Как найти центр окружности в прямоугольном треугольнике

Окружность, описанная около треугольника.
Треугольник, вписанный в окружность. Теорема синусов

Серединный перпендикуляр к отрезку

Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.

Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

Докажем, что отрезок AE длиннее отрезка EB . Действительно,

Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

Полученное противоречие и завершает доказательство теоремы 2

Окружность, описанная около треугольника

Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

Свойства описанной около треугольника окружности. Теорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Фигура Рисунок Свойство
Серединные перпендикуляры
к сторонам треугольника
Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Посмотреть доказательство
Окружность, описанная около треугольника Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Посмотреть доказательство
Центр описанной около остроугольного треугольника окружности Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центр описанной около прямоугольного треугольника окружности Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.
Посмотреть доказательство
Центр описанной около тупоугольного треугольника окружности Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Теорема синусов
Площадь треугольника
Радиус описанной окружности
Серединные перпендикуляры к сторонам треугольника

Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Окружность, описанная около треугольника

Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Центр описанной около остроугольного треугольника окружности

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружности

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.

Центр описанной около тупоугольного треугольника окружности

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Теорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольника

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружности

Для любого треугольника справедливо равенство:

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Доказательства теорем о свойствах описанной около треугольника окружности

Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

Следствие . Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).

При доказательстве теоремы 3 было получено равенство:

из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.

Теорема 4 (теорема синусов) . Для любого треугольника (рис. 7)

.

Доказательство . Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R , на которую опирается вписанный угол величины φ , вычисляется по формуле:

Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).

Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.

Формула (1) доказана.

Из формулы (1) для вписанного треугольника ABC получаем (рис.7):

Вписанные и описанные треугольники. Еще две формулы площади треугольника. Теорема синусов

Вписанный треугольник — треугольник, все вершины которого лежат на окружности. Тогда окружность называется описанной вокруг треугольника.

Очевидно, расстояние от центра описанной окружности до каждой из вершин треугольника одинаково и равно радиусу этой окружности.

Вокруг любого треугольника можно описать окружность, причем только одну.

Окружность вписана в треугольник, если она касается всех его сторон. Тогда сам треугольник будет описанным вокруг окружности. Расстояние от центра вписанной окружности до каждой из сторон треугольника равно радиусу этой окружности.

В любой треугольник можно вписать окружность, причем только одну.

Попробуйте сами описать окружность вокруг треугольника и вписать окружность в треугольник.

Как вы думаете, почему центр вписанной окружности — это точка пересечения биссектрис треугольника, а центр описанной окружности — точка пересечения серединных перпендикуляров к его сторонам?

В задачах ЕГЭ чаще всего встречаются вписанные и описанные правильные треугольники.

Есть и другие задачи. Для их решения вам понадобятся еще две формулы площади треугольника, а также теорема синусов.

Вот еще две формулы для площади.
Площадь треугольника равна половине произведения его периметра на радиус вписанной окружности.

— радиус окружности, вписанной в треугольник.

Есть и еще одна формула, применяемая в основном в задачах части :

где — стороны треугольника, — радиус описанной окружности.

Для любого треугольника верна теорема синусов:

Ты нашел то, что искал? Поделись с друзьями!

. Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен . Найдите гипотенузу c этого треугольника. В ответе укажите .

Треугольник прямоугольный и равнобедренный. Значит, его катеты одинаковы. Пусть каждый катет равен . Тогда гипотенуза равна .

Запишем площадь треугольника АВС двумя способами:

Приравняв эти выражения, получим, что . Поскольку , получаем, что . Тогда .

В ответ запишем .

. Сторона АС треугольника АВС с тупым углом В равна радиусу описанной около него окружности. Найдите угол В. Ответ дайте в градусах.

По теореме синусов,

Получаем, что . Угол — тупой. Значит, он равен .

. Боковые стороны равнобедренного треугольника равны , основание равно . Найдите радиус описанной окружности этого треугольника.

Углы треугольника не даны. Что ж, выразим его площадь двумя разными способами.

, где — высота треугольника. Ее найти несложно — ведь в равнобедренном треугольнике высота является также и медианой, то есть делит сторону пополам. По теореме Пифагора найдем . Тогда .

Задачи на вписанные и описанные треугольники особенно необходимы тем, кто нацелен на решения задания .

Прямоугольный треугольник, формулы, задачи в общем виде

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Тема этого занятия – «Прямоугольный треугольник, формулы, задачи в общем виде». Для начала дадим еще раз определение прямоугольному треугольнику, повторим основные тригонометрические функции и формулы, в которых он применяется. Решим задачи на вписанную в такие треугольники окружность и описанную вокруг них окружность.

источники:

http://ege-study.ru/ru/ege/materialy/matematika/vpisannyj-i-opisannyj-treugolnik-vpisannaya-i-opisannaya-okruzhnost/

http://interneturok.ru/lesson/geometry/9-klass/itogovoe-povtorenie-kursa-geometrii-za-79-klassy/pryamougolnyy-treugolnik-formuly-zadachi-v-obschem-vide


Download Article

Use the midpoint formula, the distance formula, or a compass to find circumcenter


Download Article

  • What is the circumcenter?
  • |

  • Finding Circumcenter with the Midpoint Formula
  • |

  • Finding Circumcenter with the Distance Formula
  • |

  • Drawing the Circumcenter with a Compass

You’ve got a stack of math problems in front of you and they’re all asking the same thing: find the circumcenter of the triangle. You have the triangle and the coordinates of its vertices, but where do you go from here? Well, you’ve come to the right place! In this article, we’ll tell you what formulas you need and how to use them to calculate the circumcenter’s coordinates. To help you visualize the circumcenter of a triangle, we’ll also give you step-by-step instructions on how to draw it with a compass. Read on to learn more!

Things You Should Know

  • Circumcenter is where the perpendicular lines at the midpoints of each triangle’s side intersect. Each vertex of the triangle is an equal distance from circumcenter.
  • Find circumcenter using a triangle’s vertices and the mid-point and slope-intercept formulas.
  • Alternatively, use the distance formula to find circumcenter.
  • Draw the circumcenter on a triangle using a compass. Find the perpendicular, bisecting lines on the triangle’s sides and mark where they intersect.
  1. Image titled Find Circumcenter Step 1

    Circumcenter is where a triangle’s perpendicular, bisecting lines intersect. If you draw a line at the midpoint of each triangle’s side, you’ll have 3 perpendicular lines bisecting each side. These perpendicular lines all meet together at a point; this is the circumcenter. The circumcenter also forms the triangle’s circumcircle. It is the center of a circle, that when drawn, passes through each vertex of the triangle.[1]

    • The main principle behind the circumcenter is that each vertex on the triangle is an equal distance away from the circumcenter.
    • On right triangles, the circumcenter is located at the midpoint of the hypotenuse, or the longest side of the triangle.[2]
    • On obtuse triangles, the circumcenter is located outside of the triangle.
    • On acute triangles, the circumcenter is located inside the triangle.
  2. Advertisement

  1. Image titled Find Circumcenter Step 2

    1

    Find the midpoints of the triangle using the vertices’ coordinates. Most math problems give you the (x, y) coordinates of each of the triangle’s vertices. The circumcenter is at the intersection of the perpendicular lines at the midpoint of the triangle’s sides. Because the distance from the circumcenter to each vertex is the same, you only need to find the midpoints of 2 sides.[3]

    • A triangle’s verticies are A = (-4, 2), B = (2, 4), and C = (4, -4).
      • Use the midpoint formula: [(x1 + x2)/2,( y1 + y2)/2].
      • Plug in the coordinates for line AB: [(-4 + 2)/2, (2 + 4)/2].
      • Plug in the coordinates for line BC: [(2 + 4)/2, (4 + -4)/2].
      • Solve each midpoint: line AB’s midpoint is (-1, 3) and line BC’s is (3, 0).
  2. Image titled Find Circumcenter Step 3

    2

    Calculate the slope of the 2 lines. The perpendicular lines at the triangle’s midpoints intersect to give you the circumcenter. So, calculate the slope of the lines to find out where they intersect. Because these lines are perpendicular, take the opposite reciprocal of the slope to find the perpendicular line’s slope. For example, a slope of 2/1 becomes -½.[4]

    • A triangles vertices are A = (-4, 2), B = (2, 4), and C = (4, -4).
      • Use the slope formula: m = (y2 — y1) / (x2 — x1).
      • Plug in the coordinates for line AB: m = (4 — 2) / (2 — -4).
      • Plug in the coordinates for line BC: m = (-4 — 4) / (4 — 2).
      • Solve each slope: line AB’s slope is m = ⅓ and line BC’s is m = -4.
      • Take the opposite reciprocal of the slope: Flip AB’s slope to 1/(⅓) and change the sign. The perpendicular slope is m = -3. BC’s perpendicular slope is m = ¼.
  3. Image titled Find Circumcenter Step 4

    3

    Solve each line’s point-slope equation to find the y-intercept. With your slopes identified for the perpendicular lines, use the slope-intercept formula of y — y1 = m(x — x1) to find the entire slope equation.[5]

    • Use the point-slope equation: y — y1 = m(x — x1)
      • Plug in the midpoint and slope for line AB: y — 3 = -3(x — -1).
      • Plug in the midpoint and slope for line BC: y — 0 = ¼(x — 3).
      • Solve and simplify each equation: line AB’s is y = -3x. Line BC’s is y = ¼x — ¾ (or 4y = x — 3 if you get rid of the fractions).
  4. Image titled Find Circumcenter Step 5

    4

    Set the equations equal to each other to find circumcenter. Use substitution to find where the 2 perpendicular lines intersect. Insert line AB’s y-value into line BC’s point-slope equation. This gives you an x-value. Then, plug the x-value into either point-slope equation to find the y-coordinate. Put the x and y values together to get the circumcenter’s coordinates![6]

    • Substitute line AB’s point-slope equation into line BC’s equation: (-3x) = ¼x — ¾.
      • Solve for x: x = -3/13.
      • Plug x into either equation: y = -3(-3/13) with y = 9/13. So, the circumcenter is located at (-3/13, 9/13).
  5. Advertisement

  1. Image titled Find Circumcenter Step 6

    1

    Use the distance formula to set 2 vertices equal to each other. Each vertex on the triangle is the same distance away from the circumcenter. If the circumcenter is O and the triangle’s vertices are A, B, and C, the distance between A to O is the same as B to O and C to O. So, set AO and BO equal to each other, as well as BO and CO, using the distance formula.[7]

    • A triangle’s vertices are A = (−2, 3), B = (2, −1), and C = (4, 0).
      • Use a simplified distance formula: (x2 — x1)2 + (y2 — y1)2.
      • Set A and B equal to each other: (-2 — x)2 + (3 — y)2 = (2 — x)2 + (-1 — y)2.
      • Set B and C equal to each other: (2 — x)2 + (-1 — y)2 = (4 — x)2 + (0 — y)2.
  2. Image titled Find Circumcenter Step 7

    2

    Solve the distance equations. Use the FOIL method (First, Outer, Inner, Last) to multiply the squared expressions together (i.e. (-2-x)2 in the example above). Then, simplify the expression by adding or subtracting the x, y, and numerical values together.[8]

    • Use FOIL to solve each equation.
      • For AO = BO: x2 + 4x + 4 + y2 − 6y + 9 = x2 − 4x + 4 + y2 + 2y +1
      • For BO = CO: x2 − 4x + 4 + y2 + 2y + 1= x2 − 8x + 16 + y2
      • Solve and simplify each equation: AO = BO results in y = x + 1. Solving BO = CO results in 4x + 2y = 11.
  3. Image titled Find Circumcenter Step 8

    3

    Substitute 1 equation into the 2nd to get the circumcenter’s x-value. To find the x-coordinate of the circumcenter, insert the first equation’s y-value in the second equation. Then, solve for x.[9]

    • Substitute AO = BO’s equation into BO = CO: 4x + 2(x + 1) = 11.
      • Expand the equation: 4x + 2x +2 = 11.
      • Solve for x: x = 3/2.
  4. Image titled Find Circumcenter Step 9

    4

    Insert the x-value in one of the equations to find the y-coordinate. Now that you know what the circumcenter’s x-coordinate is, solve for its y-coordinate. Just substitute x into one of the equations and solve. Then, put the x and y-values together to get the circumcenter’s coordinates![10]

    • Insert x into one of the equations: y = (3/2) + 1.
      • Solve for y: y = 5/2. So, the circumcenter’s coordinates are (3/2, 5/2).
  5. Advertisement

  1. Image titled Find Circumcenter Step 10

    1

    Use a compass to draw an arc through one of the triangle’s sides. Choose a side of the triangle and place the compass point on one of the line’s vertices; these are the points where 2 lines meet. Open the compass up so it’s a little more than half as long as the line segment. With the point in place, draw one continuous arc spanning below the triangle’s side, through it, and above it.[11]

  2. Image titled Find Circumcenter Step 11

    2

    Place the compass on the line’s other vertex and draw an arc. Using the same triangle side you chose, move the compass point to the line’s other vertex. Follow the same steps as above to draw an arc above and below this side, too.[12]

  3. Image titled Find Circumcenter Step 12

    3

    Use a ruler to draw a line through the points where the arcs intersect. With your 2 arcs drawn, you’ll see 2 points where they meet. Just take out a ruler and draw a straight line through these points, taking the line through the triangle’s side. This gives you the midpoint of this triangle line and the perpendicular, bisecting line.[13]

  4. Image titled Find Circumcenter Step 13

    4

    Follow the same steps for one of the triangle’s other sides. Place the compass point at the vertex of one of the other triangle sides. Adjust the compass so it’s open to about half the size of the line segment. Draw an arc, then move the compass to the side’s other vertex. Make the other arc line, then draw a straight line through the intersecting points.[14]

  5. Image titled Find Circumcenter Step 14

    5

    Find the circumcenter by marking where the 2 lines intersect. With your 2 perpendicular, bisecting lines drawn, simply mark where they intersect. Depending on the type of triangle you have, the circumcenter might be in the triangle, on one of its sides, or outside of the triangle.[15]

    • If you want, find the perpendicular line of the 3rd triangle side, too. You’ll see that its perpendicular, bisecting line also passes through the circumcenter.
  6. Image titled Find Circumcenter Step 15

    6

    Use the compass to draw the circumcircle around the triangle. Place the compass point at the circumcenter. Then, adjust the compass so the pencil reaches one of the triangle’s vertices. Draw the circle. As you go around the triangle, you’ll notice that the edges of the circle just touch each point of the triangle. This is because the triangle’s vertices are equidistant from the circumcenter.[16]

  7. Advertisement

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

References

About This Article

Thanks to all authors for creating a page that has been read 2,673 times.

Did this article help you?

Описанная окружность — подробнее

Определение

Описанная окружность – такая окружность, что проходит через все три вершины треугольника, около которого она описана.

Свойства и центр описанной кружности

И вот, представь себе, имеет место удивительный факт:

Вокруг всякого треугольника можно описать окружность.

Почему этот факт удивительный?

Потому что треугольники ведь бывают разные!

И для всякого найдётся окружность, которая пройдёт через все три вершины, то есть описанная окружность.

Доказательство этого удивительного факта мы приведем чуть позже, а здесь заметим только, что если взять, к примеру, четырехугольник, то уже вовсе не для всякого найдётся окружность, проходящая через четыре вершины.

Вот, скажем, параллелограмм – отличный четырехугольник, а окружности, проходящей через все его четыре вершины – нет!

А есть только для прямоугольника:

Подробнее об этом смотри в статье о вписанных четырехугольниках!

Ну вот, а треугольник всякий и всегда имеет собственную описанную окружность! И даже всегда довольно просто найти центр этой окружности.

Центр окружности, описанной около треугольника, лежит на пересечении серединных перпендикуляров к сторонам этого треугольника.

Знаешь ли ты, что такое серединный перпендикуляр?

Серединный перпендикуляр — это прямая, проходящая через середину отрезка и перпендикулярная ему.

Прямая ( displaystyle a) – это серединный перпендикуляр к отрезку ( displaystyle AB).

А теперь посмотрим, что получится, если мы рассмотрим целых три серединных перпендикуляра к сторонам треугольника.

Вот оказывается (и это как раз и нужно доказывать, хотя мы и не будем), что все три перпендикуляра пересекутся в одной точке. Смотри на рисунок – все три серединных перпендикуляра пересекаются в одной точке ( displaystyle O).

Это и есть центр описанной около (вокруг) треугольника ( displaystyle ABC) окружности.

Как ты думаешь, всегда ли центр описанной окружности лежит внутри треугольника? Представь себе – вовсе не всегда!

Если треугольник тупоугольный, то центр его описанной окружности лежит снаружи!

Вот так:

А вот если остроугольный, то внутри:

Что же делать с прямоугольным треугольником?

В прямоугольном треугольнике центр описанной окружности лежит на середине гипотенузы.

Здорово, правда?

Если треугольник – прямоугольный, то не надо строить аж три перпендикуляра, а можно просто найти середину гипотенузы – и центр описанной окружности готов!

Да ещё с дополнительным бонусом:

В прямоугольном треугольнике радиус описанной окружности равен половине гипотенузы.

Раз уж заговорили о радиусе описанной окружности: чему он равен для произвольного треугольника? И есть ответ на этот вопрос: так называемая теорема синусов.

А именно:

В произвольном треугольнике:
( Large displaystyle frac{a}{sin angle A}=2R)

Ну и, конечно,

( displaystyle begin{array}{l}frac{b}{sin angle B}=2R\frac{c}{sin angle C}=2Rend{array})

Так что ты теперь всегда сможешь найти и центр , и радиус окружности, описанной вокруг треугольника.

То есть чтобы найти радиус описанной окружности, нужно знать одну (!) сторону и один (!) противолежащий ей угол. 

Хорошая формула? По-моему, просто отличная!

Доказательство теоремы

Теорема. Вокруг всякого треугольника можно описать окружность, при том единственным образом.

Центр этой окружности – точка пересечения серединных перпендикуляров к сторонам треугольника.

Смотри, вот так:

Давай наберёмся мужества и докажем эту теорему.

Если ты читал уже тему «Биссектриса» разбирался в том, почему же три биссектрисы пересекаются в одной точке, то тебе будет легче, но и если не читал – не переживай: сейчас во всём разберёмся.

Доказательство будем проводить, используя понятие геометрического места точек (ГМТ).

Геометрическое место точек, обладающих свойством «( displaystyle X)» — такое множество точек, что все они обладают свойством «( displaystyle X)» и никакие другие точки этим свойством не обладают.

Ну вот, например, является ли множество мячей – «геометрическим местом» круглых предметов? Нет, конечно, потому что бывают круглые …арбузы.

А является ли множество людей, «геометрическим местом», умеющих говорить? Тоже нет, потому что есть младенцы, которые говорить не умеют.

В жизни вообще сложно найти пример настоящего «геометрического места точек». В геометрии проще. Вот, к примеру, как раз то, что нам нужно:

Серединный перпендикуляр к отрезку является геометрическим местом точек, равноудалённых от концов отрезка.

Тут множество – это серединный перпендикуляр, а свойство «( displaystyle X)» — это «быть равноудаленной (точкой) от концов отрезка».

Проверим? Итак, нужно удостовериться в двух вещах:

  • Всякая точка на серединном перпендикуляре находится на одинаковом расстоянии от концов отрезка
  • Всякая точка, которая равноудалена от концов отрезка – находится на серединном перпендикуляре к ему

Приступим:

Проверим 1. Пусть точка ( displaystyle M) лежит на серединном перпендикуляре к отрезку ( displaystyle AB).

Соединим ( displaystyle M) с ( displaystyle A) и с ( displaystyle B).Тогда линия ( displaystyle MK) является медианой и высотой в ( displaystyle Delta AMB).

Значит, ( displaystyle Delta AMB) – равнобедренный, ( displaystyle MA=MB) – убедились, что любая точка ( displaystyle M), лежащая на серединном перпендикуляре, одинаково удалена от точек ( displaystyle A) и ( displaystyle B).

Теперь 2. Почти точно так же, но в другую сторону. Пусть точка ( displaystyle M) равноудалена от точек ( displaystyle A) и ( displaystyle B), то есть ( displaystyle MA=MB).

Возьмём ( displaystyle K) – середину ( displaystyle AB) и соединим ( displaystyle M) и ( displaystyle K). Получилась медиана ( displaystyle MK). Но ( displaystyle Delta AMB) – равнобедренный по условию ( displaystyle (MA=MB)Rightarrow MK) не только медиана, но и высота, то есть – серединный перпендикуляр. Значит, точка ( displaystyle M) — точно лежит на серединном перпендикуляре.

Всё! Полностью проверили тот факт, что серединный перпендикуляр к отрезку является геометрическим местом точек, равноудаленных от концов отрезка.

Это все хорошо, но не забыли ли мы об описанной окружности? Вовсе нет, мы как раз подготовили себе «плацдарм для нападения».

Рассмотрим треугольник ( displaystyle ABC). Проведём два серединных перпендикуляра ( displaystyle {{a}_{1}}) и ( displaystyle {{a}_{2}}), скажем, к отрезкам ( displaystyle AB) и ( displaystyle BC). Они пересекутся в какой-то точке, которую мы назовем ( displaystyle O).

А теперь, внимание!

Точка ( displaystyle O) лежит на серединном перпендикуляре ( displaystyle {{a}_{1}}Rightarrow OA=OB);
точка ( displaystyle O) лежит на серединном перпендикуляре ( displaystyle {{a}_{2}}Rightarrow OB=OC).
И значит, ( displaystyle OA=OB=OC) и ( displaystyle OA=OC).

Отсюда следует сразу несколько вещей:

Бонусы: Вебинары из нашего курса подготовки к ЕГЭ по математике

ЕГЭ 6. Описанная окружность. Многоугольники

Вы этом видео вы узнаете, что такое описанная окружность, где находится её центр, и другие свойства. 

Около каких фигур можно, а вокруг каких нельзя описать окружность. 

Также мы узнаем, что такое правильные многоугольники, и какие у них свойства; как они связаны с описанной окружностью. 

Научимся решать задачи из ЕГЭ на описанную окружность и правильные многоугольники.

ЕГЭ 6. Вписанная окружность

В этом видео мы узнаем, что такое вписанная окружность, где находится её центр, и другие свойства.

В какие фигуры можно, а в какие нельзя вписать окружность. Научимся решать задачи на вписанную окружность.

Вписанные и описанные треугольники. Еще две формулы площади треугольника. Теорема синусов

Вписанный треугольник — треугольник, все вершины которого лежат на окружности. Тогда окружность называется описанной вокруг треугольника.

Очевидно, расстояние от центра описанной окружности до каждой из вершин треугольника одинаково и равно радиусу этой окружности.

Вокруг любого треугольника можно описать окружность, причем только одну.

Окружность вписана в треугольник, если она касается всех его сторон. Тогда сам треугольник будет описанным вокруг окружности. Расстояние от центра вписанной окружности до каждой из сторон треугольника равно радиусу этой окружности.

В любой треугольник можно вписать окружность, причем только одну.

Рассмотрим важные теоремы, которые помогут нам при решении задач.

Теорема 1. Вокруг любого треугольника можно описать окружность, причем только одну. Ее центр – это точка пересечения серединных перпендикуляров к сторонам треугольника.

Иногда говорят, что окружность описана около треугольника. Это означает то же самое – все вершины треугольника лежат на окружности.

Доказательство этой теоремы здесь: Свойство серединных перпендикуляров.

Теорема 2. В любой треугольник можно вписать окружность, причем только одну. Ее центром является точка пересечения биссектрис треугольника.

Доказательство теоремы здесь: Свойства биссектрис треугольника.

Теорема 3. Центр окружности, описанной вокруг прямоугольного треугольника, лежит на середине гипотенузы, а радиус этой окружности равен половине гипотенузы.

Доказательство:

Медиана, проведенная к гипотенузе, равна ее половине, по свойству медианы прямоугольного треугольника.
Его доказательство можно найти здесь: Свойство медианы прямоугольного треугольника.

Поэтому середина гипотенузы – это точка, равноудаленная от вершины прямого угла и от концов гипотенузы, то есть от всех вершин прямоугольного треугольника.

Теорема 4.

Центр окружности, описанной вокруг остроугольного треугольника, лежит внутри этого треугольника.

Центр окружности, описанной вокруг прямоугольного треугольника, лежит на середине гипотенузы.

Центр окружности, описанной вокруг тупоугольного треугольника, лежит вне этого треугольника.

Теорема 5. Радиус окружности r , вписанной в прямоугольный треугольник с катетами a и b и гипотенузой c, вычисляется по формуле: displaystyle r=frac{a+b-c}{2}.

Доказательство теоремы здесь: Радиус окружности, вписанной в прямоугольный треугольник.

В задачах ЕГЭ чаще всего встречаются вписанные и описанные правильные треугольники.

Напомним определение правильного многоугольника:

Правильным называется многоугольник, все стороны и все углы которого равны. Центры вписанной и описанной окружностей правильного многоугольника находятся в одной точке.

Из этого определения, понятно, что правильный треугольник – равносторонний. Для решения такого треугольника полезно уметь выводить формулы радиусов вписанной и описанной окружностей.

Теорема 6.

Для правильного треугольника со стороной а радиус описанной окружности равен displaystyle R=frac{asqrt{3}}{3}.

А радиус окружности, вписанной в правильный треугольник, равен displaystyle r=frac{asqrt{3}}{6}.

Докажем эту теорему.

У равностороннего треугольника медианы, биссектрисы, высоты и серединные перпендикуляры совпадают, и точка их пересечения является центром как вписанной, так и описанной окружностей.

Пусть в правильном треугольнике ABC стороны AB=BC=AC=a, точка О – центр вписанной и описанной окружностей, AM, BH, CN — медианы и высоты. По свойству медиан треугольника, отрезки AM, BH, CN в точке О делятся в отношении 2 : 1, считая от вершин. Тогда OA = OB = OC = R, OM = OH = ON = r.

Получаем, что displaystyle R=OB=frac{2}{3}BH, r=OH=frac{1}{3}BH.

Из треугольника АВН получаем, что длина стороны displaystyle BH=frac{asqrt{3}}{2}.

Тогда displaystyle R=frac{2}{3}cdot frac{asqrt{3}}{2}=frac{asqrt{3}}{3}, r=frac{1}{3}cdot frac{asqrt{3}}{2}=afrac{sqrt{3}}{6}.

Значит, формула радиуса окружности, описанной около правильного треугольника — displaystyle r=frac{asqrt{3}}{3}.

Формула радиуса окружности, вписанной в правильный треугольник displaystyle r=frac{asqrt{3}}{6}.

Как видим, часто геометрическая задача решается с помощью несложных формул, и помогает в этом алгебра.

Разберем задачи ОГЭ и ЕГЭ по теме: Вписанные и описанные треугольники.

Задача 1, тренировочная. Периметр правильного треугольника АВС равен 15. Найдите радиус вписанной и описанной окружностей.

Решение:

Длина стороны равностороннего треугольника ABC  равна 15 : 3 = 5.

Радиусы r – вписанной и R – описанной окружностей можно найти по формулам:

displaystyle r=frac{asqrt{3}}{6}, R=frac{asqrt{3}}{3}, где a — сторона треугольника.

Значит, displaystyle r=frac{5sqrt{3}}{6}, R=frac{5sqrt{3}}{3}.

Ответ: displaystyle r=frac{5sqrt{3}}{6}, R=frac{5sqrt{3}}{3}.

Решая задачи по теме «Вписанные и описанные треугольники», мы часто пользуемся формулами площади треугольника, а также теоремой синусов.

Вот две полезные формулы для площади треугольника.

Площадь треугольника равна половине произведения его периметра на радиус вписанной окружности.

S=p cdot r,

где p=genfrac{}{}{}{0}{displaystyle 1}{displaystyle 2} left( a+b+c right) — полупериметр,

r — радиус окружности, вписанной в треугольник.

Есть и еще одна формула, применяемая в основном в задачах части 2:

S=genfrac{}{}{}{0}{abc}{4R},

где a, b, c — стороны треугольника, R — радиус описанной окружности.

Для любого треугольника верна теорема синусов:

Теорема синусов:

displaystylefrac{a}{sinangle A}=frac{b}{sinangle B}=frac{c}{sinangle C}=2R,

R — радиус описанной окружности

Задача 2, ЕГЭ. Найдите диаметр окружности, вписанной в треугольник со сторонами 13, 14 и 15.

Решение:

Выразим площадь треугольника двумя разными способами:

displaystyle S=pr,

displaystyle S=sqrt{p(p-a)(p-b)(p-c)}, где displaystyle p=frac{a+b+c}{2} – полупериметр треугольника, a a, b, c – его стороны.

displaystyle p=frac{13+14+15}{2}=21,

displaystyle S=sqrt{21(21-13)(21-14)(21-15)}=sqrt{21cdot 8cdot 7cdot 6}=84.

Тогда displaystyle r=frac{S}{p}=frac{84}{21}=4, а диаметр окружности равен 8.

Ответ: 8.

Задача 3, ЕГЭ. Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен 2. Найдите гипотенузу c этого треугольника. В ответе укажите cleft( sqrt{2}-1 right).

Рисунок к задаче 1

Решение:

Треугольник прямоугольный и равнобедренный. Значит, его катеты одинаковы. Пусть каждый катет равен a. Тогда гипотенуза равна asqrt{2}.

Запишем площадь треугольника АВС двумя способами:

S=genfrac{}{}{}{0}{displaystyle 1}{displaystyle 2} a^2.

S=genfrac{}{}{}{0}{displaystyle 1}{displaystyle 2}left( 2a + asqrt{2}right)r.

Приравняв эти выражения, получим, что a=left( 2 + sqrt{2}right)r. Поскольку r=2, получаем, что a=4+2sqrt{2}.

Тогда c=asqrt{2}=4+4sqrt{2}=4left( 1+sqrt{2} right).

В ответ запишем cleft( sqrt{2}-1 right)=4.

Ответ: 4.

Задача 4, ЕГЭ. В треугольнике ABC сторона AB равна  7sqrt{3}, а угол B равен 120^{circ}. Найдите радиус описанной около этого треугольника окружности.

Решение:

По теореме синусов displaystyle frac{AC}{sin B}=2R.

Тогда displaystyle R=frac{7sqrt{3}}{2}:frac{sqrt{3}}{2}=7.

Ответ: 7.

Задача 5, ЕГЭ. В треугольнике ABC угол А равен 57^{circ}, а угол В – 93^{circ}. Найдите радиус окружности, описанной около треугольника ABC, если сторона AB равна 10.

Решение:

Зная, что сумма углов треугольника равна 180^{circ}, найдем угол С.

displaystyle angle C = 180^{circ }-(angle A+angle B)=180^{circ }-(53^{circ }+97^{circ })=30^{circ }.

По теореме синусов displaystyle frac{AB}{sinC}=frac{BC}{sinA}=frac{AC}{sinB}=2R.

Значит, displaystyle R=frac{AB}{2sinC}=10.

Ответ: 10.

Задача 6, ЕГЭ. Сторона АС треугольника АВС с тупым углом В равна радиусу описанной около него окружности. Найдите угол В. Ответ дайте в градусах.

Рисунок к задаче 2

По теореме синусов,

genfrac{}{}{}{0}{AC}{sin B}=2R.

Получаем, что sin B=genfrac{}{}{}{0}{displaystyle 1}{displaystyle 2}. Угол B — тупой. Значит, он равен 150^{circ}.

Ответ: 150.

Задача 7, ЕГЭ. Боковые стороны равнобедренного треугольника равны 40, основание равно 48. Найдите радиус описанной окружности этого треугольника.

Рисунок к задаче 3

Углы треугольника не даны. Что ж, выразим его площадь двумя разными способами.

S=genfrac{}{}{}{0}{abc}{4R}.

S=genfrac{}{}{}{0}{displaystyle 1}{displaystyle 2} ah, где h — высота треугольника. Ее найти несложно — ведь в равнобедренном треугольнике высота является также и медианой, то есть делит сторону AB пополам. По теореме Пифагора найдем h=32.

Тогда R=25.

Ответ: 25.

Задача 8, ОГЭ. В равнобедренном треугольнике ABC основание AC равно 10 см, а высота, проведенная к основанию, 12 см. Найдите периметр треугольника и радиус вписанной окружности.

Решение:

Высота BH, проведенная к основанию AC, является медианой. Значит, AH = HC = 5.

AB находится по теореме Пифагора из треугольника ABH:

displaystyle AB=sqrt{AH^{2}+BH^{2}}=sqrt{5^{2}+12^{2}}=13.

Периметр треугольника ABC – это сумма длин сторон, т.е. P = 13 + 13 + 10 = 36.

Площадь треугольника displaystyle S=frac{1}{2}ACcdot BH=frac{1}{2}cdot 10cdot 12=60.

Радиус вписанной окружности r найдем по формуле S = p r:

displaystyle r=frac{S}{p}=frac{60}{18}=frac{10}{3}.

Ответ: displaystyle 30; frac{10}{3}.

Задача 9, ОГЭ. Стороны AB и BC треугольника ABC равны 6 и 3sqrt{2} соответственно, угол B- 45^{circ }. Найдите диаметр окружности, описанной около треугольника ABC.

Решение:

Найдем длину стороны AC по теореме косинусов, используя длины сторон AB, CB и косинус угла В, противолежащего стороне AC:

displaystyle AC^{2}=AB^{2}+BC^{2}-2cdot ABcdot BCcdot cosB=6^{2}+(3sqrt{2})^{2}-2cdot 6cdot 3sqrt{2}cdot frac{sqrt{2}}{2}=18,AC=3sqrt{2}.

Теперь воспользуемся теоремой синусов:

displaystyle frac{AC}{sin45^{circ }}=2R,

displaystyle 2R=3sqrt{2}:frac{sqrt{2}}{2}=6.

Значит, диаметр окружности, описанной около треугольника ABC, равен 6.

Ответ: 6.

Задача 10. Найдите площадь прямоугольного треугольника, если радиус описанной окружности равен 5, а вписанной 1.

Решение:

Пусть длина радиуса описанной окружности R = 5, а длина радиуса вписанной окружности r = 1.

Мы знаем, что displaystyle r=frac{a+b-c}{2}, R=frac{c}{2}, S=pcdot r, где displaystyle p=frac{a+b+c}{2} – полупериметр, a, b, c – стороны треугольника.

Значит, displaystyle r=frac{a+b-c}{2}=frac{a+b+c-2c}{2}=frac{a+b+c}{2}-frac{2c}{2}=

=p-c=p-2R.

Отсюда displaystyle r=p-2R, p=r+2R.

Тогда displaystyle S=(r+2R)cdot r=(1+2cdot 5)cdot 1=11.

Ответ: 11.

Задача 11. Найдите площадь прямоугольного треугольника, если радиус вписанной окружности равен 2, а гипотенуза 10.

Решение:

Пусть радиус вписанной окружности r = 2, а гипотенуза c = 10.

Мы знаем, что в прямоугольном треугольнике displaystyle r=frac{a+b-c}{2}.

Значит, displaystyle r=frac{a+b-c}{2}=frac{a+b+c-2c}{2}=frac{a+b+c}{2}-frac{2c}{2}=p-c, отсюда p =r+c.

Площадь находится по формуле S =pr, где displaystyle p=frac{a+b+c}{2} – полупериметр, a, b, c – стороны треугольника.

displaystyle S=(r+c)cdot r=(2+10)cdot 2=24.

Ответ: 24.

Рассмотрим также задачу из 2 части ЕГЭ по математике.

Задача 12. Точка О – центр вписанной в треугольник ABC окружности. Прямая BO вторично пересекает описанную около треугольника ABC окружность в точке Р.

а) Докажите, что displaystyle angle POA=angle PAO.

б) Найдите площадь треугольника APO, если радиус окружности, описанной около треугольника ABC равен 10, displaystyle angle BAC=75^{circ }, angle ABC=60^{circ }.

Решение:

а) Пусть displaystyle angle ABC=2beta , angle BAC=2alpha . О – центр вписанной окружности, значит, AO и BO – биссектрисы углов ABC и BAC соответственно, и displaystyle angle ABO=angle OBC=beta , angle BAO=angle OAC=alpha .

displaystyle angle PAC=angle PBC=beta как вписанные углы, опирающиеся на одну и ту же дугу PC.
Тогда displaystyle angle PAO=alpha +beta .

displaystyle angle POA – внешний угол треугольника AOB, поэтому он равен сумме двух внутренних углов, не смежных с ним, т.е. displaystyle angle POA=angle OAB+angle OBA=alpha +beta .

Значит, displaystyle angle POA=angle PAO. Что и требовалось доказать.

б)  displaystyle angle POA=angle PAO, следовательно, треугольник POA – равнобедренный, AO – основание, PA = PO.

Угол ABC равен 60^{circ }, значит, displaystyle angle ABO=angle OBC=30^{circ }.

По теореме синусов для треугольника ABP:

displaystyle frac{AP}{sinB}=2R, AP=2cdot 10cdot sin30^{circ }=10.

Тогда отрезок OP равен отрезку AP, т.е. OP = 10.

Найдем угол С из треугольника ABC: displaystyle angle C= 180^{circ }-60^{circ }-75^{circ }=45^{circ }.

displaystyle angle APO=angle ACB=45^{circ } как вписанные углы, опирающиеся на дугу AB.

Площадь треугольника AOP находится по формуле: displaystyle S=frac{1}{2}abcdot sinalpha.

displaystyle S_{APO}=frac{1}{2}cdot APcdot POcdot sinAPO=frac{1}{2}cdot 10cdot 10cdot sin45^{circ }=frac{1}{2}cdot 10cdot 10cdot frac{sqrt{2}}{2}=
displaystyle =25sqrt{2}.

Ответ: displaystyle 25sqrt{2}.

Задачи на вписанные и описанные треугольники особенно необходимы тем, кто нацелен на решения задания 16.

Если вам понравился наш материал — записывайтесь на курсы подготовки к ЕГЭ по математике онлайн

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Вписанные и описанные треугольники. Еще две формулы площади треугольника. Теорема синусов» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
08.05.2023

ВИДЕОУРОК

Вписанная окружность
прямоугольного треугольника.

Радиус окружности,
вписанной в прямоугольный треугольник,

можно найти по формуле:

где  r
искомый радиус,
а  и  b – катеты,

с – гипотенуза треугольника.

Радиус вписанной в
прямоугольный треугольник окружности

равен произведению катетов, делённому на сумму
катетов и гипотенузы,

где  r
искомый радиус,
а  и  b – катеты,

с – гипотенуза треугольника.

Радиус вписанной в
прямоугольный треугольник окружности равен площади этого треугольника, делённой
на полупериметр:

где  р – полупериметр

ЗАДАЧА:

Точка касания окружности, вписанной в прямоугольный треугольник,
делит один из катетов на отрезки 
2 см  и  8 см,
отсчитывая от вершины прямого угла. Найдите периметр треугольника.

РЕШЕНИЕ:

Начертим чертёж:

ВМ
= В
N = х.

(2 + х)2 + (2 + 8) 2 = (8
+
х)2,

х2 + 4х + 4
+ 100 =

= х2 + 16х + 64,

12х = 40,

х =
10/3 (см).

Р = (2 + 8) + (8 + 10/3) + (10/3 + 2) = 262/3 (см).

ЗАДАЧА:

Вписанная окружность прямоугольного треугольника  АВС  касается гипотенузы  АВ  в точке 
К. Найдите радиус
вписанной окружности, если 
АК = 4 см, ВК
= 6
см.

РЕШЕНИЕ:

За свойством касательных имеем:

АК = АМ = 4 см
ВК = ВN = 6 см.


Обозначим радиус вписанной окружности
через 
х:

СN = СM = NО = МО = х.

Тогда 

АС =
(4 + х)
см
ВС = (6 + х) см,

АВ =
4
см +
6
см =
10
см.

По теореме Пифагора для треугольника  АВС
можно записать соотношение
:

(4 + х)2 + (6 + х)2 = 102.

Решим это квадратное уравнение:

16 + 8x + x2
+ 36 + 12
x + x2 = 100,

2x2 + 20x + 52 – 100 = 0,

2x2 + 20x – 48 = 0,

x2 + 10x – 24 = 0,

x1 = 2,  x2 = –10.

x2  не
удовлетворяет условию задачи.

ОТВЕТ:  2 см.

ЗАДАЧА:

Точка касания окружности, вписанной в прямоугольный треугольник,
делить гипотенузу на отрезки 
8 см  и  12
см. Найдите периметр треугольника.

РЕШЕНИЕ:

Начертим чертёж:

(8 + 12)2
= (8 +
х)2 + (12 + х)2,

400 = 64 + 16x + x2
+
x2 + 24x + 144,

2x2 + 40x – 192 = 0,

x2 + 20x – 96 = 0,

x1 = 4,  x2 = –24.

x2  не
подходит.

Р
= 8 + 12 + 12 + 4 + 4 + 8 = 48
(см).

ОТВЕТ:  48 см.

Описанная окружность
прямоугольного треугольника.

Центром окружности, описанной
вокруг прямоугольного треугольника, будет середина его гипотенузы.

Диаметр окружности,
описанной вокруг прямоугольного треугольника, равен его гипотенузе.

Медиана прямоугольного
треугольника, проведённая к его гипотенузе, равна половине гипотенузы и
является радиусом окружности, описанной около этого треугольника.

ОА = ОВ = ОС = R

Радиус описанной окружности равен половине
гипотенузы:

ЗАДАЧА:


Отрезок  ВС – диаметр окружности, изображённой на рисунку.

Угол  АВС = 55°.

Найдите
величин
у
угла  АСВ
?

РЕШЕНИЕ:

ВСдиаметр,
поэтому  ВАС = 90°,

АСВ = 180° – (90° + 55°) = 35°.

ЗАДАЧА:

Перпендикуляр,
опущенный из точки окружности на его диаметр, делит диаметр на отрезки, разность
между которыми равна 
5 см. Найдите радиус окружности, если длина перпендикуляра равна  6 см.

РЕШЕНИЕ:

Пусть  АВ – диаметр окружности с
центром в точке 
О, СD
АВ,

где  С – точка окружности,

СD = 6 см, АD = х см,

ВD – АD = 5 см.

Тогда 

DВ = (х + 5) см.

Треугольник  АСВ – прямоугольный (угол  С  прямой, так как
он вписанный и опирается на диаметр
).

СD – перпендикуляр, проведений из вершины прямого угла на
гипотенузу. Тогда
:

АD DВ = СD2,

х(х + 5) = 62,

х2
+ 5х – 36 = 0
,

x1 = –9,  x2 = 4.

x1  не подходит.

Поэтому, АD = 4 см,

DВ = 4 + 5 = 9 (см).

АВ
= А
D
+
DВ
=

=
4
+ 9 = 13
(см).

Тогда

r = АВ :
2 = 13 : 2 = 6,5
(см).

ОТВЕТ:  6,5 см

ЗАДАЧА:

Из точки на окружности проведены две перпендикулярные
хорды, разность между которыми равна 
4 см. Найдите эти хорды, если радиус окружности равен  10
см.

РЕШЕНИЕ:

Пусть задана окружность радиуса  R,

в
которой
проведен
ы
хорд
ы  АВ  и 
АС (АВ АС),

R = АО = ВО = СО =
10 см,

АС – АВ =
4
см.

Пусть  АВ = х см, тогда 

АС = (4
+ х)
см.

Так как  А = 90°, то треугольник 
ВАС – 
прямоугольный,
в
котором 

ВС = 2ОВ= 2 10 = 20 см.

Из
прямоугольного треугольника  ВАС  имеем:

АВ2 + АС2
=
ВС2,

х2 + (4 + х)2
= 20
2,

х2 + 16 + 8х
+
х2 = 400,

х2 + 4х
192 = 0,

х1 = 12, 

х2
= –16 –
не подходит.

Поэтому,
АВ = 12
см,

АС
= 4 + 12 = 16
(см).

ОТВЕТ:  12
см, 16 см

ЗАДАЧА:

Угол между биссектрисой и
медианой прямоугольного треугольника, проведёнными из вершины прямого угла,
равен 
14°.
Найдите меньший угол этого треугольника.

РЕШЕНИЕ:

Начертим чертёж.

Так как треугольник
прямоугольный и медиана 
ВМ  иcходит
из прямого угла 
В, то точка  М  является центром
описанной окружности вокруг треугольника 
АВС.
Следовательно,

АМ
= МС = МВ =
R,

где  R
радиус описанной окружности.

Найдём сначала угол  МВС.
Учитывая, что 
BD – биссектриса, то

DВС = 90/2 = 45°. Тогда

МВС = МВD + DВС,

МВС = 14° + 45° = 59°.

Рассмотрим
равнобедренный треугольник 
МВС  со сторонами 

МВ = МС,

в
котором углы при основании 
ВС  равны, то есть

С = МВС
 = 59°.

Так
как сумма острых углов в прямоугольном треугольнике равна 
90°, то

А + С  = 90°,

А = 90°С =

= 90° – 59° = 31°.

ЗАДАЧА:

Периметр
прямоугольного треугольника равен 
72 м, а радиус вписанной в него окружности – 6 м. Найдите диаметр описанной окружности.

РЕШЕНИЕ:

DO = OF = OE = r = 6 м.    

Поэтому  AD =
AF =
6
м.

FC = EC, BD = BE (отрезки касательных, проведённых из
одной точки
)

Пусть  


BD = BE = x, 

FC = EC = y,



Тогда  


AB
= x +
6, AC = y + 6

BC = x + y.

AB + AC + BC = 

= x + 6 + y + 6
+ x + y =
72.

2x + 2y + 12 = 72,

2x + 2y = 60,

x + y = 30.

(x + y) – гипотенуза, или диаметр описанной окружности.

ОТВЕТ:  30 м.

ЗАДАЧА:

В окружности на расстоянии  6
см  от его центра проведена хорда длинной 
16
см. Найдите радиус окружности.

РЕШЕНИЕ:

Начертим чертёж:

Пользуясь теоремой
Пифагора, находим радиус.

ЗАДАЧА:

Две окружности, радиусы которых равны  4 см  и  9 см, имеют внешнее касание. Найдите расстояние между
точками касания данных окружностей с их общей внешней касательной
.

РЕШЕНИЕ:

ВК АD, АК = 9 – 4 = 5 см.

Из  ВКА:

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как составить график зависимости в эксель
  • Как составить алгоритм вычисления в excel
  • Как найти девушек для тройника
  • Как же хочется найти свою половинку
  • Как найти линию пересечения плоскостей на проекции

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии