стороны пространства) и груз внизу оси (=центр тяжести всей системы «вилки+монета»). Если начать отклонять маятник от вертикали в любую сторону (вперед, назад, налево, направо), то он неизбежно под действием силы тяжести будет возвращаться в исходное устойчивое состояние равновесия (это же самое происходит и с нашими вилками и монетой)!

Кто не понял, но хочет понять – разберитесь самостоятельно. Это ведь очень интересно «доходить» самому! Добавлю, что этот же принцип использования устойчивого равновесия реализован и в игрушке ванька–встань-ка. Только центр тяжести у этой игрушки расположен выше точки опоры, но ниже центра полусферы опорной поверхности.

Всегда рад вашим комментариям, уважаемые читатели.

Прошу, УВАЖАЯ труд автора, скачивать файл ПОСЛЕ ПОДПИСКИ на анонсы статей.

Ссылка на скачивание файла: raschet-tsentra-tyazhesti (xls 17,0KB).

источники:

Содержание:

  1. Центр масс
  2. Центр параллельных сил
  3. Центр тяжести
  4. Центры тяжести некоторых плоских однородных фигур
  5. Центр тяжести дуги окружности
  6. Центр тяжести кругового сектора
  7. Центр тяжести кругового сегмента
  8. Центр тяжести треугольника
  9. Центр тяжести трапеции
  10. Примеры решения задач на тему: Центр масс
  11. Способы определения координат центра тяжести тела
  12. Метод симметрии
  13. Метод разбиения
  14. Метод дополнения
  15. Экспериментальные способы
  16. Центры тяжести некоторых однородных тел
  17. Центр тяжести дуги окружности
  18. Центр тяжести треугольника
  19. Центр тяжести сектора

Центр масс — это геометрическая точка, положение которой определяется распределением массы в теле, а перемещение характеризует движение тела или механической системы как целого.

На странице -> решение задач по теоретической механике собраны решения задач и заданий с решёнными примерами по всем темам теоретической механики.

Центр масс

Центр масс — это некоторое положение, определяемое относительно объекта или системы объектов и это среднее положение всех частей системы, взвешенное в соответствии с их массами.

Центр параллельных сил

Если на тело действует система параллельных сил Центр массЦентр масс,…, Центр масс, то точка Центр масс, через которую проходит равнодействующая Центр масс этой системы сил, называется центром параллельных сил (рис.9.1).

Центр масс

Координаты центра параллельных сил определяются по зависимостям:

Центр масс

Центр масс

где Центр масс — координаты точек приложения сил Центр масс.

Центр параллельных сил имеет ту особенность, что через него обязательно будет проходить линия действия равнодействующей при вращении линий действия всех сил системы вокруг точек их приложения на один и тот же угол в одну и ту же сторону. Модули сил при вращении не должны меняться.

Центр тяжести

Если твердое тело находится возле поверхности Земли, то на каждую материальную часть этого тела действует сила тяжести­ Центр масс, которая направлена к центру Земли. Поскольку размеры тела небольшие по сравнению с размерами Земли, то образованную систему сил можно рассматривать как параллельную. Равнодействующая этой параллельной системе сил Центр масс, которая равна их сумме, называется тяжестью тела, а центр этой системы — точка Центр масс называется центром тяжести тела (рис.9.2).

Координаты центра тяжести твердого тела можно определить как координаты центра параллельных сил:

Центр масс

Центр масс

где Центр масс — сила тяжести элементарной частицы тела;

Центр масс — тяжесть тела;

Центр масс — координаты центра тяжести;

Центр масс — координаты элементарной частицы тела.

Если тело однородное, то есть удельный вес не меняется по объему Центр масс, то:

Центр масс

где Центр масс — объем тела;

Центр масс — объем элементарной частицы.

Тогда формулы для определения координат центра тяжести твердого тела приобретут вид:

Центр масс

Положение центра тяжести однородного тела зависит только от формы объема, что занимает тело, и называется центром тяжести этого объема.

Если однородное тело имеет форму тонкой пластины, то его можно рассматривать как материальную плоскую фигуру. В этом случае положение центра тяжести плоской фигуры определяется двумя координатами Центр масс и Центр масс и зависит от формы площади фигуры:

Центр масс

где Центр масс — площадь элементарной части плоской фигуры;

Центр масс — площадь плоской фигуры.

Центр тяжести однородной пластины называется центром тяжести плоской фигуры.

Если выбранный элементарный объем Центр масс (площадь элементарной площадки в плоском случае) направить к нулю, то формулы для вычисления координат центра тяжести приобретут интегральный вид:

а) для однородного твердого тела:

Центр масс

где Центр масс — объем тела, интегрирование выполняется по всему объему тела;

б) для однородной поверхности:

Центр масс

где Центр масс — площадь поверхности, интегрирование выполняется по всей поверхности тела;

в) для однородной плоской фигуры, лежащей в плоскости xy:

Центр масс

г) для однородной линии:

Центр масс

где Центр масс — длина линии, интегрирование выполняется по всей длине линии.

Центры тяжести некоторых плоских однородных фигур

Для упрощения определения центра тяжести используются следующие вспомогательные правилами:

1. Если тело имеет плоскость симметрии, то центр тяжести лежит на этой плоскости.
2. Если тело симметрично относительно оси, то центр тяжести лежит на этой оси.
3. Если тело симметрично относительно точки, то центр тяжести лежит в центре симметрии.
4. Если тело состоит из нескольких частей, центры тяжести которых можно определить, то центр тяжести такого тела находят как центр тяжести нескольких материальных точек, а именно тех, в которых расположены весы каждой отдельной части тела.

Центр тяжести дуги окружности

Центр тяжести дуги окружности Центр масс (рис.9.3) лежит на ее оси симметрии и на расстоянии Центр масс от центра окружности:

Центр масс

где Центр масс — радиус окружности;

Центр масс — половина центрального угла, опирающегося на дугу Центр масс.

Центр масс

Центр тяжести кругового сектора

Центр тяжести кругового сектора лежит на оси симметрии и имеет координаты:

Центр масс

где Центр масс — радиус окружности;

Центр масс — половина центрального угла сектора.

Центр масс

Центр тяжести кругового сегмента

Центр тяжести кругового сегмента лежит на оси симметрии сегмента и имеет координаты:

Центр масс

где Центр масс — радиус окружности;

Центр масс — половина центрального угла сегмента.

Центр масс

Центр тяжести треугольника

Центр тяжести треугольника (рис. 9.6) лежит в точке пересечения его медиан — на расстоянии 1/3 каждой медианы от соответствующего основания треугольника.

Центр масс

Центр тяжести трапеции

Центр тяжести трапеции (рис.9.7) с основаниями Центр масс и Центр масс и высотой Центр масс лежит на прямой Центр масс, которая соединяет середины основ.

Центр масс

Расстояния Центр масс и Центр масс центра тяжести Центр масс площади трапеции от ее основ определяются по формулам:

Центр масс

Наиболее распространенный способ определения положения центра тяжести однородного тела сложной формы заключается в том, что его разбивают на такие части, положение центров тяжести которых известно, или может быть легко определено.

Например, однородную плоскую фигуру (рис.9.8) разбивают на три части 1,2 и 3, положения центров тяжести которых, Центр масс можно определить.

Центр масс

Координаты центра тяжести фигуры Центр масс определяются по формулам:

Центр масс

где Центр масс — координаты центра тяжести Центр масс первой части плоской фигуры;

Центр масс — площадь первой части и т.п.

Этим способом удобно пользоваться и при определении положения центра тяжести плоской фигуры, из которой вырезана некоторая часть (рис.9.9).

Центр масс

В этом случае площадь плоской фигуры можно записать в виде разницы площадей сплошной фигуры 1 (площадь положительная) и вырезанной части 2 (площадь отрицательная), то есть Центр масс .

Координаты центра тяжести фигуры равны:

Центр масс

где Центр масс — координаты центра тяжести сплошной фигуры 1, площадь которой равна Центр масс;

Центр масс — координаты центра тяжести вырезанной части 2, площадь которой равна — Центр масс.

Первый из этих методов имеет название «метод разбиения», второй — «метод дополнения», или «метод отрицательных масс». В общем случае формулы для определения центра тяжести плоской фигуры имеют вид:

Центр масс

где Центр масс — площадь всей фигуры.

Примеры решения задач на тему: Центр масс

Задача № 1

Найти центр тяжести двутаврового профиля, размеры которого в сантиметрах указаны на рис.9.10.

Решение. Поскольку форма сечения имеет ось симметрии, ось Центр масс направим вдоль оси симметрии, а ось Центр масс перпендикулярно ей.

В силу симметричности профиля относительно оси Центр масс центр тяжести будет лежать на этой оси, то есть Центр масс

Линиями Центр масс и Центр масс поделим профиль на три прямоугольника 1, 2 и 3.

Запишем уравнение для определения абсциссы центра тяжести площади:

Центр масс

где Центр масс — абсциссы центров тяжести прямоугольников 1, 2, 3;

Центр масс — площади этих прямоугольников.

Центр масс

Поскольку центры тяжести прямоугольников Центр масс и Центр масс лежат на пересечении их диагоналей, то (рис.9.10):

Центр масс

Площади этих прямоугольников соответственно равны:

Центр масс

Тогда: 

Центр масс

Таким образом, центр тяжести фигуры лежит в точке Центр масс с координатами: Центр масс

Ответ: Центр масс

Задача № 2

Найти координаты центра тяжести поперечного пересечения разностороннего угольника (рис.9.11), полки которого имеют ширину Центр масс и толщину Центр масс

Центр масс

Решение. Разделим пересечение линией Центр масс на два прямоугольника Центр масс и Центр масс, центры тяжести которых лежат на пересечении соответствующих диагоналей.

Запишем формулы для координат Центр масс и Центр масс центра тяжести пересечения:

Центр масс

где Центр масс и Центр масс — координаты центров тяжести прямоугольников 1 и 2;

Центр массЦентр масс — площади прямоугольников 1 и 2.

С рис.9.11 видим, что

Центр масс

Тогда: 

Центр масс

Ответ: Центр масс

Задача № 3

Определить положение центра тяжести плоской фигуры (рис.9.12), ограниченной полуокружностью Центр масс радиуса Центр масс и двумя прямыми равной длины Центр масс и Центр масс, причем Центр масс

Центр масс

Решение. Данная площадь имеет ось симметрии, вдоль которой направим ось Центр масс. Поскольку центр тяжести площади Центр масс лежит на оси симметрии, то Центр масс

Разделим площадь Центр масс линией Центр масс на две части: полуокружность Центр масс и равнобедренный треугольник Центр масс.

Абсцисса центра тяжести площади Центр масс будет равняться:

Центр масс

где Центр масс — координата центра тяжести половины круга Центр масс;

Центр масс — координата центра тяжести треугольника Центр масс;

Центр массЦентр масс — площади половины круга и треугольника.

Для определения Центр масс воспользуемся приведенными в разделе 9.3.2 координатами центра тяжести кругового сектора

Центр масс

В случае половины круга Центр масс

Центр масс

Площадь половины круга равна:

Центр масс

Центр тяжести треугольника лежит на пересечении его медиан (раздел 9.3.4). Поскольку треугольник Центр масс равнобедрен, то линия Центр масс будет его медианой и расстояние Центр масс будет равняться третьей части от Центр масс:

Центр масс

Площадь треугольника Центр масс равна:

Центр масс

Подставив найденные значения Центр массЦентр массЦентр масс и Центр масс в уравнение для Центр масс, получим:

Центр масс

Ответ: Центр масс

Задача № 4

Найти координаты центра тяжести квадратной пластины с вырезом в виде сегмента радиуса Центр масс (рис.9.13), если

Центр масс

Центр масс

Решение. Осью симметрии рассматриваемой фигуры будет диагональ Центр масс прямоугольника Центр масс

Поэтому направим ось Центр масс вдоль этой линии, а ось Центр масс — перпендикулярно (рис.9.13).

Центр тяжести пластины будет лежать на оси Центр масс, то есть Центр масс

Площадь фигуры Центр масс можно представить как разницу площадей квадрата Центр масс (положительная площадь) и сектора Центр масс (отрицательная площадь).

Абсцисса центра тяжести фигуры будет равняться:

Центр масс

где Центр масс — абсцисса центра тяжести квадрата Центр масс;

Центр масс — абсцисса центра тяжести сектора Центр масс;

Центр масс и Центр масс — площади квадрата и сектора.

Для квадрата Центр масс получим:

Центр масс

Как следует из рис. 9.13, Центр масс равняется

Центр масс

где Центр масс — расстояние от точки Центр масс к центру тяжести кругового сектора Центр масс.

Для кругового сектора (раздел 9.3.2) получим:

Центр масс

Поскольку Центр масс и Центр масс, то 

Центр масс

Таким образом, абсцисса Центр масс равняется:

Центр масс

Площадь кругового сектора Центр масс:

Центр масс

Подставив значение Центр массЦентр массЦентр масс и Центр масс в формулу для Центр масс, получим:

Центр масс

Ответ:  Центр масс

Задача № 5

Найти координаты центра тяжести площади, ограниченной (рис.9.14) правой веткой параболы Центр масс, осью Центр масс и прямой Центр масс

Центр масс

Решение. На расстоянии Центр масс от оси Центр масс выделяем элементарную площадку Центр масс шириной Центр масс (заштрихованная область).

Площадь выделенной элементарной площадки будет равняться:

Центр масс

Площадь фигуры, что ограничена заданными линиями:

Центр масс

Поскольку точка Центр масс представляет собой пересечение параболы Центр масс и прямой Центр масс, то Центр масс

Отсюда: 

Центр масс

Тогда:

Центр масс

Абсцисса центра тяжести

Центр масс

Для определения координаты Центр масс выделим элементарную площадку Центр масс шириной Центр масс на расстоянии Центр масс от оси Центр масс.

Площадь выделенной площадки:

Центр масс

Ордината центра тяжести:

Центр масс

Тогда: 

Центр масс

Ответ: Центр масс

Способы определения координат центра тяжести тела

Существует несколько способов определения координат центра тяжести тел. среди них различают: метод симметрии, метод разбиения и дополнения, экспериментальные способы.

Рассмотрим последовательно эти способы.

Метод симметрии

Если однородное тело имеет плоскость, ось или центр симметрии, то его центр тяжести лежит соответственно в плоскости симметрии, или на оси симметрии, или в центре симметрии.

Таким образом, центр тяжести однородных симметричных тел, таких как кольца,
прямоугольные пластины, прямоугольные параллелепипеды, шары и другие тела, которые
имеют центр симметрии, расположенный в геометрических центрах (центры симметрии) этих тел.

Метод разбиения

Если тело можно разбить на конечное число таких частей, для каждой из которых положение центра тяжести нетрудно определяется, то координаты центра тяжести всего тела можно определить непосредственно по формулам выше. Причем количество слагаемых в числителе каждого из указанных выражений будет равно количеству частей, на которое разбивается тело.

Приведем пример определения центра тяжести тела методом разбиения его на отдельные тела, центры тяжести которых известны.

Пример:

Определить координаты центра тяжести однородной пластины. Размеры в
мм заданные на рис. 1.64

Центр масс

Решение.

Выберем оси координат x и y. Разбиваем пластину на отдельные прямоугольные части. Для каждого прямоугольника проводим диагонали, точки пересечения которых c1, c2 и c3 соответствуют центрам веса каждого прямоугольника. В принятой системе координат нетрудно получить значение координат этих точек. А именно: c(–1,1), c(1,5), c(5,9). Площади каждого тела соответственно равны: I — s1 = 4 см2; II — s2 = 20 см2; III — s3 = 12 см2. Площадь всей пластины равна: S = s1 + s2 + s3 = 36 см2.

Для определения координат центра тяжести заданной пластины используем выражение выше. Подставив значения всех известных величин в уравнения, получим

Центр масс

По вычисленным значениям координат центра тяжести пластины можно обозначить точку C на рисунке. Как видим, центр тяжести (геометрическая точка) пластины расположен за ее пределами.

Метод дополнения

Способ, о котором говорится далее, является некоторым случаем способа разбиения. Он может применяться к телам, которые имеют вырезы, полости, причем без учета выреза, или вырезанной части тела положение центра тяжести тела известно. Рассмотрим пример применения такого метода.

Пример. Определить положение центра тяжести круглой пластины радиусом R, имеет круговое отверстие радиуса r (рис. 1.65). Расстояние C1C2 = a.

Центр масс

Решение.

Как видно из рисунка, центр тяжести пластины находится на оси симметрии пластины x, то есть на прямой, проходящей через точки C1 и C2. Таким образом, для определения положения центра тяжести этой пластины необходимо вычислить только одну координату xC, поскольку вторая координата yравна нулю. Покажем оси координат x, y. Примем, что пластина состоит из двух тел — с полного круга (без учета выреза) и тела,
образовано вырезом. В принятой системе координаты x для указанных тел будут равны: x= 0; x2 = C1C2 = a. Площади тел равны: Центр массОбщая площадь всего тела будет равна физической разницы между площадями первого и второго тел, а именно
Центр масс Для определения неизвестной координаты центра тяжести
заданной пластины используем первое уравнение выражения.

Подставив значения всех известных величин в это уравнение, получим

Центр масс

Таким образом, значение координаты xC отрицательное, а потому, поскольку вторая координата 0 yC = 0, то центр тяжести пластины C размещен на оси слева от точки C1.

Экспериментальные способы

Эти способы нашли широкое применение при отыскании положения центра тяжести тел сложных форм и конфигураций, для которых другие способы почти непригодны вследствие громоздкости и сложности. К таким телам, в первую очередь, следует отнести комбайны, тракторы, сложные сельскохозяйственные машины и орудия. При применении экспериментальных способов отыскания положения
центра тяжести наиболее широко используют метод подвешивания и метод взвешивания тел.

При применении метода подвешивания тело на тросе подвешивают за различные его точки. Направление троса, будет давать каждый раз направление силы веса тела. Тогда точка пересечения этих направлений и дает положение центра тяжести тела.

Использование второго метода — взвешивание требует измерения веса всего тела, а также отдельных его частей. Рассмотрим пример применения этого метода.

Пример.

Определим продольную координату центра тяжести трактора, у которого продольная база составляет l (рис. 1.66).

Центр масс

Решение.

Сначала поставим на платформу весов задние колеса трактора, как это показано на рисунке. Итак, определяем силу давления задних колес на платформу, или реакцию Центр масс. Аналогично определяем вес переднего моста, или реакцию Центр масс. Вполне понятно, что сумма этих реакций равна общему весу трактора, а именно:

Q = RA + RB.

Теперь составим алгебраическую сумму моментов всех сил относительно точки A. Она равна

Центр масс

Откуда определяем продольную координату центра тяжести:

xCЦентр масс.

Для определения поперечной координаты центра тяжести трактора необходимо знать реакции левых колес (переднего и заднего) и правых, а также поперечную базу трактора. Дальше аналогичным выражением определяется эти координаты центра тяжести.

Центры тяжести некоторых однородных тел

Определим далее координаты центров тяжести некоторых простых однородных тел.

Центр тяжести дуги окружности

Рассмотрим дугу AB окружности радиусом R, в которой центральный угол OAB равен 2α (радиан) (рис. 1.67). Покажем оси координат x, y начало которых разместим в точке O. Вследствие того, что дуга имеет ось симметрии Ox, то центр ее тяжести будет расположен именно на этой оси (yC = 0). Остается только вычислить координату xC.

Центр масс

Используем для вычисления этой координаты первое уравнение выражения, а именно

Центр масс

Определим составляющие, которые необходимо подставить в это уравнение. Для этого выделим на дуге AB элемент M M1 длиной dl, равной:

dl = R · dφ.

Если φ — угол, определяющий положение элемента M M1 на дуге AB, то координата x элемента M M1 будет равна:

x = Rcosφ.

Общая длина дуги AB равна:

L = 2α · R.

Подставим эти значения в первое уравнение выражения. При этом считается, что интеграл в числителе данного выражения должен быть определенным по всей длине дуги. Будем иметь:

Центр масс

Центр масс

Таким образом, координата xC будет равняться

xC = Центр масс.

Центр тяжести треугольника

Есть произвольный треугольник, вершины которого в принятой системе координат Oxy соответствуют точкам с координатами A1 (x1y1), A2 (x2, y2), A3 (x3, y3) (рис. 1.68). Если провести прямые, которые будут параллельны основе A1A3 и провести их достаточное количество, то вся площадь треугольника будет состоять из полос бесконечно малой ширины, центры тяжести которых будут размещены посередине каждой полосы, а потому и центр тяжести треугольника будет расположенный на его медиане. А если провести линии, параллельные другой стороне треугольника, то и в этом случае центр тяжести будет размещен на соответствующей медиане. Таким образом, совершенно очевидно, что центр тяжести треугольника C будет расположен в точке пересечения его медиан.

Определим координаты этой точки. По курсу аналитической геометрии известно, что точка пересечения медиан треугольника в принятой системе координат определяется такими зависимостями

Центр масс

где x1, x2, …, y3  — координаты вершин треугольника.

Полезно также знать, что

Центр масс

Центр масс

Центр тяжести сектора

Рассмотрим круговой сектор OAB радиуса R, центральный угол которого равен 2α (радиан) (рис. 1.69). Центр тяжести сектора, вполне очевидно, лежит на оси его симметрии, то есть на биссектрисе угла AOB. Эту биссектрису примем за ось x и найдем на этой оси положение центра C. Разобьем площадь сектора на бесконечно большое число элементарных секторов с центральными углами ∆φ.

Будем рассматривать каждый сектор как треугольник с основанием R · ∆φ и высотой R. Центр тяжести каждого треугольника расположен на расстоянии Центр масс от центра сектора. Таким образом, центры тяжести всех треугольников расположены на дуге A´B´. Итак, если 0 ∆φ → 0, то центры тяжести образуют дугу AB, тогда необходимо найти центр тяжести дуги A´B´. Используем формулу, по которой определяется центр тяжести дуги окружности радиусом r:

Центр масс

Центр масс

Тогда учитывая, что

Центр масс

Будем иметь

Центр масс

Услуги по теоретической механике:

  1. Заказать теоретическую механику
  2. Помощь по теоретической механике
  3. Заказать контрольную работу по теоретической механике

Учебные лекции:

  1. Статика
  2. Система сходящихся сил
  3. Момент силы
  4. Пара сил
  5. Произвольная система сил
  6. Плоская произвольная система сил
  7. Трение
  8. Расчет ферм
  9. Расчет усилий в стержнях фермы
  10. Пространственная система сил
  11. Произвольная пространственная система сил
  12. Плоская система сходящихся сил
  13. Пространственная система сходящихся сил
  14. Равновесие тела под действием пространственной системы сил
  15. Естественный способ задания движения точки
  16. Центр параллельных сил
  17. Параллельные силы
  18. Система произвольно расположенных сил
  19. Сосредоточенные силы и распределенные нагрузки
  20. Кинематика
  21. Кинематика твердого тела
  22. Движения твердого тела
  23. Динамика материальной точки
  24. Динамика механической системы
  25. Динамика плоского движения твердого тела
  26. Динамика относительного движения материальной точки
  27. Динамика твердого тела
  28. Кинематика простейших движений твердого тела
  29. Общее уравнение динамики
  30. Работа и мощность силы
  31. Обратная задача динамики
  32. Поступательное и вращательное движение твердого тела
  33. Плоскопараллельное (плоское) движение твёрдого тела
  34. Сферическое движение твёрдого тела
  35. Движение свободного твердого тела
  36. Сложное движение твердого тела
  37. Сложное движение точки
  38. Плоское движение тела
  39. Статика твердого тела
  40. Равновесие составной конструкции
  41. Равновесие с учетом сил трения
  42. Колебания материальной точки
  43. Относительное движение материальной точки
  44. Статические инварианты
  45. Дифференциальные уравнения движения точки под действием центральной силы и их анализ
  46. Динамика системы материальных точек
  47. Общие теоремы динамики
  48. Теорема об изменении кинетической энергии
  49. Теорема о конечном перемещении плоской фигуры
  50. Потенциальное силовое поле
  51. Метод кинетостатики
  52. Вращения твердого тела вокруг неподвижной точки

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти среднегодовую величину собственного капитала
  • Как найти массу если есть удельная теплоемкость
  • Как найти определение в английском предложении
  • Как найти файл minecraft jar
  • Как в инстаграм исправить свой комментарий

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии