Как найти частные производные от корня

Простое объяснение принципов решения частных производных и 10 наглядных примеров. В каждом примере поэтапный ход решения и ответ.

Алгоритм решения частных производных

Вычисление частной производной функции из нескольких переменных осуществляется по тем же правилам, что и функций с одной переменной. Разница лишь той, что другие переменные не участвуют дифференцировании (вычислении производной).

Проще говоря, чтобы найти частную производную функции z = x^{8} + 32y^{4} по переменной x,переменную y будем считать константой (производная константы равна нулю), после чего находим производную функции по x с помощью таблицы производных элементарных функций – {z_{x}}' = 8x^{7}. Готово!

Нужна помощь в написании работы?

Мы — биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Цена работы

Примеры решения частных производных

Задача

Найти частные производные функции u = x^{2} + 3xy + 4y^{2}.

Решение

Частная производная функции по независимой переменной x:

Производная суммы равна сумме производных. Производная от x^{2} вычисляется по правилам вычислений производных функций одного аргумента, производная от слагаемого 3xy вычисляется как производная от функции двух аргументов. При этом аргумент y считается константой. Производная от слагаемого 4y^{2} вычисляется как производная от константы.

frac{partial{u}}{partial{x}} = (x^{2})' + (3xy)' + (4y^{2})' = 2x + 3y + 0 = 2x + 3y.

Частная производная функции по независимой переменной y:

Здесь вычисления также происходят по правилам вычисления производной суммы. Производная от x^{2} вычисляется как производная от константы (независимым аргументом при этом считается y). Производная от слагаемого 3xy вычисляется как производная от функции двух аргументов. При этом аргумент x считается константой, а y – независимым аргументом. Вычисление производной от слагаемого 4y^{2} осуществляется по правилам вычисления производных функций с одним аргументом.

frac{partial{u}}{partial{y}} = (x^{2})' + (3xy)' + (4y^{2})' = 0 + 3x + 8y = 3x + 8y.

Ответ

frac{partial{u}}{partial{x}} = 2x + 3y, frac{partial{u}}{partial{y}} = 3x + 8y.

Задача

Найти частные производные функции u = e^{frac{x}{y}}.

Решение

Найдём частную производную функции по независимой переменной x:

Функция e^{frac{x}{y}} является сложной. Производной показательной функции с основанием e является сама функция. Производная показателя степени вычисляется в при условии, что y является константой и равна u = frac{1}{y}. Производная функции u равна произведению e^{frac{x}{y}} и frac{1}{y}. В результате получаем:

{u_{x}}' = frac{1}{y}e^{frac{x}{y}}.

Найдём частную производную функции по независимой переменной y:

По аналогии с предыдущим случаем производная функции будет равна произведению производных от функции e^{frac{x}{y}} и показателя её степени frac{x}{y}:

Считая x постоянной величиной, находим производную по независимому аргументу y:

(e^{frac{x}{y}})' = e^{frac{x}{y}}

(frac{x}{y})' = -frac{x}{y^{2}}

{u_{y}}' = -frac{x}{y^{2}}e^{frac{x}{y}}.

Ответ

{u_{x}}' = frac{1}{y}e^{frac{x}{y}}, {u_{y}}' = -frac{x}{y^{2}}e^{frac{x}{y}}.

Задача

Найти частные производные функции z = x^{n} + y^{n}, n - натуральное число.

Решение

Частная производная функции по независимой переменной x будет равна производной от x^{n}. Производная от слагаемого y^{n} при этом будет равна нулю как производная от константы.

frac{partial{z}}{partial{x}} = nx^{n-1}

Частная производная функции по независимой переменной y находится аналогичным образом, при этом предполагается, что x является константой.

frac{partial{z}}{partial{y}} = ny^{n-1}

Ответ

frac{partial{z}}{partial{x}} = nx^{n-1}, frac{partial{z}}{partial{y}} = ny^{n-1}

Задача

Найти частные производные функции u = ysin{x} + sin{y}.

Решение

Частная производная функции u по независимой переменной x определяется слагаемым u = ysin{x}. Производная второго слагаемого – sin{y} равна нулю, как производная от константы.

frac{partial{u}}{partial{x}} = ycos{x}

В свою очередь, частная производная функции u по независимой переменной y будет определяться обоими слагаемым:

{(ysin{x})_y}' = sin{x}

{(sin{y})_y}' = cos{y}

Таким образом, окончательно получаем:

frac{partial{u}}{partial{y}} = sin{x} + cos{y}

Ответ

frac{partial{u}}{partial{x}} = ycos{x}, frac{partial{u}}{partial{y}} = sin{x} + cos{y}

Задача

Найти частные производные функции u = x^{sin{y}}, x > 0.

Решение

При нахождении производной по независимой переменной x, функцию u = x^{sin{y}} следует рассматривать как степенную. По правилу нахождения производной степенной функции получаем:

frac{partial{u}}{partial{x}} = sin{y}cdot{x^{sin{y} - 1}}

Производная по независимой переменной y находится по правилу вычисления производной показательной функции, которая, в свою очередь, определяется по правилам нахождения производных сложных функций, т.к. переменная y входит в показатель степени виде функции sin{x}.

Производная показательной функции равна:

{(x^{sin{y}})_{y}}' = x^{sin{y}}cdot{ln{x}}

Производная показателя степени равна:

{(sin{y})}' = cos{y}

В результате получаем:

frac{partial{u}}{partial{y}} = x^{sin{y}}cdot{ln{x}}cdot{cos{y}}

Ответ

frac{partial{u}}{partial{x}} = sin{y}cdot{x^{sin{y} - 1}}, frac{partial{u}}{partial{y}} = x^{sin{y}}cdot{ln{x}}cdot{cos{y}}

Задача

Найти частные производные функции z = e^{x}cos{y} - e^{y}sin{x}.

Решение

Частная производная по независимой переменной x находится как сумма слагаемых:

{(e^{x}cos{y})_{x}}' = e^{x}cos{y}

{(- e^{y}sin{x})_{x}}' = - e^{y}cos{x}

Частная производная по независимой переменной y находится как сумма слагаемых:

{(e^{x}cos{y})_{y}}' = -e^{x}sin{y}

{(- e^{y}sin{x})_{y}}' = - e^{y}sin{x}

Ответ

frac{partial{z}}{partial{x}} = e^{x}cos{y} - e^{y}cos{x}, frac{partial{z}}{partial{y}} = -e^{x}sin{y} - e^{y}sin{x}

Задача

Найти частные производные функции z = sqrt{x^{2} + y^{2}}.

Решение

По правилу нахождения производной квадратного корня получаем, рассматривая x как независимый аргумент:

{(sqrt{x^{2} + y^{2}})_{x}}' = frac{x}{sqrt{x^{2} + y^{2}}}

Т.к. функция является сложной, то результат вычисления производной от квадратного корня – frac{1}{2sqrt{x^{2} + y^{2}}} следует домножить на производную подкоренного выражения: {({x^{2} + y^{2}})_{x}}' = 2x.

Рассматривая y в качестве независимого аргумента, получаем:

{(sqrt{x^{2} + y^{2}})_{y}}' = frac{y}{sqrt{x^{2} + y^{2}}}

По аналогии с предыдущим случаем, результат вычисления производной от квадратного корня – frac{1}{2sqrt{x^{2} + y^{2}}} следует домножить на производную подкоренного выражения: {({x^{2} + y^{2}})_{y}}' = 2y.

Ответ

frac{partial{z}}{partial{x}} = frac{x}{sqrt{x^{2} + y^{2}}}, frac{partial{z}}{partial{y}} = frac{y}{sqrt{x^{2} + y^{2}}}

Задача

Найти частные производные функции z = e^{arctg {frac{y}{x}}}.

Решение

Данная функция является сложной, поэтому процесс нахождения производной данной функции целесообразно производить в несколько этапов.

Производная показательной функции с основанием e равна самой себе. Далее необходимо найти производную показателя степени:  arctg {frac{y}{x}}. В свою очередь аргумент функции арктангенс в данном случае также представляет собой сложную функцию: frac{y}{x}. Результирующая производная будет равна произведению производных трёх функций: e^{arctg {frac{y}{x}}}, arctg {frac{y}{x}} и frac{y}{x}.

Нахождение частной производной функции по аргументу x:

frac{partial{z}}{partial{x}} = e^{arctg {frac{y}{x}}}cdot{(arctg {frac{y}{x}})_{x}}'cdot{({frac{y}{x}})_{x}}' = e^{arctg {frac{y}{x}}}cdot{frac{1}{1+({frac{y}{x}})^2}}cdot{frac{-y}{x^{2}}} = e^{arctg {frac{y}{x}}}cdot{frac{1}{frac{x^{2}+y^{2}}{x^{2}}}}cdot{frac{-y}{x^{2}}} = e^{arctg {frac{y}{x}}}cdot{frac{x^{2}}{x^{2}+y^{2}}}cdot{frac{-y}{x^{2}}} = - e^{arctg {frac{y}{x}}}cdot{frac{y}{x^{2} + y^{2}}}

Нахождение частной производной функции по аргументу y:

frac{partial{z}}{partial{y}} = e^{arctg {frac{y}{x}}}cdot{(arctg {frac{y}{x}})_{y}}'cdot{({frac{y}{x}})_{y}}' = e^{arctg {frac{y}{x}}}cdot{frac{1}{1+({frac{y}{x}})^2}}cdot{frac{1}{x}} = e^{arctg {frac{y}{x}}}cdot{frac{1}{frac{x^{2}+y^{2}}{x^{2}}}}cdot{frac{1}{x}} = e^{arctg {frac{y}{x}}}cdot{frac{x^{2}}{x^{2}+y^{2}}}cdot{frac{1}{x}} = e^{arctg {frac{y}{x}}}cdot{frac{x}{x^{2} + y^{2}}}

Ответ

frac{partial{z}}{partial{x}} = - e^{arctg {frac{y}{x}}}cdot{frac{y}{x^{2} + y^{2}}},  frac{partial{z}}{partial{y}} = e^{arctg {frac{y}{x}}}cdot{frac{x}{x^{2} + y^{2}}}

Задача

Найти частные производные первого и второго порядков функции z = xsin(x +y).

Решение

Найдём частную производную первого порядка по аргументу x:

frac{partial{z}}{partial{x}} = sin(x + y) + xcos(x + y)

Найдём частную производную второго порядка по аргументу x:

frac{partial^{2}{z}}{partial{x}^{2}} = cos(x + y) + cos(x + y) - xsin(x +y)

Найдём частную производную первого порядка по аргументу y:

frac{partial{z}}{partial{y}} = xcos(x + y)

Найдём частную производную второго порядка по аргументу y:

frac{partial^{2}{z}}{partial{y}^{2}} = -xsin(x +y)

Ответ

frac{partial{z}}{partial{x}} = sin(x + y) + xcos(x + y),  frac{partial^{2}{z}}{partial{x}^{2}} = 2cos(x + y) - xsin(x +y), frac{partial{z}}{partial{y}} = xcos(x + y), frac{partial^{2}{z}}{partial{y}^{2}} = -xsin(x +y)

Задача

Найти частные производные первого и второго порядков функции z = (frac{x}{y})^{2}.

Решение

Найдём частную производную первого порядка по аргументу x:

frac{partial{z}}{partial{x}} = 2cdot{frac{x}{y}}cdot{frac{1}{y}}

Найдём частную производную второго порядка по аргументу x:

frac{partial^{2}{z}}{partial{x}^{2}} = frac{2}{y^{2}}

Найдём частную производную первого порядка по аргументу y:

frac{partial{z}}{partial{y}} = 2cdot{frac{x}{y}}cdot{frac{-x}{y^{2}}} = -frac{2x^{2}}{y^{3}}

Найдём частную производную второго порядка по аргументу y:

frac{partial^{2}{z}}{partial{y}^{2}} = frac{6x^{2}y^{2}}{y^{6}} = frac{6x^{2}}{y^{4}}

Ответ

frac{partial{z}}{partial{x}} = frac{2x}{y^{2}},  frac{partial^{2}{z}}{partial{x}^{2}} = frac{2}{y^{2}}, frac{partial{z}}{partial{y}} = -frac{2x^{2}}{y^{3}}, frac{partial^{2}{z}}{partial{y}^{2}} = frac{6x^{2}}{y^{4}}

Частные производные для функции от нескольких переменных

21 сентября 2015

Рассмотрим функцию от двух переменных:

[f=fleft( x,y right)]

Поскольку переменные $x$ и $y$ являются независимыми, для такой функции можно ввести понятие частной производной:

Частная производная функции $f$ в точке $M=left( {{x}_{0}};{{y}_{0}} right)$ по переменной $x$ — это предел

[{{{f}’}_{x}}=underset{Delta xto 0}{mathop{lim }},frac{fleft( {{x}_{0}}+Delta x;{{y}_{0}} right)}{Delta x}]

Аналогично можно определить частную производную по переменной $y$ :

[{{{f}’}_{y}}=underset{Delta yto 0}{mathop{lim }},frac{fleft( {{x}_{0}};{{y}_{0}}+Delta y right)}{Delta y}]

Другими словами, чтобы найти частную производную функции нескольких переменных, нужно зафиксировать все остальные переменные, кроме искомой, а затем найти обычную производную по этой искомой переменной.

Отсюда вытекает основной приём для вычисления таких производных: просто считайте, что все переменные, кроме данной, являются константой, после чего дифференцируйте функцию так, как дифференцировали бы «обычную» — с одной переменной. Например:

$begin{align}& {{left( {{x}^{2}}+10xy right)}_{x}}^{prime }={{left( {{x}^{2}} right)}^{prime }}_{x}+10ycdot {{left( x right)}^{prime }}_{x}=2x+10y, \& {{left( {{x}^{2}}+10xy right)}_{y}}^{prime }={{left( {{x}^{2}} right)}^{prime }}_{y}+10xcdot {{left( y right)}^{prime }}_{y}=0+10x=10x. \end{align}$

Очевидно, что частные производные по разным переменным дают разные ответы — это нормально. Куда важнее понимать, почему, скажем, в первом случае мы спокойно вынесли $10y$ из-под знака производной, а во втором — вовсе обнулили первое слагаемое. Всё это происходит из-за того, что все буквы, кроме переменной, по которой идёт дифференцирование, считаются константами: их можно выносить, «сжигать» и т.д.

Что такое «частная производная»?

Сегодня мы поговорим о функциях нескольких переменных и о частных производных от них. Во-первых, что такое функция нескольких переменных? До сих пор мы привыкли считать функцию как $yleft( x right)$ или $tleft( x right)$, или любую переменную и одну-единственную функцию от нее. Теперь же функция у нас будет одна, а переменных несколько. При изменении $y$ и $x$ значение функции будет меняться. Например, если $x$ увеличится в два раза, значение функции поменяется, при этом если $x$ поменяется, а $y$ не изменится, значение функции точно так же изменится.

Разумеется, функцию от нескольких переменных, точно так же как и от одной переменной, можно дифференцировать. Однако поскольку переменных несколько, то и дифференцировать можно по разным переменным. При этом возникают специфические правила, которых не было при дифференцировании одной переменной.

Прежде всего, когда мы считаем производную функции от какой-либо переменной, то обязаны указывать, по какой именно переменной мы считаем производную — это и называется частной производной. Например, у нас функция от двух переменных, и мы можем посчитать ее как по $x$, так и по $y$ — две частных производных у каждой из переменных.

Во-вторых, как только мы зафиксировали одну из переменных и начинаем считать частную производную именно по ней, то все остальные, входящие в эту функцию, считаются константами. Например, в $zleft( xy right)$, если мы считаем частную производную по $x$, то везде, где мы встречаем $y$, мы считаем ее константой и обращаемся с ней именно как с константой. В частности при вычислении производной произведения мы можем выносить $y$ за скобку (у нас же константа), а при вычислении производной суммы, если у нас где-то получается производная от выражения, содержащего $y$ и не содержащего $x$, то производная этого выражения будет равна «нулю» как производная константы.

На первый взгляд может показаться, что я рассказываю о чем-то сложном, и многие ученики по началу путаются. Однако ничего сверхъестественного в частных производных нет, и сейчас мы убедимся в этом на примере конкретных задач.

Задачи с радикалами и многочленами

Задача № 1

Чтобы не терять время зря, с самого начала начнем с серьезных примеров.

[zleft( x,y right)=sqrt{frac{y}{x}}]

Для начала напомню такую формулу:

[{{left( sqrt{x} right)}^{prime }}_{x}=frac{1}{2sqrt{x}}]

Это стандартное табличное значение, которое мы знаем из стандартного курса.

В этом случае производная $z$ считается следующим образом:

[{{{z}’}_{x}}={{left( sqrt{frac{y}{x}} right)}^{prime }}_{x}=frac{1}{2sqrt{frac{y}{x}}}{{left( frac{y}{x} right)}^{prime }}_{x}]

Давайте еще раз, поскольку под корнем стоит не $x$, а некое другое выражение, в данном случае $frac{y}{x}$, то сначала мы воспользуемся стандартным табличным значением, а затем, поскольку под корнем стоит не $x$, а другое выражение, нам необходимо домножить нашу производную на еще одну из этого выражения по той же самой переменной. Давайте для начала посчитаем следующее:

[{{left( frac{y}{x} right)}^{prime }}_{x}=frac{{{{{y}’}}_{x}}cdot x-ycdot {{{{x}’}}_{x}}}{{{x}^{2}}}=frac{0cdot x-ycdot 1}{{{x}^{2}}}=-frac{y}{{{x}^{2}}}]

Возвращаемся к нашему выражению и записываем:

[{{{z}’}_{x}}={{left( sqrt{frac{y}{x}} right)}^{prime }}_{x}=frac{1}{2sqrt{frac{y}{x}}}{{left( frac{y}{x} right)}^{prime }}_{x}=frac{1}{2sqrt{frac{y}{x}}}cdot left( -frac{y}{{{x}^{2}}} right)]

В принципе, это все. Однако оставлять ее в таком виде неправильно: такую конструкцию неудобно использовать для дальнейших вычислений, поэтому давайте ее немного преобразуем:

[frac{1}{2sqrt{frac{y}{x}}}cdot left( -frac{y}{{{x}^{2}}} right)=frac{1}{2}cdot sqrt{frac{x}{y}}cdot frac{y}{{{x}^{2}}}=]

[=-frac{1}{2}cdot sqrt{frac{x}{y}}cdot sqrt{frac{{{y}^{2}}}{{{x}^{4}}}}=-frac{1}{2}sqrt{frac{xcdot {{y}^{2}}}{ycdot {{x}^{4}}}}=-frac{1}{2}sqrt{frac{y}{{{x}^{3}}}}]

Ответ найден. Теперь займемся $y$:

[{{{z}’}_{y}}={{left( sqrt{frac{y}{x}} right)}^{prime }}_{y}=frac{1}{2sqrt{frac{y}{x}}}cdot {{left( frac{y}{x} right)}^{prime }}_{y}]

Выпишем отдельно:

[{{left( frac{y}{x} right)}^{prime }}_{y}=frac{{{{{y}’}}_{y}}cdot x-ycdot {{{{x}’}}_{y}}}{{{x}^{2}}}=frac{1cdot x-ycdot 0}{{{x}^{2}}}=frac{1}{x}]

Теперь записываем:

[{{{z}’}_{y}}={{left( sqrt{frac{y}{x}} right)}^{prime }}_{y}=frac{1}{2sqrt{frac{y}{x}}}cdot {{left( frac{y}{x} right)}^{prime }}_{y}=frac{1}{2sqrt{frac{y}{x}}}cdot frac{1}{x}=]

[=frac{1}{2}cdot sqrt{frac{x}{y}}cdot sqrt{frac{1}{{{x}^{2}}}}=frac{1}{2}sqrt{frac{x}{ycdot {{x}^{2}}}}=frac{1}{2sqrt{xy}}]

Все сделано.

Задача № 2

[zleft( x,y right)=frac{xy}{{{x}^{2}}+{{y}^{2}}+1}]

Этот пример одновременно и проще, и сложней, чем предыдущий. Сложнее, потому что здесь больше действий, а проще, потому что здесь нет корня и, кроме того, функция симметрична относительно $x$ и $y$, т.е. если мы поменяем $x$ и $y$ местами, формула от этого не изменится. Это замечание в дальнейшем упростит нам вычисление частной производной, т.е. достаточно посчитать одну из них, а во второй просто поменять местами $x$ и $y$.

Приступаем к делу:

[{{{z}’}_{x}}={{left( frac{xy}{{{x}^{2}}+{{y}^{2}}+1} right)}^{prime }}_{x}=frac{{{left( xy right)}^{prime }}_{x}left( {{x}^{2}}+{{y}^{2}}+1 right)-xy{{left( {{x}^{2}}+{{y}^{2}}+1 right)}^{prime }}_{x}}{{{left( {{x}^{2}}+{{y}^{2}}+1 right)}^{2}}}]

Давайте посчитаем:

[{{left( xy right)}^{prime }}_{x}=ycdot {{left( x right)}^{prime }}=ycdot 1=y]

Однако многим ученикам такая запись непонятна, поэтому запишем вот так:

[{{left( xy right)}^{prime }}_{x}={{left( x right)}^{prime }}_{x}cdot y+xcdot {{left( y right)}^{prime }}_{x}=1cdot y+xcdot 0=y]

Таким образом, мы еще раз убеждаемся в универсальности алгоритма частных производных: каким бы мы образом их не считали, если все правила применяются верно, ответ будет один и тот же.

Теперь давайте разберемся еще с одной частной производной из нашей большой формулы:

[{{left( {{x}^{2}}+{{y}^{2}}+1 right)}^{prime }}_{x}={{left( {{x}^{2}} right)}^{prime }}_{x}+{{left( {{y}^{2}} right)}^{prime }}_{x}+{{{1}’}_{x}}=2x+0+0]

Подставим полученные выражения в нашу формулу и получим:

[frac{{{left( xy right)}^{prime }}_{x}left( {{x}^{2}}+{{y}^{2}}+1 right)-xy{{left( {{x}^{2}}+{{y}^{2}}+1 right)}^{prime }}_{x}}{{{left( {{x}^{2}}+{{y}^{2}}+1 right)}^{2}}}=]

[=frac{ycdot left( {{x}^{2}}+{{y}^{2}}+1 right)-xycdot 2x}{{{left( {{x}^{2}}+{{y}^{2}}+1 right)}^{2}}}=]

[=frac{yleft( {{x}^{2}}+{{y}^{2}}+1-2{{x}^{2}} right)}{{{left( {{x}^{2}}+{{y}^{2}}+1 right)}^{2}}}=frac{yleft( {{y}^{2}}-{{x}^{2}}+1 right)}{{{left( {{x}^{2}}+{{y}^{2}}+1 right)}^{2}}}]

По $x$ посчитано. А чтобы посчитать $y$ от того же самого выражения, давайте не будем выполнять всю ту же последовательность действий, а воспользуемся симметрией нашего исходного выражения — мы просто заменим в нашем исходном выражении все $y$ на $x$ и наоборот:

[{{{z}’}_{y}}=frac{xleft( {{x}^{2}}-{{y}^{2}}+1 right)}{{{left( {{x}^{2}}+{{y}^{2}}+1 right)}^{2}}}]

За счет симметрии мы посчитали это выражение гораздо быстрее.

Нюансы решения

Для частных производных работают все стандартные формулы, которые мы используем для обычных, а именно, производная частного. При этом, однако, возникают свои специфические особенности: если мы считаем частную производную $x$, то когда мы получаем ее по $x$, то рассматриваем ее как константу, и поэтому ее производная будет равна «нулю».

Как и в случае с обычными производными, частную (одну и ту же) можно посчитать несколькими различными способами. Например, ту же конструкцию, которую мы только что посчитали, можно переписать следующим образом:

[{{left( frac{y}{x} right)}^{prime }}_{x}=ycdot {{left( frac{1}{x} right)}^{prime }}_{x}=-yfrac{1}{{{x}^{2}}}]

Далее мы точно таким же образом считаем еще две конструкции, а именно:

[{{left( xy right)}^{prime }}_{x}=ycdot {{{x}’}_{x}}=ycdot 1=y]

Вместе с тем, с другой стороны, можно использовать формулу от производной суммы. Как мы знаем, она равна сумме производных. Например, запишем следующее:

[{{left( {{x}^{2}}+{{y}^{2}}+1 right)}^{prime }}_{x}=2x+0+0=2x]

Теперь, зная все это, давайте попробуем поработать с более серьезными выражениями, поскольку настоящие частные производные не ограничиваются одними лишь многочленами и корнями: там встречаются и тригонометрия, и логарифмы, и показательная функция. Сейчас этим и займемся.

Задачи с тригонометрическими функциями и логарифмами

Задача № 1

[zleft( x,y right)=sqrt{x}cos frac{x}{y}]

Запишем следующие стандартные формулы:

[{{left( sqrt{x} right)}^{prime }}_{x}=frac{1}{2sqrt{x}}]

[{{left( cos x right)}^{prime }}_{x}=-sin x]

Вооружившись этими знаниями, попробуем решить:

[{{{z}’}_{x}}={{left( sqrt{x}cdot cos frac{x}{y} right)}^{prime }}_{x}={{left( sqrt{x} right)}^{prime }}_{x}cdot cos frac{x}{y}+sqrt{x}cdot {{left( cos frac{x}{y} right)}^{prime }}_{x}=]

Отдельно выпишем одну переменную:

[{{left( cos frac{x}{y} right)}^{prime }}_{x}=-sin frac{x}{y}cdot {{left( frac{x}{y} right)}^{prime }}_{x}=-frac{1}{y}cdot sin frac{x}{y}]

Возвращаемся к нашей конструкции:

[=frac{1}{2sqrt{x}}cdot cos frac{x}{y}+sqrt{x}cdot left( -frac{1}{y}cdot sin frac{x}{y} right)=frac{1}{2sqrt{x}}cdot cos frac{x}{y}-frac{sqrt{x}}{y}cdot sin frac{x}{y}]

Все, по $x$ мы нашли, теперь давайте займемся вычислениями по $y$:

[{{{z}’}_{y}}={{left( sqrt{x}cdot cos frac{x}{y} right)}^{prime }}_{y}={{left( sqrt{x} right)}^{prime }}_{y}cdot cos frac{x}{y}+sqrt{x}cdot {{left( cos frac{x}{y} right)}^{prime }}_{y}=]

Опять же посчитаем одно выражение:

[{{left( cos frac{x}{y} right)}^{prime }}_{y}=-sin frac{x}{y}cdot {{left( frac{x}{y} right)}^{prime }}_{y}=-sin frac{x}{y}cdot xcdot left( -frac{1}{{{y}^{2}}} right)]

Возвращаемся к исходному выражению и продолжаем решение:

[=0cdot cos frac{x}{y}+sqrt{x}cdot frac{x}{{{y}^{2}}}sin frac{x}{y}=frac{xsqrt{x}}{{{y}^{2}}}cdot sin frac{x}{y}]

Все сделано.

Задача № 2

[zleft( x,y right)=ln left( x+ln y right)]

Запишем необходимую нам формулу:

[{{left( ln x right)}^{prime }}_{x}=frac{1}{x}]

Теперь посчитаем по $x$:

[{{{z}’}_{x}}={{left( ln left( x+ln y right) right)}^{prime }}_{x}=frac{1}{x+ln y}.{{left( x+ln y right)}^{prime }}_{x}=]

[=frac{1}{x+ln y}cdot left( 1+0 right)=frac{1}{x+ln y}]

По $x$ найдено. Считаем по $y$:

[{{{z}’}_{y}}={{left( ln left( x+ln y right) right)}^{prime }}_{y}=frac{1}{x+ln y}.{{left( x+ln y right)}^{prime }}_{y}=]

[=frac{1}{x+ln y}left( 0+frac{1}{y} right)=frac{1}{yleft( x+ln y right)}]

Задача решена.

Нюансы решения

Итак, от какой бы функции мы не брали частную производную, правила остаются одними и теми же, независимо от того, работаем ли мы с тригонометрией, с корнями или с логарифмами.

Неизменными остаются классические правила работы со стандартными производными, а именно, производная суммы и разности, частного и сложной функции.

Последняя формула чаще всего и встречается при решении задач с частными производными. Мы встречаемся с ними практически везде. Ни одной задачи еще не было, чтобы там нам она не попадалась. Но какой бы мы формулой не воспользовались, нам все равно добавляется еще одно требование, а именно, особенность работы с частными производными. Как только мы фиксируем одну переменную, все остальные оказываются константами. В частности, если мы считаем частную производную выражения $cos frac{x}{y}$ по $y$, то именно $y$ и является переменной, а $x$ везде остается константой. То же самое работает и наоборот. Ее можно выносить за знак производной, а производная от самой константы будет равна «нулю».

Все это приводит к тому, что частные производные от одного и того же выражения, но по разным переменным могут выглядеть совершенно по-разному. Например, посмотрим такие выражения:

[{{left( x+ln y right)}^{prime }}_{x}=1+0=1]

[{{left( x+ln y right)}^{prime }}_{y}=0+frac{1}{y}=frac{1}{y}]

Задачи с показательными функциями и логарифмами

Задача № 1

[zleft( x,y right)={{e}^{x}}{{e}^{frac{x}{y}}}]

Для начала запишем такую формулу:

[{{left( {{e}^{x}} right)}^{prime }}_{x}={{e}^{x}}]

Зная этот факт, а также производную сложной функции, давайте попробуем посчитать. Я сейчас решу двумя различными способами. Первый и самый очевидный — это производная произведения:

[{{{z}’}_{x}}={{left( {{e}^{x}}cdot {{e}^{frac{x}{y}}} right)}^{prime }}_{x}={{left( {{e}^{x}} right)}^{prime }}_{x}cdot {{e}^{frac{x}{y}}}+{{e}^{x}}cdot {{left( {{e}^{frac{x}{y}}} right)}^{prime }}_{x}=]

[={{e}^{x}}cdot {{e}^{frac{x}{y}}}+{{e}^{x}}cdot {{e}^{frac{x}{y}}}cdot {{left( frac{x}{y} right)}^{prime }}_{x}=]

Давайте решим отдельно следующее выражение:

[{{left( frac{x}{y} right)}^{prime }}_{x}=frac{{{{{x}’}}_{x}}cdot y-x.{{{{y}’}}_{x}}}{{{y}^{2}}}=frac{1cdot y-xcdot 0}{{{y}^{2}}}=frac{y}{{{y}^{2}}}=frac{1}{y}]

Возвращаемся к нашей исходной конструкции и продолжаем решение:

[={{e}^{x}}cdot {{e}^{frac{x}{y}}}+{{e}^{x}}cdot {{e}^{frac{x}{y}}}cdot frac{1}{y}={{e}^{x}}cdot {{e}^{frac{x}{y}}}left( 1+frac{1}{y} right)]

Все, по $x$ посчитано.

Однако как я и обещал, сейчас постараемся посчитать эту же частную производную другим способом. Для этого заметим следующее:

[{{e}^{x}}cdot {{e}^{frac{x}{y}}}={{e}^{x+frac{x}{y}}}]

В этом запишем так:

[{{left( {{e}^{x}}cdot {{e}^{frac{x}{y}}} right)}^{prime }}_{x}={{left( {{e}^{x+frac{x}{y}}} right)}^{prime }}_{x}={{e}^{x+frac{x}{y}}}cdot {{left( x+frac{x}{y} right)}^{prime }}_{x}={{e}^{x+frac{x}{y}}}cdot left( 1+frac{1}{y} right)]

В результате мы получили точно такой же ответ, однако объем вычислений оказался меньшим. Для этого достаточно было заметить, что при произведении показатели можно складывать.

Теперь посчитаем по $y$:

[{{{z}’}_{y}}={{left( {{e}^{x}}cdot {{e}^{frac{x}{y}}} right)}^{prime }}_{y}={{left( {{e}^{x}} right)}^{prime }}_{y}cdot {{e}^{frac{x}{y}}}+{{e}^{x}}cdot {{left( {{e}^{frac{x}{y}}} right)}^{prime }}_{y}=]

[=0cdot {{e}^{frac{x}{y}}}+{{e}^{x}}cdot {{e}^{frac{x}{y}}}cdot {{left( frac{x}{y} right)}^{prime }}_{y}=]

Давайте решим одно выражение отдельно:

[{{left( frac{x}{y} right)}^{prime }}_{y}=frac{{{{{x}’}}_{y}}cdot y-xcdot {{{{y}’}}_{y}}}{{{y}^{2}}}=frac{0-xcdot 1}{{{y}^{2}}}=-frac{1}{{{y}^{2}}}=-frac{x}{{{y}^{2}}}]

Продолжим решение нашей исходной конструкции:

[={{e}^{x}}cdot {{e}^{frac{x}{y}}}cdot left( -frac{x}{{{y}^{2}}} right)=-frac{x}{{{y}^{2}}}cdot {{e}^{x}}cdot {{e}^{frac{x}{y}}}]

Разумеется, эту же производную можно было бы посчитать вторым способом, ответ получился бы таким же.

Задача № 2

[zleft( x,y right)=xln left( {{x}^{2}}+y right)]

Посчитаем по $x$:

[{{{z}’}_{x}}={{left( x right)}_{x}}cdot ln left( {{x}^{2}}+y right)+xcdot {{left( ln left( {{x}^{2}}+y right) right)}^{prime }}_{x}=]

Давайте посчитаем одно выражение отдельно:

[{{left( ln left( {{x}^{2}}+y right) right)}^{prime }}_{x}=frac{1}{{{x}^{2}}+y}cdot {{left( {{x}^{2}}+y right)}^{prime }}_{x}=frac{2x}{{{x}^{2}}+y}]

Продолжим решение исходной конструкции: $$

[1cdot ln left( {{x}^{2}}+y right)+xcdot frac{2x}{{{x}^{2}}+y}=ln left( {{x}^{2}}+y right)+frac{2{{x}^{2}}}{{{x}^{2}}+y}]

Вот такой ответ.

Осталось по аналогии найти по $y$:

[{{{z}’}_{y}}={{left( x right)}^{prime }}_{y}.ln left( {{x}^{2}}+y right)+xcdot {{left( ln left( {{x}^{2}}+y right) right)}^{prime }}_{y}=]

Одно выражение посчитаем как всегда отдельно:

[{{left( {{x}^{2}}+y right)}^{prime }}_{y}={{left( {{x}^{2}} right)}^{prime }}_{y}+{{{y}’}_{y}}=0+1=1]

Продолжаем решение основной конструкции:

[xcdot frac{1}{{{x}^{2}}+y}cdot 1=frac{x}{{{x}^{2}}+y}]

Все посчитано. Как видите, в зависимости от того, какая переменная берется для дифференцирования, ответы получаются совершенно разные.

Нюансы решения

Вот яркий пример того, как производную одной и той же функции можно посчитать двумя различными способами. Вот смотрите:

[{{{z}’}_{x}}=left( {{e}^{x}}cdot {{e}^{frac{x}{y}}} right)={{left( {{e}^{x}} right)}^{prime }}_{x}cdot {{e}^{frac{x}{y}}}+{{e}^{x}}cdot {{left( {{e}^{frac{x}{y}}} right)}^{prime }}_{x}=]

[={{e}^{x}}cdot {{e}^{frac{x}{y}}}+{{e}^{x}}cdot {{e}^{frac{x}{y}}}cdot frac{1}{y}={{e}^{x}}cdot {{e}^{^{frac{x}{y}}}}left( 1+frac{1}{y} right)]

[{{{z}’}_{x}}={{left( {{e}^{x}}.{{e}^{frac{x}{y}}} right)}^{prime }}_{x}={{left( {{e}^{x+frac{x}{y}}} right)}^{prime }}_{x}={{e}^{x+frac{x}{y}}}.{{left( x+frac{x}{y} right)}^{prime }}_{x}=]

[={{e}^{x}}cdot {{e}^{^{frac{x}{y}}}}left( 1+frac{1}{y} right)]

При выборе разных путей, объем вычислений может быть разный, но ответ, если все выполнено верно, получится одним и тем же. Это касается как классических, так и частных производных. При этом еще раз напоминаю: в зависимости от того, по какой переменной идет взятие производной, т.е. дифференцирование, ответ может получиться совершенно разный. Посмотрите:

[{{left( ln left( {{x}^{2}}+y right) right)}^{prime }}_{x}=frac{1}{{{x}^{2}}+y}cdot {{left( {{x}^{2}}+y right)}^{prime }}_{x}=frac{1}{{{x}^{2}}+y}cdot 2x]

[{{left( ln left( {{x}^{2}}+y right) right)}^{prime }}_{y}=frac{1}{{{x}^{2}}+y}cdot {{left( {{x}^{2}}+y right)}^{prime }}_{y}=frac{1}{{{x}^{2}}+y}cdot 1]

В заключение для закрепления всего этого материала давайте попробуем посчитать еще два примера.

Задачи с тригонометрической функция и функцией с тремя переменными

Задача № 1

[zleft( x,y right)={{3}^{xsin y}}]

Давайте запишем такие формулы:

[{{left( {{a}^{x}} right)}^{prime }}={{a}^{x}}cdot ln a]

[{{left( {{e}^{x}} right)}^{prime }}={{e}^{x}}]

Давайте теперь решать наше выражение:

[{{{z}’}_{x}}={{left( {{3}^{xsin y}} right)}^{prime }}_{x}={{3}^{x.sin y}}cdot ln 3cdot {{left( xcdot sin y right)}^{prime }}_{x}=]

Отдельно посчитаем такую конструкцию:

[{{left( xcdot sin y right)}^{prime }}_{x}={{{x}’}_{x}}cdot sin y+x{{left( sin y right)}^{prime }}_{x}=1cdot sin y+xcdot 0=sin y]

Продолжаем решать исходное выражение:

[={{3}^{xsin y}}cdot ln 3cdot sin y]

Это окончательный ответ частной переменной по $x$. Теперь посчитаем по $y$:

[{{{z}’}_{y}}={{left( {{3}^{xsin y}} right)}^{prime }}_{y}={{3}^{xsin y}}cdot ln 3cdot {{left( xsin y right)}^{prime }}_{y}=]

Решим одно выражение отдельно:

[{{left( xcdot sin y right)}^{prime }}_{y}={{{x}’}_{y}}cdot sin y+x{{left( sin y right)}^{prime }}_{y}=0cdot sin y+xcdot cos y=xcdot cos y]

Решаем до конца нашу конструкцию:

[={{3}^{xcdot sin y}}cdot ln 3cdot xcos y]

Задача № 2

[tleft( x,y,z right)=x{{e}^{y}}+y{{e}^{z}}]

На первый взгляд этот пример может показаться достаточно сложным, потому что здесь три переменных. На самом деле, это одна из самых простых задач в сегодняшнем видеоуроке.

Находим по $x$:

[{{{t}’}_{x}}={{left( x{{e}^{y}}+y{{e}^{z}} right)}^{prime }}_{x}={{left( xcdot {{e}^{y}} right)}^{prime }}_{x}+{{left( ycdot {{e}^{z}} right)}^{prime }}_{x}=]

[={{left( x right)}^{prime }}_{x}cdot {{e}^{y}}+xcdot {{left( {{e}^{y}} right)}^{prime }}_{x}=1cdot {{e}^{y}}+xcdot o={{e}^{y}}]

Теперь разберемся с $y$:

[{{{t}’}_{y}}={{left( xcdot {{e}^{y}}+ycdot {{e}^{z}} right)}^{prime }}_{y}={{left( xcdot {{e}^{y}} right)}^{prime }}_{y}+{{left( ycdot {{e}^{z}} right)}^{prime }}_{y}=]

[=xcdot {{left( {{e}^{y}} right)}^{prime }}_{y}+{{e}^{z}}cdot {{left( y right)}^{prime }}_{y}=xcdot {{e}^{y}}+{{e}^{z}}]

Мы нашли ответ.

Теперь остается найти по $z$:

[{{{t}’}_{z}}={{left( xcdot {{e}^{y}}+{{y}^{z}} right)}^{prime }}_{z}={{left( xcdot {{e}^{y}} right)}^{prime }}_{z}+{{left( ycdot {{e}^{z}} right)}^{prime }}_{z}=0+ycdot {{left( {{e}^{z}} right)}^{prime }}_{z}=ycdot {{e}^{z}}]

Мы посчитали третью производную, на чем решение второй задачи полностью завершено.

Нюансы решения

Как видите, ничего сложного в этих двух примерах нет. Единственное, в чем мы убедились, так это в том, что производная сложной функции применяется часто и в зависимости от того, какую частную производную мы считаем, мы получаем разные ответы.

В последней задаче нам было предложено разобраться с функцией сразу от трех переменных. Ничего страшного в этом нет, однако в самом конце мы убедились, что все они друг от друга существенно отличаются.

Ключевые моменты

Окончательные выводы из сегодняшнего видеоурока следующие:

  1. Частные производные считаются так же, как и обычные, при этом, чтобы считать частную производную по одной переменной, все остальные переменные, входящие в данную функцию, мы принимаем за константы.
  2. При работе с частными производными мы используем все те же стандартные формулы, что и с обычными производными: сумму, разность, производную произведения и частного и, разумеется, производную сложной функции.

Конечно, просмотра одного этого видеоурока недостаточно, чтобы полностью разобраться в этой теме, поэтому прямо сейчас на моем сайте именно к этому видео есть комплект задач, посвященных именно сегодняшней теме — заходите, скачивайте, решайте эти задачи и сверяйтесь с ответом. И после этого никаких проблем с частными производными ни на экзаменах, ни на самостоятельных работах у вас не будет. Конечно, это далеко не последний урок по высшей математике, поэтому заходите на наш сайт, добавляйтесь ВКонтакте, подписывайтесь на YouTube, ставьте лайки и оставайтесь с нами!

Смотрите также:

  1. Производная параметрической функции
  2. Системы линейных уравнений: основные понятия
  3. Сравнение дробей
  4. Четырехугольная пирамида в задаче C2
  5. Задача B5: вычисление площади методом обводки
  6. Задача B4: вклад в банке и проценты

Чтобы понять частные производные, сначала нужно разобраться с обычными. И не нужно ничего искать: в нашей отдельной статье мы уже подготовили все для того, чтобы у вас это получилось. А сейчас речь пойдет о частных производных.

Добро пожаловать на наш телеграм-канал за полезной рассылкой и актуальными студенческими новостями.

Функция двух и более переменных

Прежде чем говорить о частных производных, нужно затронуть понятие функции нескольких переменных, без которого нет смысла в частной производной. В школе мы привыкли иметь дело с функциями одной переменной: 

Функция двух и более переменных

Производными таких функций мы и считали раньше. График функции одной переменной представляет собой линию на плоскости: прямую, параболу, гиперболу и т.д.

А что, если добавить еще одну переменную? Получится такая функция:

Функция двух и более переменных

Это – функция двух независимых переменных x и y. График такой функции представляет собой поверхность в трехмерном пространстве: шар, гиперболоид, параболоид или еще какой-нибудь сферический конь в вакууме. Частные производные функции z по иксу и игреку соответственно записываются так:

Функция двух и более переменных

Существуют также функции трех и более переменных. Правда, график такой функции нарисовать невозможно: для этого понадобилось бы как минимум четырехмерное пространство, которое невозможно изобразить.

Частная производная первого порядка

Запоминаем главное правило:

При вычислении частной производной по одной из переменных, вторая переменная принимается за константу. В остальном правила вычисления производной не меняются.

То есть, частная производная по сути ничем не отличается от обычной. Так что, держите перед глазами таблицу производных элементарных функций и правила вычисления обычных производных. Рассмотрим пример, чтобы стало совсем понятно. Допустим, нужно вычислить частные производные первого порядка следующей функции:

Частная производная первого порядка

Сначала возьмем частную производную по иксу, считая игрек обычным числом:

Частная производная первого порядка

Теперь считаем частную производную по игреку, принимая икс за константу:

Частная производная первого порядка

Как видите, ничего сложного в этом нет, а успех с более сложными примерами – лишь дело практики.

Частная производная второго порядка

Как находится частная производная второго порядка? Так же, как и первого. Чтобы найти частные производные второго порядка, нужно просто взять производную от производной первого порядка. Вернемся к примеру выше и посчитаем частные производные второго порядка.

По иксу:

Частная производная второго порядка

По игреку:

Частная производная второго порядка

Частные производные третьего и высших порядков не отличаются по принципу вычисления. Систематизируем правила:

  1. При дифференцировании по одной независимой переменной, вторая принимается за константу.
  2. Производная второго порядка – это производная от производной первого порядка. Третьего порядка – производная от производной второго порядка и т.д.

Частные производные и полный дифференциал функции

Частый вопрос в практических заданиях – нахождение полного дифференциала функции. Для функции нескольких переменных полный дифференциал определяется, как главная линейная часть малого полного приращения функции относительно приращений аргументов.

Определение звучит громоздко, но с буквами все проще. Полный дифференциал первого порядка функции нескольких переменных выглядит так:

Частные производные и полный дифференциал функции

Зная, как считаются частные производные, нет никакой проблемы вычислить и полный дифференциал.

Частные производные – не такая уж и бесполезная тема. Например, дифференциальные уравнения в частных производных второго порядка широко используются для математического описания реальных физических процессов.

Здесь мы дали лишь общее, поверхностное представление о частных производных первого и второго порядка. Вас интересует эта тема или остались конкретные вопросы? Задавайте их в комментариях и обращайтесь к экспертам профессионального студенческого сервиса за квалифицированной и скорой помощью в учебе. С нами вы не останетесь один на один с проблемой!

Иван

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Частные производные

Частной производной по x функции z = f(x,y) в точке A(x0,y0) называется предел отношения частного приращения по x функции в точке A к приращению ∆x при стремлении ∆x к нулю.

Частные производные функции z(x,y) находятся по следующим формулам: Частные производные

Вторые частные производные функции z(x,y) находятся по формулам:

Вторые частные производные

Смешанные частные производные функции z(x,y) находятся по формулам: Смешанные частные производные

Назначение сервиса. Сервис используется для нахождения частных производных функции (см. пример). Решение производится в онлайн режиме и оформляется в формате Word.

  • Решение онлайн
  • Видеоинструкция
  • Также решают

Правила ввода функции, заданной в явном виде




Примеры

x2+xyx^2+x*y.

cos2(2x+y)(cos(2*x+y))^2

(x-y)^(2/3)

Правила ввода функции, заданной в неявном виде

  1. Все переменные выражаются через x,y,z


Примеры

x^2/(z+y)

cos2(2x+zy)(cos(2*x+z*y))^2

z+(x-y)^(2/3)

Частные производные используются, например, при нахождении полного дифференциала и экстремумов функции.

Частные производные функции нескольких переменных

Ели одному из аргументов функции z = f(x,y) придать приращение, а другой аргумент не изменять, то функция получит частное приращение по одному из аргументов: Δxz=f(x+Δx,y)-f(x,y) – это частное приращение функции z по аргументу x; Δyz=f(x,y+Δy)-f(x,y) – это частное приращение функции z по аргументу у.

Частной производной функции нескольких переменных по одному из её аргументов называется предел отношения частного приращения функции по этому аргументу к соответствующему приращению аргумента при условии, что приращение аргумента стремится к нулю:

– это частная производная функции z по аргументу x;

– это частная производная функции z по аргументу у.

Чтобы вычислить частную производную ФНП по одному из её аргументов, нужно все другие её аргументы считать постоянными и проводить дифференцирование по правилам дифференцирования функции одного аргумента.

Пример 1. z=2x5+3x2y+y2–4x+5y-1

Пример 2. Найти частные производные функции z = f(x;y) в точке A(x0;y0).



Находим частные производные:





Найдем частные производные в точке А(1;1)





Находим вторые частные производные:



Найдем смешанные частные производные:

Задать свои вопросы или оставить замечания можно внизу страницы в разделе Disqus.
Можно также оставить заявку на помощь в решении своих задач у наших проверенных партнеров (здесь или здесь).

Данный онлайн калькулятор предназначен для решения частных производных первого и второго порядков.
Частная производная – это производная функции одной переменной, когда значение другой переменной фиксировано. Следовательно, частные производные находятся так же, как и производные функций одной переменной. Частная производная это обобщенное понятие производной, когда в функции содержится несколько переменных.

Калькулятор поможет найти частные производные функции онлайн.
Для получения полного хода решения нажимаем в ответе Step-by-step.

Основные функции

left(a=operatorname{const} right)

  • x^{a}: x^a

модуль x: abs(x)

Производные

Для того, чтобы найти производную функции f(x)
нужно написать в строке: f[x], x. Если Вам требуется
найти производную n-го порядка, то следует написать: f[x], {x, n}. В
том случае, если Вам требуется найти частную производную функции f(x,y,z,...,t) напишите в окне гаджета: f[x, y, z,…,t], j, где j
— интересующая Вас переменная. Если нужно найти частную производную по
некоторой переменной порядка n, то следует ввести: f[x, y, z,…,t], {j,
n}, где j означает тоже, что и Выше.

Важно подчеркнуть, что калькулятор выдает пошаговое нахождение
производной при нажатии на «Show Steps» в правом верхнем углу
выдаваемого ей ответа.

Примеры
  • x*E^x, x;
  • x^3*E^x, {x,17};
  • x^3*y^2*Sin[x+y], x;
  • x^3*y^2*Sin[x+y], y,
  • x/(x+y^4), {x,6}.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти заказы на значки
  • Формулы за 7 класс как найти путь
  • Как найти приворот кто делает
  • Как найти корневую мать
  • Как составить формулу горения магния

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии