Доброе время суток, к качестве упражнения мне нужно вывести формулу нахождения центра масс однородной полусферы массы и радиуса
, всем давно известен ответ, что она располагается на оси симметрии ровно посередке, однако в процессе вывода у меня почему-то возникает ошибка, прошу помочь разобраться.
Вот ход моего решения:
1. Для того, чтобы найти координаты центра масс попробуем найти потенциальную энергию однородной полусферы, лежащей на столе. Для этого проведем ось вдоль оси симметрии полусферы, направив ее вверх. Разобьем нашу полусферу на множество бесконечно тонких колечек и будем отсчитывать их бесконечно малую потенциальную энергию:
, где
— поверхностная плотность сферы,
— радиус полусферы.
2. Найдем зависимость от
с помощью теоремы Пифагора:
Подставив, получим:
3. Для нахождения полной потенциальной энергии проинтегрируем найденное равенство:
Таким образом весь вопрос свелся к нахождению такого интеграла, для этого отметим, что:, где
— угол между поверхностью стола и радиусом сферы, проведенной к нашему бесконечно тонкому колечку.
Подставим такое выражение в наш интеграл и легко сосчитаем его:
Финишная прямая:
И это, конечно, хорошо, но неверно! Заранее прошу извинение за невежество!
2018-01-21
Определите положение центра масс однородного полушара радиусом $R$.
Решение:
Полушар симметричен относительно оси $x$ (рис.), поэтому его центр масс будет находиться на этой оси:
$r_{c} = x_{c} = frac{ sum_{i} Delta m_{i} x_{i}}{m}$, где $Delta m_{i}$ — элемент массы в виде диска радиусом $y$ и толщиной $Delta x$. Так как полушар сплошной, то от суммировании необходимо перейти к интегрированию, тогда $x_{c} = frac{ int_{0}^{R} xdm}{m}$.
$dm = rho dV = rho pi y^{2} dx; y^{2} = R^{2} — x^{2}; dm = rho pi (R^{2} — x^{2})dx$;
$rho$ — плотность материала полушара, $dV$ — элемент объема (диск). Масса полушара $m = frac{4}{6} pi R^{3} rho$, отсюда
$x_{c} = frac{6}{4 pi R^{3} rho } int_{0}^{R} rho pi (R^{2} — x^{2}) xdx = frac{3}{8}R$.
Механические и физические приложения поверхностного интеграла первого рода
Масса поверхности
Пусть на поверхности $sigma $ распределена масса с поверхностной плотностью $mu (mathbf { textit { x } } $,$mathbf { textit { y } } $,$mathbf { textit { z } } )$. Тогда масса $mathbf { textit { m } } $ поверхности равна
$mathbf { textit { m } } =iintlimits_sigma { mu (x,y,z)dsigma } $.
Статические моменты и центр масс
Статические моменты поверхности относительно координатных плоскостей $mathbf { textit { OYZ } } $, $mathbf { textit { OXZ } } $, $mathbf { textit { OXY } } $ равны соответственно $M_ { yz } =iintlimits_sigma { xmu dsigma } , M_ { xz } =iintlimits_sigma { ymu dsigma } , M_ { xy } =iintlimits_sigma { zmu dsigma } $
Координаты центра масс поверхности
$sigma $ равны $mathbf { textit { x } } _ { c } =frac { M_ { yz } } { m } $, $mathbf { textit { y } } _ { c } =frac { M_ { xz } } { m } $, $mathbf { textit { z } } _ { c } =frac { M_ { xy } } { m } $.
Моменты инерции
Момент инерции поверхности $sigma $ относительно прямой $mathbf { textit { L } } $ равен $mathbf { textit { I } } _ { L } =iintlimits_sigma { r_L^2 mu dsigma } $, где $r_L =mathbf { textit { r } } _ { L } (mathbf { textit { x } } ,mathbf { textit { y } } ,mathbf { textit { z } } )$ — расстояние от точки { $mathbf { textit { x } } ,mathbf { textit { y } } ,mathbf { textit { z } } $ } , лежащей на поверхности $sigma $, до прямой $mathbf { textit { L } } $. В частности, моменты инерции относительно координатных осей $mathbf { textit { OX } } ,mathbf { textit { OY } } $, $mathbf { textit { OZ } } $ равны
$I_x =iintlimits_sigma { (y^2+z^2)mu dsigma } $,
$I_y =iintlimits_sigma { (x^2+z^2)mu dsigma } $,
$I_z =iintlimits_sigma { (x^2+y^2)mu dsigma } $.
Момент инерции относительно точки $mathbf { textit { P } } (mathbf { textit { x } } _ { 0 } $,$mathbf { textit { y } } _ { 0 } $,$mathbf { textit { z } } _ { 0 } )$ равен $ I_p =iintlimits_sigma { ((x-x_0 )^2+(y-y_0 )^2+(z-z_0 )^2)mu (x,y,z)dsigma } $
Момент инерции относительно начала координат равен $ I_0 =iintlimits_sigma { (x^2+y^2+z^2)mu (x,y,z)dsigma =frac { 1 } { 2 } (I_x +I_y +I_z ). } $
Пример 1
Найти координаты центра масс полусферы $mathbf { textit { x } } ^ { 2 } +mathbf { textit { y } } ^ { 2 } +mathbf { textit { z } } ^ { 2 } =mathbf { textit { R } } ^ { 2 } ,mathbf { textit { z } } leqslant 0$, если поверхностная плотность в каждой точке сферы равна расстоянию от этой точки до оси $mathbf { textit { OZ } } $.
Решение
Масса полусферы $sigma $ равна
$ begin{array} { l } M=iintlimits_sigma { mu dsigma =iintlimits_sigma { sqrt { x^2+y^2 } dsigma = } } iintlimits_ { x^2+y^2leqslant R^2 } { sqrt { x^2+y^2 } cdot sqrt { 1+((sqrt { R^2-x^2-y^2 } { ) } ‘_x )^2+((sqrt { R^2-x^2-y^2 } { ) } ‘_y )^2 } } dxdy= \ =iintlimits_ { x^2+y^2leqslant R^2 } { sqrt { x^2+y^2 } cdot sqrt { 1+frac { x^2+y^2 } { R^2-x^2-y^2 } } dxdy= } iintlimits_ { x^2+y^2leqslant R^2 } { sqrt { x^2+y^2 } cdot frac { Rdxdy } { sqrt { R^2-x^2-y^2 } } =Rintlimits_0^ { 2pi } { dvarphi } intlimits_0^R { frac { r^2dr } { sqrt { R^2-r^2 } } = } } \ =2pi Rintlimits_0^R { frac { r^2-R^2+R^2 } { sqrt { R^2-r^2 } } dr=2pi Rleft( { R^2arcsin left. { frac { r } { R } }right|_0^R -intlimits_0^R { sqrt { R^2-r^2 } } dr }right)=frac { pi ^2R^3 } { 2 } . } \ end{array} $
{ Мы воспользовались тем, что интеграл $intlimits_0^R { sqrt { R^2-r^2 } dr } $ равен четверти площади круга радиуса $mathbf { textit { R } } $ , т.е. $frac { pi R^2 } { 4 } $ } .
Пример 2
Найти массу поверхности $G:left { { { begin{array} { * { 20 } c } { x^2+y^2+z^2=16 } hfill \ { ygeqslant 0 } hfill \ { 0leqslant zleqslant 3 } hfill \ end{array} } }right.$ с поверхностной плотностью $gamma = 2z^ { 2 } + 3$.
Решение
На рассматриваемой поверхности $z=sqrt { 16-x^2-y^2 } $,
$frac { partial z } { partial x } =-frac { x } { sqrt { 16-x^2-y^2 } } ,frac { partial z } { partial y } =-frac { y } { sqrt { 16-x^2-y^2 } } .$ Тогда
$ dS=sqrt { 1+frac { x^2 } { 16-x^2-y^2 } +frac { x^2 } { 16-x^2-y^2 } } dxdy=frac { 4 } { sqrt { 16-x^2-y^2 } } dxdy. $
Проекцией $D$ этой поверхности на координатную плоскость $Oxy$ является полукольцо с границами в виде дуг концентрических окружностей радиусов 3 и 4.
Применяя формулу массы поверхности и перехода к полярным координатам, получим:
$ begin{array} { c } M=4iintlimits_D { frac { 2(16-x^2-y^2)+3 } { sqrt { 16-x^2-y^2 } } } dxdy=4intlimits_0^pi { dvarphi } intlimits_3^4 { frac { 2(16-rho ^2)+3 } { sqrt { 16-rho ^2 } } } rho drho = \ =4pi left( { -frac { 1 } { 2 } }right)intlimits_7^0 { frac { 2t+3 } { sqrt t } } dt=2pi intlimits_0^7 { left( { 2t^ { frac { 1 } { 2 } } +3t^ { -frac { 1 } { 2 } } }right) } dt=2pi left( { frac { 4 } { 3 } t^ { frac { 3 } { 2 } } +6t^ { frac { 1 } { 2 } } }right)left| { { begin{array} { * { 20 } c } { ^7 } hfill \ { _0 } hfill \ end{array} } }right.= \ =2pi left( { frac { 28 } { 3 } sqrt 7 +6sqrt 7 }right)=frac { 92sqrt 7 } { 3 } pi . \ end{array} $