Как найти частотность в статистике


Загрузить PDF


Загрузить PDF

С абсолютной частотой все довольно просто: она определяет, сколько раз конкретное число содержится в имеющемся наборе данных (объектов или значений). А вот относительная частота характеризует отношение количества конкретного числа в наборе данных. Другими словами, относительная частота – это отношение количества определенного числа к общему количеству чисел в наборе данных. Имейте в виду, что вычислить относительную частоту достаточно легко.

  1. Изображение с названием Calculate Relative Frequency Step 1

    1

    Соберите данные. Если вы решаете математическую задачу, в ее условии должен быть дан набор данных (чисел). В противном случае проведите эксперимент или исследование и соберите необходимые данные. Подумайте, в какой форме записать исходные данные.

    • Например, нужно собрать данные о возрасте людей, которые посмотрели определенный фильм. Конечно, можно записать точный возраст каждого человека, но в этом случае вы получите довольно большой набор данных с 60-70 числами в пределах от 10 до 70 или 80. Поэтому лучше сгруппировать данные по категориям, таким как «Моложе 20», «20-29», «30-39» «40-49», «50-59» и «Старше 60». Получится упорядоченный набор данных с шестью группами чисел.
    • Другой пример: врач собирает данные о температуре пациентов в определенный день. Если записать округленные числа, например, 37, 38, 39, то результат будет не слишком точным, поэтому здесь данные нужно представить в виде десятичных дробей.
  2. Изображение с названием Calculate Relative Frequency Step 2

    2

    Упорядочьте данные. Когда вы соберете данные, у вас, скорее всего, получится хаотичный набор чисел, например, такой: 1, 2, 5, 4, 6, 4, 3, 7, 1, 5, 6, 5, 3, 4, 5, 1. Такая запись кажется практически бессмысленной и с ней сложно работать. Поэтому упорядочьте числа по возрастанию (от меньшего к большему), например, так: 1,1,1,2,3,3,4,4,4,5,5,5,5,6,6,7.[1]

    • Упорядочивая данные, будьте внимательны, чтобы не пропустить ни одного числа. Посчитайте общее количество чисел в наборе данных, чтобы убедиться, что вы записали все числа.
  3. Изображение с названием Calculate Relative Frequency Step 3

    3

    Создайте таблицу с данными. Собранные данные можно организовать в виде таблицы. Такая таблица будет включать три столбца и использоваться для вычисления относительной частоты. Столбцы обозначьте следующим образом:[2]

    Реклама

  1. Изображение с названием Calculate Relative Frequency Step 5

    1

    Найдите количество чисел в наборе данных. Относительная частота характеризует, сколько раз конкретное число содержится в имеющемся наборе данных по отношению к общему количеству чисел. Чтобы найти относительную частоту, нужно посчитать общее количество чисел в наборе данных. Общее количество чисел станет знаменателем дроби, с помощью которой будет вычислена относительная частота.[3]

    • В нашем примере набор данных содержит 16 чисел.
  2. Изображение с названием Calculate Relative Frequency Step 5

    2

    Найдите количество определенного числа. То есть посчитайте, сколько раз конкретное число встречается в наборе данных. Это можно сделать как для одного числа, так и для всех чисел из набора данных.[4]

    • Например, в нашем примере число 4 встречается в наборе данных три раза.
  3. Изображение с названием Calculate Relative Frequency Step 6

    3

    Разделите количество конкретного числа на общее количество чисел. Так вы найдете относительную частоту для определенного числа. Вычисление можно представить в виде дроби или воспользоваться калькулятором или электронной таблицей, чтобы разделить два числа.[5]

    Реклама

  1. Изображение с названием Calculate Relative Frequency Step 7

    1

    Результаты вычислений запишите в созданную ранее таблицу. Она позволит представить результаты в наглядной форме. По мере вычисления относительной частоты результаты записывайте в таблицу напротив соответствующего числа. Как правило, значение относительной частоты можно округлить до второго знака после десятичной запятой, но это на ваше усмотрение (в зависимости от требований задачи или исследования). Помните, что округленный результат не равен точному ответу.[6]

    • В нашем примере таблица относительных частот будет выглядеть следующим образом:
    • x : n(x) : P(x)
    • 1 : 3 : 0,19
    • 2 : 1 : 0,06
    • 3 : 2 : 0,13
    • 4 : 3 : 0,19
    • 5 : 4 : 0,25
    • 6 : 2 : 0,13
    • 7 : 1 : 0,06
    • Итого : 16 : 1,01
  2. Изображение с названием Calculate Relative Frequency Step 8

    2

    Представьте числа (элементы), которых нет в наборе данных. Иногда представление чисел с нулевой частотой так же важно, как и представление чисел с ненулевой частотой. Обратите внимание на собранные данные; если между данными имеются пробелы, их нужно заполнить нулями.

    • В нашем примере набор данных включает все числа от 1 до 7. Но предположим, что числа 3 нет в наборе. Возможно, это немаловажный факт, поэтому нужно записать, что относительная частота числа 3 равна 0.
  3. Изображение с названием Calculate Relative Frequency Step 9

    3

    Выразите результаты в процентах. Иногда результаты вычислений нужно преобразовать из десятичных дробей в проценты. Это общепринятая практика, потому что относительная частота характеризует процент случаев появления определенного числа в наборе данных. Чтобы преобразовать десятичную дробь в проценты, нужно десятичную запятую передвинуть на две позиции вправо и приписать символ процента.

    • Например, десятичная дробь 0,13 равна 13%.
    • Десятичная дробь 0,06 равна 6% (обратите внимание, что перед 6 стоит 0).

    Реклама

Советы

  • Относительная частота характеризует наличие или возникновение определенного события в наборе событий.
  • Если сложить относительные частоты всех чисел из набора данных, вы получите единицу. Помните, что при сложении округленных результатов сумма не будет равна 1,0.
  • Если набор данных слишком большой, чтобы обработать его вручную, воспользуйтесь программой MS Excel или MATLAB; это позволит избежать ошибок в процессе вычисления.

Реклама

Источники

Об этой статье

Эту страницу просматривали 145 557 раз.

Была ли эта статья полезной?

Frequency and relative frequency are two fundamental concepts in statistics. They describe how often values or categories appear in a dataset, and what proportion of the dataset they represent. 

In this article, we will discuss the difference between frequency and relative frequency, and how to calculate them.

Frequency

Frequency is the number of times a specific value or category appears in a dataset. The formula for frequency is given below in the diagram.

Formula for frequency

For example, consider the following dataset, 1, 2, 3, 2, 1, 2, 4, 1, 2, 3. To calculate the frequency of the value 2, we count the number of times it appears in the dataset, which is 4.

Steps to Calculate Frequency

Use the step given below to calculate the frequency.

  • Identify the value or category you want to calculate the frequency for.
  • Count the number of times the value/category appears in the dataset.
  • The result is the frequency of that value/category in the dataset.

Relative Frequency

Relative frequency is the proportion or percentage of times a specific value or category appears in a dataset. The formula for relative frequency is given below in the diagram

Formula For Relative Frequency

For example, using the same dataset as before, to calculate the relative frequency of the value 2, we first calculate its frequency (which is 4). The total number of data points in the dataset is 10. Therefore, the relative frequency of the value 2 is:

Relative Frequency of 2 = 4 / 10 = 0.4 or 40%

Steps to Calculate Relative Frequency

Use the step given below to calculate the relative frequency.

  • Identify the value or category you want to calculate the relative frequency for.
  • Calculate the frequency of that value/category using the formula mentioned earlier.
  • Calculate the total number of data points in the dataset.
  • Divide the frequency by the total number of data points.
  • The result is the relative frequency of that value/category in the dataset.

Learn More about Relative Frequency

Difference Between Frequency and Relative Frequency

The main differences between frequency and relative frequency are,

Frequency Relative Frequency
Frequency counts the number of times a value or category appears in the dataset Relative frequency calculates the proportion or percentage of the dataset that value or category represents.
Frequency uses whole numbers Relative frequency uses decimal numbers or percentages
Frequency cannot be greater than the total number of data points in the dataset Relative frequency can be any value between 0 and 1 or expressed as a percentage between 0% and 100%

Do Check,

  • Mean
  • Mean, Median and Mode

Solved Examples

Example 1: In a survey of 50 people, the following data were collected on the number of hours they spend on social media per day,

Hours Frequency
0-1 10
1-2 15
2-3 12
3-4 8
4-5 5

Calculate the relative frequency of each category.

Solution:

The total number of people surveyed is 50.

Hours Frequency Relative Frequency
0-1 10 10 / 50 = 0.20
1-2 15 15 / 50 = 0.30
2-3 12 12 / 50 = 0.24
3-4 8 8 / 50 = 0.16
4-5 5 5 / 50 = 0.10

To calculate the relative frequency of each category, we divide the frequency of each category by the total number of people surveyed.

Example 2: A survey was conducted on the number of cars owned by households in a particular area. The following data was obtained.

Cars Frequency
0 25
1 50
2 30
3 10
4 5

Calculate the total number of households surveyed.

Solution:

Total Number of households surveyed is the sum of all the frequencies.

Total number of Households = 25 + 50 + 30 + 10 + 5 = 120

Example 3: In a class of 40 students, the following marks were obtained in a test,

Marks Frequency
0-10 8
10-20 12
20-30 15
30-40 5

What is the percentage of students who scored less than 20 marks?

Solution:

Total number of students is 40.

The frequency of students who scored less than 20 marks is the sum of the frequency of marks ranging from 0-10 and 10-20, which is 8 + 12 = 20.

Percentage of students who scored less than 20 marks = (20/40) × 100% 
                                                                                        = 50%

Example 4: In a survey, 60 people were asked about their favourite ice cream flavour. The results were as follows,

Flavour Frequency
Vanilla 30
Chocolate 20
Strawberry 5
Butter Pecan 5

What is the relative frequency of Vanilla flavour?

Solution:

The total number of responses is 60

The frequency of the Vanilla flavour is 30

The relative frequency of Vanilla flavour is calculated by dividing its frequency by the total number of responses.

Relative frequency of Vanilla flavour = 30/60 = 0.5 or 50%.

Example 5: In a store, 50 customers were surveyed on the amount of money they spent on groceries. The following data was obtained,

Amount Frequency
0-100 10
100-200 20
200-300 15
300-400  4
400-500 1

What is the total amount spent on groceries by the customers surveyed?

Solution:

We can calculate the total amount spent on groceries by multiplying each category by its frequency and adding the results.

Total amount spent on groceries = (10 × 50) + (20 × 150) + (15 × 250) + (4 × 350) + (1 × 450) 

                                                     = 1000 + 3000 + 3750 + 1400 + 450 

                                                     = 9600

Example 6: In a class of 30 students, the following marks were obtained in a test,

Marks Frequency
0-10 6
10-20 12
20-30 8
30-40 4

What is the percentage of students who scored between 10 and 30 marks?

Solution:

Total number of students is 30.

The frequency of students who scored between 10 and 30 marks is the sum of the frequency of marks ranging from 10-20 and 20-30, which is 12 + 8 = 20.

Percentage of students who scored between 10 and 30 marks = (20/30) x 100% = 66.67%

FAQs

Question 1: What is the difference between frequency and relative frequency?

Answer:

Frequency counts the number of times a value or category appears in a dataset, while relative frequency calculates the proportion or percentage of the dataset that value or category represents.

Question 2: How do you calculate frequency?

Answer:

The formula to calculate the frequency is,

Frequency = Number of Times Value (Category) Appears in Dataset

Question 3: How do you calculate relative frequency?

Answer:

The formula to calculate the relative frequency is,

Relative Frequency = Frequency / Total Number of Data Points in Dataset

Question 4: What is the range of values for frequency?

Answer:

Frequency can be any whole number between 0 and the total number of data points in the dataset.

Question 5: What is the range of values for relative frequency?

Answer:

Relative frequency can be any decimal number between 0 and 1 or expressed as a percentage between 0% and 100%.

Question 6: Why is frequency important in statistics?

Answer:

Frequency is important in statistics because it provides information on how often specific values or categories appear in a dataset, which can help to identify patterns and trends in the data.

НАШИ относительная частота это очень важно для анализа статистики, так как показывает, какой процент представляют эти данные по отношению ко всем полученным результатам. Он используется для анализа результатов, полученных в заданном наборе данных.

Для его расчета достаточно разделить абсолютную частоту на суммарные полученные данные, и преобразовать этот результат в процент, умножаем на 100. Для статистического анализа данных очень часто строят таблицу с частотами, и в нее всегда помещается относительная частота каждых данных.

Узнать больше: Что такое статистические меры центральной тенденции?

Сводка по относительной частоте

  • Это тип частоты, изучаемый в статистике.

  • Это процент, который представляют данные данные по отношению к целому.

  • Обычно его представляют в процентах.

  • Для его расчета мы делим абсолютную частоту на общее количество полученных результатов.

  • Абсолютная частота — это количество раз, когда были собраны одни и те же данные.

  • В дополнение к простой относительной частоте существует кумулятивная относительная частота, которая представляет собой накопление относительной частоты.

Не останавливайся сейчас… После рекламы есть еще ;)

Что такое относительная частота?

относительная частота процент, который часть данных представляет по отношению к целому. В повседневной жизни довольно часто встречаются ситуации, когда информация передается через проценты. Этот процент часто является относительной частотой, поскольку он позволяет нам сравнивать поведение одной части данных по отношению к другим.

Например, если мы говорим, что в ходе опроса можно было сделать вывод, что 87% бразильцев против гражданского оружия, это позволяет оценить полученный результат по отношению к целому. Есть и другие ситуации, в которых мы используем относительную частоту, которая по-прежнему очень важна в статистика и в принятии решений. В статистических исследованиях после сбора данных важно рассчитать относительную частоту, чтобы можно было провести анализ полученных результатов.

Как рассчитывается относительная частота?

Чтобы вычислить относительную частоту, вам нужно:

  • найти абсолютную частоту;

  • разделите его на общее количество собранных данных.

Важный: Абсолютная частота — это не что иное, как количество раз, когда были собраны одни и те же данные.

Типы относительной частоты

Существует два типа относительной частоты: простая и кумулятивная. Начнем с первого.

  • простая относительная частота

Вот как рассчитать простую относительную частоту на примере.

Пример:

В классе с 50 учениками учитель физкультуры посоветовал им, какой вид спорта будет их любимым. Полученные ответы регистрировались по их абсолютной частоте:

  • футбол → 20 учеников

  • волейбол → 12 учеников

  • сожжено → 8 студентов

  • гандбол → 6 учеников

  • другие → 4 ученика

Разрешение:

Всего было собрано 50 ответов, поэтому для расчета относительной частоты каждого из них мы разделим количество появлений каждого ответа на 50.

Относительная частота:

  • футбол → 20: 50 = 0,4

  • волейбол → 12: 50 = 0,24

  • сожжено → 8: 50 = 0,16

  • гандбол → 6: 50 = 0,12

  • другие → 4: 50 = 0,08

Относительная частота может быть выражена десятичным числом, но обычно выражается в процентах. Чтобы преобразовать найденные десятичные числа в проценты, просто умножьте на 100, так что мы имеем:

  • футбол → 20: 50 = 0,4 = 40%

  • волейбол → 12: 50 = 0,24 = 24%

  • сожжено → 8: 50 = 0,16 = 16%

  • гандбол → 6: 50 = 0,12 = 12%

  • другие → 4: 50 = 0,08 = 8%

Эти данные обычно представляются в виде таблицы, известной как таблица частот:

Спорт

абсолютная частота

(ВЕНТИЛЯТОР)

относительная частота

(фр.)

Относительная частота (%)

(ФР%)

Футбольный

20

0,4

40%

Волейбол

12

0,24

24%

Сгорел

8

0,16

16%

Гандбол

6

0,12

12%

Другие

4

0,08

8%

Всего

50

1

100%

  • Накопленная относительная частота

Как следует из названия, кумулятивная относительная частота накопление относительной частоты. Для его расчета необходимо сначала вычислить относительную частоту, как и в предыдущем примере.

С данными, организованными в таблице частот:

  • сначала вставляем в частотную таблицу еще один столбец;

  • затем копируем первую полученную относительную частоту;

  • мы выполняем в этом новом столбце и позже, чтобы найти другие накопленные частоты, сумму относительной частоты строки с накопленной частотой предыдущей строки.

Спорт

абсолютная частота

(ВЕНТИЛЯТОР)

относительная частота

(фр.)

относительная частота

накопленный

Футбольный

20

0,4

0,4

Волейбол

12

0,24

0,4 + 0,24 = 0,64

Сгорел

8

0,16

0,64 + 0,16 = 0,80

Гандбол

6

0,12

0,80 + 0,12 = 0,92

Другие

4

0,08

0,92 + 0,08 = 1

Всего

50

1

Тогда мы можем отобразить таблицу частот следующим образом:

Спорт

абсолютная частота

(ВЕНТИЛЯТОР)

относительная частота

(фр.)

относительная частота

накопленный

Футбольный

20

0,4

0,4

Волейбол

12

0,24

0,64

Сгорел

8

0,16

0,80

Гандбол

6

0,12

0,92

Другие

4

0,08

1,00

Всего

50

1

Эта кумулятивная относительная частота также может быть выражена в процентах:

Спорт

Частота

абсолютный

(ВЕНТИЛЯТОР)

Частота

родственник

(фр.)

Частота

родственник

накопленный

Частота

родственник %

(ФР%)

Частота

родственник

накопленный %

Футбольный

20

0,4

0,4

40%

40%

Волейбол

12

0,24

0,64

24%

64%

Сгорел

8

0,16

0,80

16%

80%

Гандбол

6

0,12

0,92

12%

92%

Другие

4

0,08

1,00

8%

100%

Всего

50

1

100%

В чем разница между абсолютной частотой и относительной частотой?

Мы видим, что абсолютная частота сама по себе не дает нам столько информации, сколько относительная частота, потому что:

  • Абсолютная частота — это количество раз, когда один и тот же ответ появлялся для данного набора.

  • Относительная частота показывает отношение этих данных ко всем собранным данным.

Важный: Стоит отметить, что оба важны, и что можно рассчитать относительную частоту только тогда, когда мы знаем абсолютную частоту набора данных.

Читайте также: Меры разброса — амплитуда и девиация

Решенные упражнения на относительную частоту

Вопрос 1

(EsSA) Определите альтернативу, которая представляет абсолютную частоту (fi) элемента (xi), относительная частота (fr) которого равна 25%, а общее количество элементов (N) в выборке равно 72.

А) 18

Б) 36

В) 9

Г) 54

Д) 45

Разрешение:

Альтернатива А

Поскольку относительная частота составляет 25%, мы знаем, что

фи: 72 = 25%

фи: 72 = 0,25

фи = 0,25 ⋅ 72

фи = 18

вопрос 2

(Cesgranrio) В таблице ниже показана абсолютная частота диапазонов месячной заработной платы 20 сотрудников небольшой компании.

Диапазон заработной платы (BRL)

Количество

Менее 1000,00

6

Больше или равно 1000,00 и меньше 2000,00

7

Больше или равно 2000,00 и меньше 3000,00

5

Больше или равно 3000,00

2

Всего

20

Относительная частота сотрудников, зарабатывающих менее 2000 реалов в месяц, составляет:

А) 0,07

Б) 0,13

В) 0,35

Г) 0,65

Д) 0,70

Разрешение:

Альтернатива D

Всего 6 + 7 = 13 сотрудников, которые зарабатывают менее 2000 реалов. Вычисляя относительную частоту, имеем:

13: 20 = 0,65

Относительная частота и статистическая вероятность. Основные формулы и решения типовых задач
Относительная частота (частость) события А определяется равенством

W(A)=frac{m}{n},; ; ; ; (5)

где n — общее число проведенных испытаний; m — число испытаний, в которых событие А наступило (иначе — частота события А).
При статистическом определении за вероятность события принимают его относительную частоту, найденную по результатам большого числа испытаний.
Задача №1. При определении всхожести партии семян взяли пробу из 1000 единиц. Из отобранных семян не взошло 90. Какова относительная частота появления всхожего семени?
Решение. Обозначим событие: А — отобрано всхожее семя. Найдем относительную частоту события А, применив формулу (5). Общее число проведенных испытаний n = 1000. Число испытаний, в которых событие А наступило, равно m = 1000 — 90 = 910.
Относительная частота события А равна W(A)=frac{m}{n}=frac{910}{1000}=0,91.

Задача №2. Для проведения исследований на некотором поле взяли случайную выборку из 200 колосьев пшеницы. Относительная частота (частость) колосьев, имеющих по 12 колосков в колосе, оказалась равной 0,123, а по 18 колосков — 0,05. Найти для этой выборки частоты колосьев, имущих по 12 и по 18 колосков.
Решение. Рассмотрим события: A — взят колос, имеющий 12 колосков; В — взят колос, имеющий 18 колосков.
Найдем частоты m_{1} и m_{2} событий А и В применив формулу (5).
Обозначим через W_{1}(A)=frac{m_{1}}{n} относительную частоту события A, а через W_{2}(B)=frac{m_{2}}{n} относительную частоту события В. Так как число проведенных испытаний n = 200, то m_{1}=W_{1}(A)cdot n=0,125cdot 200=25,; m_{2}=W_{2}(B)cdot n=0,05cdot 200=10.

Задача №3. Многолетними наблюдениями установлено, что в некоторой области ежегодно в среднем в тридцати хозяйствах из каждых ста среднегодовой удой молока от одной коровы составляет 4 100 — 4 300 кг. Какова вероятность того, что в текущем году в одном из хозяйств этой области, отобранном случайным образом, будет получен такой среднегодовой удой?
Решение. Обозначим событие: А — в текущем году в хозяйстве области, отобранном случайным образом, среднегодовой удой молока от одной коровы составит 4 100 — 4 300 кг.
Вероятность события А найдем, воспользовавшись ее статистическим определением.
Располагая статистическими данными, найдем, что относительная частота хозяйств области, в которых ежегодно имеют указанный средне-годовой удой молока от одной коровы, равна 0,3. Так как эти данные получены в результате проведения большого числа наблюдений, выполняемых в течение многих лет, то можно принять, что вероятность события А равна Р(А) = 0,3.

Мода и медиана

Модой ряда чисел называется число, наиболее часто встречающееся в данном ряду.

Обратимся снова к нашему примеру со сборной по футболу:

Чему в данном примере равна мода? Какое число наиболее часто встречается в этой выборке?

Все верно, это число ( displaystyle 181), так как два игрока имеют рост ( displaystyle 181) см; рост же остальных игроков не повторяется.

Тут все должно быть ясно и понятно, да и слово знакомое, правда?

Перейдем к медиане, ты ее должен знать из курса геометрии. Но мне не сложно напомнить, что в геометрии медиана (в переводе с латинского- «средняя») — отрезок внутри треугольника, соединяющий вершину треугольника с серединой противоположной стороны.

Ключевое слово – СЕРЕДИНА. Если ты знал это определение, то тебе легко будет запомнить, что такое медиана в статистике.

Медианой ряда чисел с нечетным числом членов называется число, которое окажется посередине, если этот ряд упорядочить (проранжировать, т.е. расположить значения в порядке убывания или возрастания).

Медианой ряда чисел с четным числом членов называется среднее арифметическое двух чисел, записанных посередине, если этот ряд упорядочить.

Ну что, вернемся к нашей выборке футболистов?

Ты заметил в определении медианы важный момент, который нам еще здесь не встречался? Конечно, «если этот ряд упорядочить»!

Для того, чтобы в ряду чисел был порядок, можно расположить значения роста футболистов как в порядке убывания, так и в порядке возрастания. Мне удобней выстроить этот ряд в порядке возрастания (от самого маленького к самому большому).

Вот, что у меня получилось:

Так, ряд упорядочили, какой еще есть важный момент в определении медианы? Правильно, четное и нечетное количество членов в выборке.

Заметил, что для четного и нечетного количества даже определения отличаются? Да, ты прав, не заметить – сложно. А раз так, то нам надо определиться, четное у нас количество игроков в нашей выборке или нечетное?

Все верно – игроков ( displaystyle 11), значит, количество нечетное! Теперь можем применять к нашей выборке менее заковыристое определение медианы для нечетного количества членов в выборке.

Ищем число, которое оказалось посередине в нашем упорядоченном ряду:

Ну вот, чисел у нас ( displaystyle 11), значит, по краям остается по пять чисел, а рост ( displaystyle 183) см будет медианой в нашей выборке.

Не так уж и сложно, правда?

Частота и относительная частота

Частота представляет собой число повторений, сколько раз за какой-то период происходило некоторое событие, проявлялось определенное свойство объекта либо наблюдаемый параметр достигал данной величины.

То есть частота определяет то, как часто повторяется та или иная величина в выборке.

Разберемся на нашем примере с футболистами. Перед нами вот такой вот упорядоченный ряд:

Частота – это число повторений какой-либо величины параметра. В нашем случае, это можно считать вот так. Сколько игроков имеет рост ( 176)?

Все верно, один игрок. Таким образом, частота встречи игрока с ростом ( 176) в нашей выборке равна ( 1).

Сколько игроков имеет рост ( 178)? Да, опять же один игрок. Частота встречи игрока с ростом ( 178) в нашей выборке равна ( 1).

Задавая такие вопросы и отвечая на них, можно составить вот такую табличку:

Ну вот, все довольно просто. Помни, что сумма частот должна равняться количеству элементов в выборке (объему выборки).

То есть в нашем примере: ( 1+1+1+2+1+1+1+1+1+1=11)

Перейдем к следующей характеристике – относительная частота.

Относительная частота – это отношение частоты к общему числу данных в ряду. Как правило, относительная частота выражается в процентах.

Обратимся опять к нашему примеру с футболистами. Частоты для каждого значения мы рассчитали, общее количество данных в ряду мы тоже знаем ( left( n=11 right)) .

Рассчитываем относительную частоту для каждого значения роста и получаем вот такую табличку:

А теперь сам составь таблицы частот и относительных частот для примера с 9-классниками, решающими задачи.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти человека в телеграмме на компьютере
  • Как я нашел украденный велосипед
  • Как составить отзыв на выставку
  • Как найти полезную работу через кпд
  • Как найти своего должника через интернет

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии