Как найти базисный вектор матрицы

Собственные числа и собственные векторы линейного оператора

Определение . Ненулевой вектор x называется собственным вектором оператора A , если оператор A переводит x в коллинеарный ему вектор, то есть A· x = λ· x . Число λ называется собственным значением или собственным числом оператора A, соответствующим собственному вектору x .
Отметим некоторые свойства собственных чисел и собственных векторов.
1. Любая линейная комбинация собственных векторов x 1, x 2, . x m оператора A , отвечающих одному и тому же собственному числу λ, является собственным вектором с тем же собственным числом.
2. Собственные векторы x 1, x 2, . x m оператора A с попарно различными собственными числами λ1, λ2, …, λm линейно независимы.
3. Если собственные числа λ12= λm= λ, то собственному числу λ соответствует не более m линейно независимых собственных векторов.

Итак, если имеется n линейно независимых собственных векторов x 1, x 2, . x n, соответствующих различным собственным числам λ1, λ2, …, λn, то они линейно независимы, следовательно, их можно принять за базис пространства Rn. Найдем вид матрицы линейного оператора A в базисе из его собственных векторов, для чего подействуем оператором A на базисные векторы: тогда .
Таким образом, матрица линейного оператора A в базисе из его собственных векторов имеет диагональный вид, причем по диагонали стоят собственные числа оператора A.
Существует ли другой базис, в котором матрица имеет диагональный вид? Ответ на поставленный вопрос дает следующая теорема.

Теорема. Матрица линейного оператора A в базисе < ε i> (i = 1..n) имеет диагональный вид тогда и только тогда, когда все векторы базиса — собственные векторы оператора A.

Правило отыскания собственных чисел и собственных векторов

Система (1) имеет ненулевое решение, если ее определитель D равен нулю

Пример №1 . Линейный оператор A действует в R3 по закону A· x =(x1-3x2+4x3, 4x1-7x2+8x3, 6x1-7x2+7x3), где x1, x2, . xn — координаты вектора x в базисе e 1=(1,0,0), e 2=(0,1,0), e 3=(0,0,1). Найти собственные числа и собственные векторы этого оператора.
Решение. Строим матрицу этого оператора:
A· e 1=(1,4,6)
A· e 2=(-3,-7,-7)
A· e 3=(4,8,7)
.
Составляем систему для определения координат собственных векторов:
(1-λ)x1-3x2+4x3=0
x1-(7+λ)x2+8x3=0
x1-7x2+(7-λ)x3=0
Составляем характеристическое уравнение и решаем его:

Пример №2 . Дана матрица .
1. Доказать, что вектор x =(1,8,-1) является собственным вектором матрицы A. Найти собственное число, соответствующее этому собственному вектору.
2. Найти базис, в котором матрица A имеет диагональный вид.

Решение находим с помощью калькулятора.
1. Если A· x =λ· x , то x — собственный вектор

Определение . Симметрической матрицей называется квадратная матрица, в которой элементы, симметричные относительно главной диагонали, равны, то есть в которой ai k =ak i .

Замечания .

  1. Все собственные числа симметрической матрицы вещественны.
  2. Собственные векторы симметрической матрицы, соответствующие попарно различным собственным числам, ортогональны.

В качестве одного из многочисленных приложений изученного аппарата, рассмотрим задачу об определении вида кривой второго порядка.

Алгоритм нахождения векторов жорданова базиса

Собственные векторы и собственные значения

Пусть A – матрица некоторого линейного преобразования порядка n.

Определение. Многочлен n-ой степени

P(l)=det(A-lЕ) (1.1)

называется характеристическим многочленом матрицы А, а его корни, которые могут быть как действительными, так и комплексными, называются характеристическими корнями этой матрицы.

Определение. Ненулевой вектор x линейного пространства V, удовлетворяющий условию

А(х)=lх, (1.2)

называется собственным вектором преобразования A. Число l называется собственным значением.

Замечание. Если в пространстве V задан базис, то это условие можно переписать следующим образом:

Ах=lх, (1.3)

где A – матрица преобразования, x – координатный столбец.

Определение. Алгебраической кратностью собственного значения lj называется кратность корня lj характеристического многочлена.

Определение. Совокупность всех собственных значений называется спектром матрицы.

Алгоритм нахождения собственных значений и собственных векторов

1. Найти собственные значения матрицы:

· записать характеристическое уравнение:

det(A-lЕ)=0; (1.4)

· найти его корни l j, j=1. n и их кратности.

2. Найти собственные векторы матрицы:

· для каждого l j решить уравнение

· найденный вектор х и будет собственным вектором, отвечающим собственному значению l j.

Пример1

Найдем собственные значения и собственные векторы, если известна матрица преобразования:

Записываем характеристический многочлен (1.1) и решаем характеристическое уравнение (1.4):

Получаем два собственных значения: l1=1 кратности m1=2 и l2=-1 кратности m2=1.

Далее с помощью соотношения (1.5) находим собственные векторы. Сначала ищем ФСР для l1=1:

Очевидно, что rang=1, следовательно, число собственных векторов для l1=1 равно n-rang=2. Найдем их:

Аналогичным образом находим собственные векторы для l2=-1. В данном случае будет один вектор:

Понятие жордановой клетки и жордановой матрицы

Определение. Жордановой клеткой порядка m, отвечающей собственному значению l, называется матрица вида:

(2.1)

Иными словами, на главной диагонали такой матрицы располагается собственное значение l, диагональ, ближайшая к главной, сплошь занята единицами, а все остальные элементы матрицы равны нулю. Ниже даны примеры жордановых клеток соответственно первого, второго и третьего порядков:

Определение. Блочно-диагональная матрица, на диагонали которой стоят жордановы клетки, называется жордановой матрицей:

(2.2)

Пример

Ниже представлена жорданова матрица, состоящая из трех жордановых клеток:

— размера 1, отвечающая собственному значению l1=3;

— размера 2, отвечающая собственному значению l2=4;

— размера 3, отвечающая собственному значению l3=5.

Количество и размер жордановых клеток

Пусть А — матрица, которую нужно привести к жордановой форме, lj (k=1. mj) — собственные значения этой матрицы.

Количество жордановых клеток размера k, отвечающих собственному значению lj, определяется следующим образом:

(3.1)
(3.2)

Пример

Пусть дана матрица преобразования:

Найдем количество и размер жордановых клеток, соответствующих каждому собственному значению этого преобразования.

Как искать собственные значения, было подробно рассказано в первом параграфе учебника. Поэтому опустим все расчеты, а сразу укажем собственные числа матрицы А: l1=0 кратности m1=1 и l2=-1 кратности m2=2.

Используя соотношения (3.1) и (3.2), найдем количество и размер жордановых клеток, соответствующих l1=0, m1=1.

Очевидно, что rang(A-l1E)=2 и, соответственно, r 1 =r 2 =rang(A-l1E) 1 =2, r 0 =n=3.

Количество жордановых клеток размера 1 будет равно: r 0 -2r 1 +r 2 =3-2*2+2=1.

Ясно, что других клеток для этого собственного значения нет. Т.о., для l1=0, m1=1 мы имеем единственную жорданову клетку вида J1(0)=(0).

Далее аналогичным образом определяем клетки для второго собственного значения l2=-1 кратности m2=2.

Очевидно, что rang(A-l2E)=2 и, соответственно, r 1 =r 2 =rang(A-l2E) 1 =2.

Т.е. rang(A-l1E) 2 =1 и, соответственно, r 1 =r 2 =rang(A-l1E) 2 =1.

Теперь можно определить количество и размер жордановых клеток для второго собственного значения:

— размера 1: r 0 -2r 1 +r 2 =3-2*2+1=0;

— размера 2: r 1 -2r 2 +r 3 =2-2*1+1=1.

Таким образом, для l2=-1 мы получили одну клетку размера 2:

Соответственно, жорданова форма для исходной матрицы А будет иметь вид:

Жорданов базис

Пусть матрица А приведена к жордановой форме J. Рассмотрим систему HJ=AH, где

— матрица перехода от исходного базиса (e) к жорданову базису (h). Это система матричных n 2 уравнений с n 2 неизвестными.

Определение. Пусть e – собственный вектор преобразования А, т.е. имеет место равенство А(e) = le. Вектор e1, удовлетворяющий равенству

называется присоединенным вектором первого порядка;

вектор e2, удовлетворяющий равенству

— присоединенным вектором второго порядка;

вектор en, удовлетворяющий равенству

— присоединенным вектором n-ого порядка.

Заметим также, что

(А-lе) k ek=e. (4.5)

Алгоритм нахождения векторов жорданова базиса

Чтобы найти жорданов базис, необходимо проделать следующие действия для каждой жордановой клетки.

Рассмотрим жорданову клетку порядка k, отвечающую собственному значению l. Для нее ищутся вектора жорданова базиса:

h, h 1 , h 2 , . h k-1 , где:

h — собственный вектор, отвечающий собственному значению l;

h 1 — присоединенный вектор 1-ого порядка;

h 2 — присоединенный вектор 2-ого порядка;

h k-1 — присоединенный вектор (k-1)-ого порядка;

Эта совокупность векторов ищется, используя следующую систему:

(4.6)

В результате применения этих операций ко всем жордановым клеткам, получим векторы, составляющие жорданов базис:

h, h 1 , h 2 , . h k-1 , f, f 1 , f 2 , . f p-1 .

Векторам h соответствует жорданова клетка размера k, векторам f – размера p и т.д.
ex3

Пример

Вернемся к примеру, рассмотренному в прошлом разделе. Там нами были получены две жордановы клетки:

J1(0)=(0) и

Рассмотрим первую, J1(0).

С помощью соотношения (1.5) из первого параграфа найдем собственный вектор, отвечающий собственному значению l1=0:

Присоединенных векторов для данной жордановой клетки, очевидно, нет.

Теперь рассмотрим вторую жорданову клетку, J2(-1). Очевидно, что для нее надо найти один собственный вектор и один присоединенный.

Используя систему (4.6), получим эти векторы:

— собственный вектор, отвечающий l2=-1;

— присоединенный вектор.

Мы получили все векторы, составляющие матрицу Н. Таким образом, матрица перехода к жорданову базису будет иметь следующий вид:

Векторное пространство: размерность и базис, разложение вектора по базису

В статье о n -мерных векторах мы пришли к понятию линейного пространства, порождаемого множеством n -мерных векторов. Теперь нам предстоит рассмотреть не менее важные понятия, такие как размерность и базис векторного пространства. Они напрямую связаны с понятием линейно независимой системы векторов, так что дополнительно рекомендуется напомнить себе основы и этой темы.

Введем некоторые определения.

Размерность векторного пространства – число, соответствующее максимальному количеству линейно независимых векторов в этом пространстве.

Базис векторного пространства – совокупность линейно независимых векторов, упорядоченная и в своей численности равная размерности пространства.

Рассмотрим некое пространство n -векторов. Размерность его соответственно равна n . Возьмем систему из n -единичных векторов:

e ( 1 ) = ( 1 , 0 , . . . , 0 ) e ( 2 ) = ( 0 , 1 , . . . , 0 ) e ( n ) = ( 0 , 0 , . . . , 1 )

Используем эти векторы в качестве составляющих матрицы A : она будет являться единичной с размерностью n на n . Ранг этой матрицы равен n . Следовательно, векторная система e ( 1 ) , e ( 2 ) , . . . , e ( n ) является линейно независимой. При этом к системе невозможно добавить ни одного вектора, не нарушив ее линейной независимости.

Так как число векторов в системе равно n , то размерность пространства n -мерных векторов равна n , а единичные векторы e ( 1 ) , e ( 2 ) , . . . , e ( n ) являются базисом указанного пространства.

Из полученного определения сделаем вывод: любая система n -мерных векторов, в которой число векторов меньше n , не является базисом пространства.

Если мы поменяем местами первый и второй вектор, получим систему векторов e ( 2 ) , e ( 1 ) , . . . , e ( n ) . Она также будет являться базисом n -мерного векторного пространства. Составим матрицу, взяв за ее строки векторы полученной системы. Матрица может быть получена из единичной матрицы перестановкой местами первых двух строк, ранг ее будет равен n . Система e ( 2 ) , e ( 1 ) , . . . , e ( n ) линейно независима и является базисом n -мерного векторного пространства.

Переставив местами в исходной системе другие векторы, получим еще один базис.

Мы можем взять линейно независимую систему неединичных векторов, и она также будет представлять собой базис n -мерного векторного пространства.

Векторное пространство с размерностью n имеет столько базисов, сколько существует линейно независимых систем из n -мерных векторов числом n.

Плоскость является двумерным пространством – ее базисом будут два любых неколлинеарных вектора. Базисом трехмерного пространства послужат три любых некомпланарных вектора.

Рассмотрим применение данной теории на конкретных примерах.

Исходные данные: векторы

a = ( 3 , — 2 , 1 ) b = ( 2 , 1 , 2 ) c = ( 3 , — 1 , — 2 )

Необходимо определить, являются ли указанные векторы базисом трехмерного векторного пространства.

Решение

Для решения поставленной задачи исследуем заданную систему векторов на линейную зависимость. Составим матрицу, где строки – координаты векторов. Определим ранг матрицы.

A = 3 2 3 — 2 1 — 1 1 2 — 2 A = 3 — 2 1 2 1 2 3 — 1 — 2 = 3 · 1 · ( — 2 ) + ( — 2 ) · 2 · 3 + 1 · 2 · ( — 1 ) — 1 · 1 · 3 — ( — 2 ) · 2 · ( — 2 ) — 3 · 2 · ( — 1 ) = = — 25 ≠ 0 ⇒ R a n k ( A ) = 3

Следовательно, заданные условием задачи векторы линейно независимы, и их численность равна размерности векторного пространства – они являются базисом векторного пространства.

Ответ: указанные векторы являются базисом векторного пространства.

Исходные данные: векторы

a = ( 3 , — 2 , 1 ) b = ( 2 , 1 , 2 ) c = ( 3 , — 1 , — 2 ) d = ( 0 , 1 , 2 )

Необходимо определить, может ли указанная система векторов являться базисом трехмерного пространства.

Решение

Указанная в условии задачи система векторов является линейно зависимой, т.к. максимальное число линейно независимых векторов равно 3. Таким образом, указанная система векторов не может служить базисом трехмерного векторного пространства. Но стоит отметить, что подсистема исходной системы a = ( 3 , — 2 , 1 ) , b = ( 2 , 1 , 2 ) , c = ( 3 , — 1 , — 2 ) является базисом.

Ответ: указанная система векторов не является базисом.

Исходные данные: векторы

a = ( 1 , 2 , 3 , 3 ) b = ( 2 , 5 , 6 , 8 ) c = ( 1 , 3 , 2 , 4 ) d = ( 2 , 5 , 4 , 7 )

Могут ли они являться базисом четырехмерного пространства?

Решение

Cоставим матрицу, используя в качестве строк координаты заданных векторов

A = 1 2 3 3 2 5 6 8 1 3 2 4 2 5 4 7

По методу Гаусса определим ранг матрицы:

A = 1 2 3 3 2 5 6 8 1 3 2 4 2 5 4 7

1 2 3 3 0 1 0 2 0 1 — 1 1 0 1 — 2 1

1 2 3 3 0 1 0 2 0 0 — 1 — 1 0 0 — 2 — 1

1 2 3 3 0 1 0 2 0 0 — 1 — 1 0 0 0 1 ⇒ ⇒ R a n k ( A ) = 4

Следовательно, система заданных векторов линейно независима и их численность равна размерности векторного пространства – они являются базисом четырехмерного векторного пространства.

Ответ: заданные векторы являются базисом четырехмерного пространства.

Исходные данные: векторы

a ( 1 ) = ( 1 , 2 , — 1 , — 2 ) a ( 2 ) = ( 0 , 2 , 1 , — 3 ) a ( 3 ) = ( 1 , 0 , 0 , 5 )

Составляют ли они базис пространства размерностью 4?

Решение

Исходная система векторов линейно независима, но численность векторов в ней недостаточна, чтобы стать базисом четырехмерного пространства.

Ответ: нет, не составляют.

Разложение вектора по базису

Примем, что произвольные векторы e ( 1 ) , e ( 2 ) , . . . , e ( n ) являются базисом векторного n-мерного пространства. Добавим к ним некий n -мерный вектор x → : полученная система векторов станет линейно зависимой. Свойства линейной зависимости гласят, что хотя бы один из векторов такой системы может линейно выражаться через остальные. Переформулируя это утверждение, можно говорить о том, что хотя бы один из векторов линейно зависимой системы может раскладываться по остальным векторам.

Таким образом, мы пришли к формулировке важнейшей теоремы:

Любой вектор n -мерного векторного пространства единственным образом раскладывается по базису.

Докажем эту теорему:

зададим базис n -мерного векторного пространства — e ( 1 ) , e ( 2 ) , . . . , e ( n ) . Сделаем систему линейно зависимой, добавив к ней n -мерный вектор x → . Этот вектор может быть линейно выражен через исходные векторы e :

x = x 1 · e ( 1 ) + x 2 · e ( 2 ) + . . . + x n · e ( n ) , где x 1 , x 2 , . . . , x n — некоторые числа.

Теперь докажем, что такое разложение является единственным. Предположим, что это не так и существует еще одно подобное разложение:

Отнимем от левой и правой частей этого равенства соответственно левую и правую части равенства x = x 1 · e ( 1 ) + x 2 · e ( 2 ) + . . . + x n · e ( n ) . Получим:

1 — x 1 ) · e ( 1 ) + ( x

2 — x 2 ) · e ( 2 ) + . . . ( x

Система базисных векторов e ( 1 ) , e ( 2 ) , . . . , e ( n ) линейно независима; по определению линейной независимости системы векторов равенство выше возможно только тогда, когда все коэффициенты ( x

2 — x 2 ) , . . . , ( x

n — x n ) будут равны нулю. Из чего справедливым будет: x 1 = x

n . И это доказывает единственный вариант разложения вектора по базису.

При этом коэффициенты x 1 , x 2 , . . . , x n называются координатами вектора x → в базисе e ( 1 ) , e ( 2 ) , . . . , e ( n ) .

Доказанная теория делает понятным выражение «задан n -мерный вектор x = ( x 1 , x 2 , . . . , x n ) »: рассматривается вектор x → n -мерного векторного пространства, и его координаты заданы в некотором базисе. При этом также понятно, что этот же вектор в другом базисе n -мерного пространства будет иметь другие координаты.

Рассмотрим следующий пример: допустим, что в некотором базисе n -мерного векторного пространства задана система из n линейно независимых векторов

e ( 1 ) = ( e 1 ( 1 ) , e 2 ( 1 ) , . . . , e n ( 1 ) ) e ( 2 ) = ( e 1 ( 2 ) , e 2 ( 2 ) , . . . , e n ( 2 ) ) ⋮ e ( n ) = ( e 1 ( n ) , e 2 ( n ) , . . . , e n ( n ) )

а также задан вектор x = ( x 1 , x 2 , . . . , x n ) .

Векторы e 1 ( 1 ) , e 2 ( 2 ) , . . . , e n ( n ) в этом случае также являются базисом этого векторного пространства.

Предположим, что необходимо определить координаты вектора x → в базисе e 1 ( 1 ) , e 2 ( 2 ) , . . . , e n ( n ) , обозначаемые как x

Вектор x → будет представлен следующим образом:

2 · e ( 2 ) + . . . + x

Запишем это выражение в координатной форме:

( x 1 , x 2 , . . . , x n ) = x

1 · ( e ( 1 ) 1 , e ( 1 ) 2 , . . . , e ( 1 ) n ) + x

2 · ( e ( 2 ) 1 , e ( 2 ) 2 , . . . , e ( 2 ) n ) + . . . + + x

n · ( e ( n ) 1 , e ( n ) 2 , . . . , e ( n ) n ) = = ( x

2 e 1 ( 2 ) + . . . + x

2 e 2 ( 2 ) + + . . . + x

n e 2 ( n ) , . . . , x

2 e n ( 2 ) + . . . + x

Полученное равенство равносильно системе из n линейных алгебраических выражений с n неизвестными линейными переменными x

n e 2 n ⋮ x n = x

Матрица этой системы будет иметь следующий вид:

e 1 ( 1 ) e 1 ( 2 ) ⋯ e 1 ( n ) e 2 ( 1 ) e 2 ( 2 ) ⋯ e 2 ( n ) ⋮ ⋮ ⋮ ⋮ e n ( 1 ) e n ( 2 ) ⋯ e n ( n )

Пусть это будет матрица A , и ее столбцы – векторы линейно независимой системы векторов e 1 ( 1 ) , e 2 ( 2 ) , . . . , e n ( n ) . Ранг матрицы – n , и ее определитель отличен от нуля. Это свидетельствует о том, что система уравнений имеет единственное решение, определяемое любым удобным способом: к примеру, методом Крамера или матричным методом. Таким образом мы сможем определить координаты x

n вектора x → в базисе e 1 ( 1 ) , e 2 ( 2 ) , . . . , e n ( n ) .

Применим рассмотренную теорию на конкретном примере.

Исходные данные: в базисе трехмерного пространства заданы векторы

e ( 1 ) = ( 1 , — 1 , 1 ) e ( 2 ) = ( 3 , 2 , — 5 ) e ( 3 ) = ( 2 , 1 , — 3 ) x = ( 6 , 2 , — 7 )

Необходимо подтвердить факт, что система векторов e ( 1 ) , e ( 2 ) , e ( 3 ) также служит базисом заданного пространства, а также определить координаты вектора х в заданном базисе.

Решение

Система векторов e ( 1 ) , e ( 2 ) , e ( 3 ) будет являться базисом трехмерного пространства, если она линейно независима. Выясним эту возможность, определив ранг матрицы A , строки которой – заданные векторы e ( 1 ) , e ( 2 ) , e ( 3 ) .

Используем метод Гаусса:

A = 1 — 1 1 3 2 — 5 2 1 — 3

1 — 1 1 0 5 — 8 0 3 — 5

1 — 1 1 0 5 — 8 0 0 — 1 5

R a n k ( A ) = 3 . Таким образом, система векторов e ( 1 ) , e ( 2 ) , e ( 3 ) линейно независима и является базисом.

Пусть в базисе вектор x → имеет координаты x

3 . Связь этих координат определяется уравнением:

3 e 1 ( 3 ) x 2 = x

3 e 2 ( 3 ) x 3 = x

Применим значения согласно условиям задачи:

Решим систему уравнений методом Крамера:

∆ = 1 3 2 — 1 2 1 1 — 5 — 3 = — 1 ∆ x

1 = 6 3 2 2 2 1 — 7 — 5 — 3 = — 1 , x

1 ∆ = — 1 — 1 = 1 ∆ x

2 = 1 6 2 — 1 2 1 1 — 7 — 3 = — 1 , x

2 ∆ = — 1 — 1 = 1 ∆ x

3 = 1 3 6 — 1 2 2 1 — 5 — 7 = — 1 , x

Так, вектор x → в базисе e ( 1 ) , e ( 2 ) , e ( 3 ) имеет координаты x

Ответ: x = ( 1 , 1 , 1 )

Связь между базисами

Предположим, что в некотором базисе n-мерного векторного пространства даны две линейно независимые системы векторов:

c ( 1 ) = ( c 1 ( 1 ) , c 2 ( 1 ) , . . . , c n ( 1 ) ) c ( 2 ) = ( c 1 ( 2 ) , c 2 ( 2 ) , . . . , c n ( 2 ) ) ⋮ c ( n ) = ( c 1 ( n ) , e 2 ( n ) , . . . , c n ( n ) )

e ( 1 ) = ( e 1 ( 1 ) , e 2 ( 1 ) , . . . , e n ( 1 ) ) e ( 2 ) = ( e 1 ( 2 ) , e 2 ( 2 ) , . . . , e n ( 2 ) ) ⋮ e ( n ) = ( e 1 ( n ) , e 2 ( n ) , . . . , e n ( n ) )

Указанные системы являются также базисами заданного пространства.

n ( 1 ) — координаты вектора c ( 1 ) в базисе e ( 1 ) , e ( 2 ) , . . . , e ( 3 ) , тогда связь координат будет задаваться системой линейных уравнений:

1 ( 1 ) e 1 ( 1 ) + c

2 ( 1 ) e 1 ( 2 ) + . . . + c

n ( 1 ) e 1 ( n ) с 2 ( 1 ) = c

1 ( 1 ) e 2 ( 1 ) + c

2 ( 1 ) e 2 ( 2 ) + . . . + c

n ( 1 ) e 2 ( n ) ⋮ с n ( 1 ) = c

1 ( 1 ) e n ( 1 ) + c

2 ( 1 ) e n ( 2 ) + . . . + c

В виде матрицы систему можно отобразить так:

( c 1 ( 1 ) , c 2 ( 1 ) , . . . , c n ( 1 ) ) = ( c

n ( 1 ) ) · e 1 ( 1 ) e 2 ( 1 ) … e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) … e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) … e n ( n )

Сделаем по аналогии такую же запись для вектора c ( 2 ) :

( c 1 ( 2 ) , c 2 ( 2 ) , . . . , c n ( 2 ) ) = ( c

n ( 2 ) ) · e 1 ( 1 ) e 2 ( 1 ) … e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) … e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) … e n ( n )

И, далее действуя по тому же принципу, получаем:

( c 1 ( n ) , c 2 ( n ) , . . . , c n ( n ) ) = ( c

n ( n ) ) · e 1 ( 1 ) e 2 ( 1 ) … e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) … e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) … e n ( n )

Матричные равенства объединим в одно выражение:

c 1 ( 1 ) c 2 ( 1 ) ⋯ c n ( 1 ) c 1 ( 2 ) c 2 ( 2 ) ⋯ c n ( 2 ) ⋮ ⋮ ⋮ ⋮ c 1 ( n ) c 2 ( n ) ⋯ c n ( n ) = c

n ( n ) · e 1 ( 1 ) e 2 ( 1 ) ⋯ e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) ⋯ e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) ⋯ e n ( n )

Оно и будет определять связь векторов двух различных базисов.

Используя тот же принцип, возможно выразить все векторы базиса e ( 1 ) , e ( 2 ) , . . . , e ( 3 ) через базис c ( 1 ) , c ( 2 ) , . . . , c ( n ) :

e 1 ( 1 ) e 2 ( 1 ) ⋯ e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) ⋯ e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) ⋯ e n ( n ) = e

n ( n ) · c 1 ( 1 ) c 2 ( 1 ) ⋯ c n ( 1 ) c 1 ( 2 ) c 2 ( 2 ) ⋯ c n ( 2 ) ⋮ ⋮ ⋮ ⋮ c 1 ( n ) c 2 ( n ) ⋯ c n ( n )

Дадим следующие определения:

n ( n ) является матрицей перехода от базиса e ( 1 ) , e ( 2 ) , . . . , e ( 3 )

к базису c ( 1 ) , c ( 2 ) , . . . , c ( n ) .

n ( n ) является матрицей перехода от базиса c ( 1 ) , c ( 2 ) , . . . , c ( n )

к базису e ( 1 ) , e ( 2 ) , . . . , e ( 3 ) .

источники:

http://poisk-ru.ru/s27891t22.html

http://zaochnik.com/spravochnik/matematika/vektory/vektornoe-prostranstvo/

Фундаментальным
вопросом теории линейных пространств
является вопрос о том, можно ли, а если
можно, то как, произвольный вектор
пространства представить в виде линейной
комбинации фиксированного набора
векторов из этого пространства. Далее
мы получим ответ на этот вопрос.

Система
линейно независимых векторов
векторного пространстваназываетсябазисом
этого пространства, если любой вектор
из
может быть представлен в виде линейной
комбинации векторов этой системы, т.е.
для каждого векторасуществуют вещественные числатакие, что имеет место равенство

.

Это
равенство называется разложением
вектора

по базису
,
а числаназываютсякоординатами
вектора
относительно базиса

(или в базисе)
.

Утверждение

Базисом
линейного пространства решений
одно­родной системы является ее
фундаментальная система реше­ний.

ТЕОРЕМА
(о единственности разложения по базису).
Каждый вектор
пространстваможет быть разложен по базису

единственным
образом, т.е. координаты каждого вектора
в базисе


определяются однозначно.

Главное
значение базиса заключается в том, что
операции сложения векторов и умножения
их на числа при задании базиса превращаются
в соответствующие операции над числами
– координатами этих векторов. А именно,
справедлива следующая

ТЕОРЕМА.
При сложении
двух любых векторов линейного пространства
их координаты (относительно любого
базиса пространства) складываются; при
умножении

произвольного вектора на любое число
все координаты этого вектора умножаются
на.

Типовой
пример

Исследуем
вопрос о базисе пространства
,
введенного ранее при рассмотрении
Типовой примеров векторных пространств.
Покажем, чтоэлементовуказанного пространства образуют базис.

►Во-первых,
эти векторы линейно независимы. Проверка
линейной независимости набора
состоит в определении значений,
при которых возможно равенство

.

Но в
силу только что доказанной теоремы

,

а
последний вектор является нулевым лишь
при условии
.
Во-вторых, всякий векторзаведомо представим в виде линейной
комбинации векторов:и, значит, наборобразует базис. ◄

Векторное
пространство
называется
-мерным
,
если в нем существуютлинейно независимых векторов, а любыевекторов уже являются линейно зависимыми.
При этом числоназываетсяразмерностьюпространства.

Размерность
векторного пространства, состоящего
из одного нулевого вектора, принимается
равной нулю.

Размерность
пространства
обычно обозначают символом.

Векторное
пространство
называетсябесконечномерным, если
в нем существует любое число линейно
независимых векторов. В этом случае
пишут.

Выясним
связь между понятиями базиса и размерности
пространства.

ТЕОРЕМА.Если
– векторное пространство размерности,
то любыелинейно независимых векторов этого
пространства образуют его базис.

ТЕОРЕМА.Если векторное пространство
имеет базис, состоящий извекторов, то
.

Утверждение

Rn=n.

Типовые примеры

  1. Образуют
    ли базис в пространстве R3
    векторы
    ?

►По
определению базис составляют линейно
независимые векторы. Линейная зависимость
(или независимость) определяется исходя
из анализа равенства нулю линейной
комбинации этих векторов:

.

Последнее
векторное уравнение после записи его
по компонентам представляет собой
систему трёх однородных уравнений
относительно
.
Согласно схеме исследования линейной
зависимости векторов вычислим
определитель матрицы, составленной из
координат векторов

Определитель
системы равен нулю, следовательно, она
имеет нетривиальное решение и это
означает, что исходная группа векторов
линейно зависима и не образует базис в
R3. ◄

2.Найти
размерность и один из базисов линейного
пространства решений однородной системы:

►Представленная
система состоит из трёх уравнений и
содержит 5 неизвестных. Выпишем матрицу
системы и упростим её с помощью
элементарных преобразований, сначала
поменяв местами строки 1 и 2, а затем
вычитая новую первую строку, умноженную
на 3 и 4, соответственно из второй и
третьей строк :

Видно,
что ранг матрицы
равен 2. Следовательно, две неизвестные
являются главными, а три — свободными.
Значит ФСР системы содержит 5-2=3 линейно
независимых решения. Выберем в качестве
главных.
Это можно сделать, т.к. минор 2-го порядка,
составленный из коэффициентов при этих
неизвестных, отличен от нуля. Система,
соответствующая преобразованной
матрице, имеет вид

Отсюда,
выражая главные неизвестные через
свободные, получим общее решение

Или иначе:

.

Фундаментальная
совокупность решений является базисом
линейного пространства решений исходной
системы и в данном случае имеет вид

Размерность
искомого пространства равна 3.◄

Матрицей
перехода
от базисак базисуназывается матрица вида

где
для каждого
в
-ом
столбце стоят координатывекторав базисе.

Утверждение

Координаты
векторав базисеи координатыэтого же вектора в базисесвязаны равенством

где
— матрица перехода от базисак базису.

Утверждение.
Матрица перехода
от базисак бази­суи матрица обратного переходаот базисак базисусвязаны равенством=.

Типовые
примеры

1.Найти координаты векторав базисе,
если известно

►В
соответствии с определением матрица
перехода от базиса
к базисуесть

.

Обозначим
координаты вектора
в базисечерез,
а в базисечерез.
Искомые координатысвязаны с известными координатамиследующим соотношением:

.

Видно,
что для получения координат
необходимо вычислить матрицу, обратную.
Используя стандартную процедуру, имеем

.

Вычислим теперь координаты
:

.

  1. Найти матрицу
    перехода от базиса
    к базисупо данным разложениям этих векторов
    в базисе:

.

►Чтобы
построить матрицу
перехода
от базисак базису,
необходимо найти разложение векторовпо базису.
Сделаем это, представивв виде разложения пос неизвестными координатами, которые
требуется определить:

,

или с
учётом вида этих векторов в базисе

.

Откуда для координат
имеем

Теперь,
зная разложение
по,
выпишем матрицу:

.◄

5. Линейные оболочки
и подпространства

Подпространством линейного пространстваназывается множество векторов изтакое, что для любых двух векторовиизи любых двух вещественных чиселилинейная комбинациятакже принадлежит.

Утверждение. Подпространство само
является линейным про­странством.

Линейной оболочкойсистемы векторовназывается множество всех линейных
комбинаций векторов.
Обозначается.

Утверждение. Линейная оболочка системы
векторов является подпространством.

Пересечениемдвух подпространстви
на­зывается множество всех векторов,
принадлежащих одновре­менно и,
и
.
Обозначается
.

Суммой двух подпространстви
называется множество всех векторов,
представимых в виде,
где,
.
Обозначается
.

Утверждение. Сумма и пересечение
подпространств
и


являются линейными пространствами, и
их размерности связаны равенством

+=+.

Сумма
двух подпространств называется прямой
суммой
, если
пересечение этих подпространств состо­ит
только из нулевого вектора.

Типовой пример

Найти размерность и какой-нибудь базис
суммы и пересечения подпространств,
порождённых векторами
.

►Вычислим вначале размерность
подпространств. С этой целью установим,
являются ли линейно независимыми
векторы, порождающие данные подпространства.
Для подпространства
,
порождённого векторами,
равенство нулю линейной комбинации,
эквивалентное системе уравнений,
достигается лишь при условии.
Следовательно, векторылинейно независимы и размерность
подпространстваравна 2:.
Для подпространства,
порождённого векторами,
проводя аналогичный анализ, получим.

Вычислим теперь размерность пересечения
подпространств
и.
По определению векторы, составляющие
пересечение, принадлежат одновременно
обоим подпространствам. Произвольный
векторподпространстваявляется линейной комбинацией базисных
векторов:.
Аналогично для подпространстваимеем,
тогда условие принадлежности пересечению
естьили.

Это условие представляет собой систему
уравнений относительно коэффициентов
.
Составим матрицу системы и упростим её
с помощью элементарных преобразований:

Как видно ранг системы равен 3. Значит
ФСР состоит из одного линейно независимого
вектора. Найдём его, решив систему
уравнений, соответствующих последней
матрице, получим
,

откуда
.

Полагая свободное неизвестное
,
для остальных имеем

.
Итак, пересечение подпространствимеет
один базисный вектор

.

Размерность пересечения
.
Следовательно, в соответствии с равенством

размерность суммы подпространств
.
В качестве базиса суммы подпространств
можно взять, например, векторы,
дополненные вектором.
В линейной независимости векторовубедиться нетрудно.◄

Содержание:

Векторы на плоскости и в пространстве:

Обобщим некоторые сведения о векторах, известные в основном из школьного курса геометрии.

Вектором называется направленный отрезок Элементы матричного анализа с примерами решения

Элементы матричного анализа с примерами решения

Векторы могут обозначаться как двумя прописными буквами, так и одной строчной с чертой или стрелкой, либо выделяться жирным шрифтом, например:

Элементы матричного анализа с примерами решения

Длиной (или модулем) Элементы матричного анализа с примерами решения вектора Элементы матричного анализа с примерами решения называется число, равное длине отрезка Элементы матричного анализа с примерами решения, изображающего вектор.

Векторы, лежащие на одной прямой или на параллельных прямых, называются коминеарными.

Если начало и конец вектора совпадают, например Элементы матричного анализа с примерами решения, то такой вектор называют нулевым и обозначают Элементы матричного анализа с примерами решения . Длина нулевого вектора равна нулю: Элементы матричного анализа с примерами решения. Так как направление нулевого вектора произвольно, то считают, что он коллинеарен любому вектору.

Произведением вектора Элементы матричного анализа с примерами решения на число Элементы матричного анализа с примерами решенияназывается вектор Элементы матричного анализа с примерами решения , имеющий длину Элементы матричного анализа с примерами решения направление которого совпадает с направлением вектора Элементы матричного анализа с примерами решения, если Элементы матричного анализа с примерами решения, и противоположно ему, если Элементы матричного анализа с примерами решения(рис. 3.2).

Противоположным вектором Элементы матричного анализа с примерами решенияназывается произведение вектора Элементы матричного анализа с примерами решения на числоЭлементы матричного анализа с примерами решения

Элементы матричного анализа с примерами решения

Рис. 32

Суммой двух векторов Элементы матричного анализа с примерами решения и Элементы матричного анализа с примерами решенияназывается вектор Элементы матричного анализа с примерами решения, начало которого совпадает с началом вектора Элементы матричного анализа с примерами решения , а конец с концом вектора Элементы матричного анализа с примерами решения при условии, что начало вектора Элементы матричного анализа с примерами решения совпадает с концом вектора Элементы матричного анализа с примерами решения (рис. 3.3) (правило треугольника). Элементы матричного анализа с примерами решения

Очевидно, что вектор Элементы матричного анализа с примерами решения в этом случае представляет диагональ параллелограмма, построенного на векторах Элементы матричного анализа с примерами решения и Элементы матричного анализа с примерами решения (рис. 3.3) (правило параллелограмма).

Элементы матричного анализа с примерами решения

Аналогично определяется сумма нескольких векторов. Так, например, сумма четырех векторов Элементы матричного анализа с примерами решения (рис. 3.4а) есть вектор Элементы матричного анализа с примерами решения начало которого совпадает с началом вектора Элементы матричного анализа с примерами решения, а конец — с концом вектора Элементы матричного анализа с примерами решения(правило многоугольника) (рис. 3.4 б).

Нетрудно убедиться. что вектор Элементы матричного анализа с примерами решения определяемый таким образом, представляет диагональ параллелепипеда, построенного на векторах Элементы матричного анализа с примерами решения,Элементы матричного анализа с примерами решенияи Элементы матричного анализа с примерами решения, не лежащих в одной плоскости или в параллельных плоскостях (правило параллелепипеда) (рис. 3.5).

Элементы матричного анализа с примерами решенияЭлементы матричного анализа с примерами решения

Разностью двух векторов Элементы матричного анализа с примерами решения и Элементы матричного анализа с примерами решенияназывается сумма вектора Элементы матричного анализа с примерами решения и вектора Элементы матричного анализа с примерами решения, противоположного Элементы матричного анализа с примерами решения (рис. 3.6).

Элементы матричного анализа с примерами решения

Легко убедиться в том, что в параллелограмме, построенном на векторах Элементы матричного анализа с примерами решения иЭлементы матричного анализа с примерами решения одна диагональ — вектор —представляет сумму векторов Элементы матричного анализа с примерами решения и Элементы матричного анализа с примерами решения, а другая диагональ — вектор Элементы матричного анализа с примерами решения— их разность (рис. 3.7).

Перенесем вектор Элементы матричного анализа с примерами решения параллельно самому себе так, чтобы его начало совпало с началом координат. Координатами вектора Элементы матричного анализа с примерами решения называются координаты его конечной точки. Так, векторЭлементы матричного анализа с примерами решения на плоскости Элементы матричного анализа с примерами решения являются два числа Элементы матричного анализа с примерами решения и Элементы матричного анализа с примерами решения ( Элементы матричного анализа с примерами решения — рис. 3.8.), а в пространстве Элементы матричного анализа с примерами решения — три числа Элементы матричного анализа с примерами решенияи Элементы матричного анализа с примерами решения — рис. 3.9).

В соответствии с определениями, приведенными выше, нетрудно показать, что суммой и разностью векторовЭлементы матричного анализа с примерами решения и Элементы матричного анализа с примерами решения являются соответственно векторы

Элементы матричного анализа с примерами решения,

а произведение вектораЭлементы матричного анализа с примерами решения на число Элементы матричного анализа с примерами решения есть вектор Элементы матричного анализа с примерами решенияНа рис. 3.8 и 3.9 видно, что длина вектора равна корню квадратному из суммы квадратов его координат:

Элементы матричного анализа с примерами решения или

Элементы матричного анализа с примерами решения

Определение. Скалярным произведением Элементы матричного анализа с примерами решения двух векторов Элементы матричного анализа с примерами решения и Элементы матричного анализа с примерами решения называется число, равное произведению длин этих векторов на косинус угла Элементы матричного анализа с примерами решения между ними:

Элементы матричного анализа с примерами решения

Выразим скалярное произведение через координаты векторов Элементы матричного анализа с примерами решения и Элементы матричного анализа с примерами решения .

Из треугольника Элементы матричного анализа с примерами решения(рис. 3.7), сторонами которого являются векторы Элементы матричного анализа с примерами решения и Элементы матричного анализа с примерами решенияЭлементы матричного анализа с примерами решения по теореме косинусов следует, что

Элементы матричного анализа с примерами решения, откуда Элементы матричного анализа с примерами решения

Учитывая формулу длины вектора (3.1) найдем

Элементы матричного анализа с примерами решения и после преобразования выражения (3.2) получим

Элементы матричного анализа с примерами решения

т.е. скалярное произведение двух векторов равно сумме произведений соответствующих координат этих векторов.

Заметим, что при Элементы матричного анализа с примерами решения угол Элементы матричного анализа с примерами решения и

Элементы матричного анализа с примерами решения

т.е. скалярный квадрат вектора равен квадрату его длины.

В частности, расстояние Элементы матричного анализа с примерами решения между двумя точками плоскостиЭлементы матричного анализа с примерами решения можно рассматривать как длину вектора Элементы матричного анализа с примерами решения

Поэтому Элементы матричного анализа с примерами решения

Угол между векторамиЭлементы матричного анализа с примерами решения и Элементы матричного анализа с примерами решения определяется по формуле

Элементы матричного анализа с примерами решения

Пример:

Даны векторы Элементы матричного анализа с примерами решения

Найти: а)векторы Элементы матричного анализа с примерами решения б)длины векторов Элементы матричного анализа с примерами решения и Элементы матричного анализа с примерами решения; в) скалярный квадрат вектора Элементы матричного анализа с примерами решения ; г) скалярное произведение векторовЭлементы матричного анализа с примерами решения д)угол между векторами Элементы матричного анализа с примерами решения

Решение:

а) По определению Элементы матричного анализа с примерами решенияЭлементы матричного анализа с примерами решения

б) По формуле (3.1) найдем длины векторов Элементы матричного анализа с примерами решения

Элементы матричного анализа с примерами решения

в) По формуле (3.4) скалярный квадрат равен квадрату модуля вектора, т.е.Элементы матричного анализа с примерами решения

г) По формуле (3.3) скалярное произведение

Элементы матричного анализа с примерами решения

д) По формуле (3.6) угол между векторами Элементы матричного анализа с примерами решения определяется равенством:

Элементы матричного анализа с примерами решения

Элементы матричного анализа с примерами решения>мерный вектор и векторное пространство

Множества всех плоских или пространственных векторов, рассмотренных выше, в которых определены операции сложения векторов и умножения вектора на число, являются простейшими примерами векторных пространств. Ниже обобщается понятие вектора и дается определение векторного пространства.

Определение.Элементы матричного анализа с примерами решения-мерным вектором называется упорядоченная совокупность Элементы матричного анализа с примерами решениядействительных чисел, записываемых в виде Элементы матричного анализа с примерами решения где Элементы матричного анализа с примерами решенияЭлементы матричного анализа с примерами решения-я компонента вектора Элементы матричного анализа с примерами решения.

Понятие Элементы матричного анализа с примерами решения-мерного вектора широко используется в экономике, например некоторый набор товаров можно охарактеризовать вектором Элементы матричного анализа с примерами решения, а соответствующие цены — вектором Элементы матричного анализа с примерами решения

Два Элементы матричного анализа с примерами решения-мерных вектора равны тогда и только тогда, когда равны их соответствующие компоненты, т.е. Элементы матричного анализа с примерами решения если Элементы матричного анализа с примерами решения Элементы матричного анализа с примерами решенияЭлементы матричного анализа с примерами решения

Суммой двух векторов одинаковой размерности п называется вектор Элементы матричного анализа с примерами решениякомпоненты которого равны сумме соответствующих компонент слагаемых векторов, т.е. Элементы матричного анализа с примерами решенияЭлементы матричного анализа с примерами решения

Произведением вектора Элементы матричного анализа с примерами решения на действительное число Элементы матричного анализа с примерами решения называется вектор Элементы матричного анализа с примерами решения, компоненты Элементы матричного анализа с примерами решения которого равны произведению Элементы матричного анализа с примерами решения на соответствующие компоненты вектора Элементы матричного анализа с примерами решения, т.е. Элементы матричного анализа с примерами решения

Линейные операции над любыми векторами удовлетворяют следующим свойствам:

  1. Элементы матричного анализа с примерами решения— коммутативное (переместительное) свойство суммы:
  2. Элементы матричного анализа с примерами решения— ассоциативное (сочетательное) свойство суммы;
  3. Элементы матричного анализа с примерами решения — ассоциативное относительно числового множителя свойство;
  4. Элементы матричного анализа с примерами решения — дистрибутивное (распределительное) относительно суммы векторов свойство;
  5. Элементы матричного анализа с примерами решения—дистрибутивное относительно суммы числовых множителей свойство;
  6. Существует нулевой вектор Элементы матричного анализа с примерами решения такой, что Элементы матричного анализа с примерами решения для любого вектора Элементы матричного анализа с примерами решения (особая роль нулевого вектора);
  7. Для любого вектора Элементы матричного анализа с примерами решениясуществует противоположный вектор Элементы матричного анализа с примерами решения такой, что Элементы матричного анализа с примерами решения
  8. Элементы матричного анализа с примерами решения для любого вектора Элементы матричного анализа с примерами решения(особая роль числового множителя 1).

Определение. Множество векторов с действительными компонентами, в котором определены операции сложения векторов и умножения вектора на число, удовлетворяющее приведенным выше восьми свойствам (рассматриваемым как аксиомы), называется векторным пространством.

Следует отметить, что под Элементы матричного анализа с примерами решения можно рассматривать не только векторы, но и элементы (объекты) любой природы. В этом случае соответствующее множество элементов называется линейным пространством.

Линейным пространством является, например, множество всех алгебраических многочленов степени, не превышающей натурального числа Элементы матричного анализа с примерами решения Легко убедиться, что если х и у — многочлены степени не выше п, то они будут обладать свойствами 1—8. Заметим для сравнения, что, например, множество всех многочленов степени, точно равной натуральному числу Элементы матричного анализа с примерами решения, не является линейным пространством, так как в нем не определена операция сложения элементов, ибо сумма двух многочленов может оказаться многочленом степени ниже Элементы матричного анализа с примерами решения. А множество многочленов степени не выше Элементы матричного анализа с примерами решения, но с положительными коэффициентами также не является линейным пространством, поскольку в этом множестве не определена операция умножения элемента на число: такие многочлены нельзя умножать на отрицательные числа.

Из определения векторного (линейного) пространства, в частности из аксиом 1-8, вытекает существование единственного нулевого вектора, равного произведению произвольного вектора Элементы матричного анализа с примерами решения на действительное число 0 и существование для каждого вектора Элементы матричного анализа с примерами решения единственного противоположного вектора (—Элементы матричного анализа с примерами решения), равного произведению этого вектора на действительное число (- 1).

Размерность и базис векторного пространства

Понятия линейной комбинации, линейной зависимости и независимости векторов вводятся аналогично тому, как это было сделано в § 1.6 для строк матрицы.

Определение. Вектор Элементы матричного анализа с примерами решения называется линейной комбинацией векторов Элементы матричного анализа с примерами решения векторного пространства Элементы матричного анализа с примерами решения если он равен сумме произведений этих векторов на произвольные действительные числа:

Элементы матричного анализа с примерами решения

где Элементы матричного анализа с примерами решения — какие угодно действительные числа.

Определение. Векторы Элементы матричного анализа с примерами решения векторного пространства Элементы матричного анализа с примерами решения называются линейно зависимыми, если существуют такие числа Элементы матричного анализа с примерами решения не равные одновременно нулю, что

Элементы матричного анализа с примерами решения

В противном случае векторы Элементы матричного анализа с примерами решенияназываются линейно независимыми.

Из приведенных выше определений следует, что векторы Элементы матричного анализа с примерами решения линейно независимы, если равенство (3.8) справедливо лишь при Элементы матричного анализа с примерами решения и линейно зависимы, если это равенство выполняется, когда хотя бы одно из чисел Элементы матричного анализа с примерами решенияотлично от нуля.

Можно показать (аналогично § 1.6), что если векторы Элементы матричного анализа с примерами решения линейно зависимы, то по крайней мере один из них линейно выражается через остальные. Верно и обратное утверждение о том, что если один из векторов выражается линейно через остальные, то все эти векторы в совокупности линейно зависимы.

Примером линейно независимых векторов являются два не-коллинеарных, т.е. не параллельных одной прямой, вектора Элементы матричного анализа с примерами решения и Элементы матричного анализа с примерами решения на плоскости. Действительно, условие (3.8) Элементы матричного анализа с примерами решения будет выполняться лишь в случае, когда Элементы матричного анализа с примерами решения, ибо если, например, Элементы матричного анализа с примерами решения, то Элементы матричного анализа с примерами решения, и векторы Элементы матричного анализа с примерами решенияколлинеарны. Однако любые три вектора плоскости линейно зависимы.

Отметим некоторые свойства векторов линейного пространства:

  1. Если среди векторов Элементы матричного анализа с примерами решения имеется нулевой вектор, то эти векторы линейно зависимы. В самом деле, если, например, Элементы матричного анализа с примерами решения то равенство (3.8) справедливо при Элементы матричного анализа с примерами решения
  2. Если часть векторов Элементы матричного анализа с примерами решения являются линейно зависимыми, то и все эти векторы — линейно зависимые. Действительно, если, например, векторы Элементы матричного анализа с примерами решения линейно зависимы, то справедливо равенство Элементы матричного анализа с примерами решения в котором не все числа равны нулю. Но тогда с теми же числами Элементы матричного анализа с примерами решения и Элементы матричного анализа с примерами решения будет справедливо равенство (3.8).

Пример:

Выяснить, являются ли векторыЭлементы матричного анализа с примерами решенияЭлементы матричного анализа с примерами решения и Элементы матричного анализа с примерами решения линейно зависимыми.

Решение:

Составим векторное равенство Элементы матричного анализа с примерами решенияЭлементы матричного анализа с примерами решения Записывая Элементы матричного анализа с примерами решенияв виде вектор-столбцов, получим Элементы матричного анализа с примерами решения

Задача свелась таким образом к решению системы:

Элементы матричного анализа с примерами решения

Решая систему методом Гаусса (см. § 2.3), приведем ее к виду:

Элементы матричного анализа с примерами решения

откуда найдем, бесконечное множество ее решений Элементы матричного анализа с примерами решения Элементы матричного анализа с примерами решения, где с — произвольное действительное число.

Итак, для ‘данных векторов условие (3.8) выполняется не только при Элементы матричного анализа с примерами решения (а, например, при Элементы матричного анализа с примерами решенияпри Элементы матричного анализа с примерами решения и т.д.), следовательно, эти векторы — линейно зависимые. ►

Определение. Линейное пространство Элементы матричного анализа с примерами решения называется Элементы матричного анализа с примерами решения-мерным, если в нем существует я линейно независимых векторов, а любые из Элементы матричного анализа с примерами решения векторов уже являются зависимыми. Другими словами, размерность пространства — это максимальное число содержащихся в нем линейно независимых векторов. Число Элементы матричного анализа с примерами решения называется размерностью пространства Элементы матричного анализа с примерами решения и обозначается Элементы матричного анализа с примерами решения

Определение. Совокупность Элементы матричного анализа с примерами решения линейно независимых векторов Элементы матричного анализа с примерами решения-мерного пространства Элементы матричного анализа с примерами решения называется базисом. Справедлива следующая теорема.

Теорема. Каждый вектор Элементы матричного анализа с примерами решения линейного пространства Элементы матричного анализа с примерами решения можно представить Элементы матричного анализа с примерами решения притом единственным способом в виде линейной комбинации векторов базиса.

Элементы матричного анализа с примерами решенияПусть векторы Элементы матричного анализа с примерами решения образуют произвольный базис Элементы матричного анализа с примерами решения-мерного пространства Элементы матричного анализа с примерами решения. Так как любые из (Элементы матричного анализа с примерами решения +1) векторов Элементы матричного анализа с примерами решения-мерного пространства R зависимы, то будут зависимы, в частности, векторы Элементы матричного анализа с примерами решения и рассматриваемый вектор Элементы матричного анализа с примерами решения. Тогда существуют такие не равные одновременно нулю числаЭлементы матричного анализа с примерами решениячто

Элементы матричного анализа с примерами решения

При этом Элементы матричного анализа с примерами решения, ибо в противном случае, если Элементы матричного анализа с примерами решения и хотя бы одно из чисел Элементы матричного анализа с примерами решения было бы отлично от нуля, то векторы Элементы матричного анализа с примерами решения были бы линейно зависимы. Следовательно,

Элементы матричного анализа с примерами решения или

Элементы матричного анализа с примерами решения

где Элементы матричного анализа с примерами решения

Это выражение Элементы матричного анализа с примерами решения через Элементы матричного анализа с примерами решения единственное, так как если допустить какое-либо другое выражение, например,

Элементы матричного анализа с примерами решения то, вычитая из него почленно (3.9), получим

Элементы матричного анализа с примерами решения откуда из условия линейной независимости векторовЭлементы матричного анализа с примерами решения следует, что ‘

Элементы матричного анализа с примерами решения или

Элементы матричного анализа с примерами решения

Равенство (3.9) называется разложением вектора Элементы матричного анализа с примерами решения по базису Элементы матричного анализа с примерами решения, а числа Элементы матричного анализа с примерами решения — координатами вектора Элементы матричного анализа с примерами решения относительно этого базиса. В силу единственности разложения (3.9) каждый вектор однозначно может быть определен координатами в некотором базисе.

Очевидно, что нулевой вектор имеет все нулевые координаты, а вектор, противоположный данному, — противоположные по знаку координаты.

Важное значение имеет следующая теорема.

Теорема. Если Элементы матричного анализа с примерами решения — система линейно независимых векторов пространства Элементы матричного анализа с примерами решения и любой вектор Элементы матричного анализа с примерами решения линейно выражается через Элементы матричного анализа с примерами решения, то пространство Элементы матричного анализа с примерами решения является n-мерным, а векторы Элементы матричного анализа с примерами решения— его базисом.

Элементы матричного анализа с примерами решенияВозьмем произвольные Элементы матричного анализа с примерами решения векторов пространства Элементы матричного анализа с примерами решения, где Элементы матричного анализа с примерами решения По условию каждый из них можно линейно выразить через Элементы матричного анализа с примерами решения:

Элементы матричного анализа с примерами решения Рассмотрим матрицу Элементы матричного анализа с примерами решения

Ранг этой матрицы не превосходит Элементы матричного анализа с примерами решения, следовательно, среди ее строк не более Элементы матричного анализа с примерами решения линейно независимых. Так как Элементы матричного анализа с примерами решения, то Элементы матричного анализа с примерами решения строк этой матрицы, а значит, и Элементы матричного анализа с примерами решения векторов Элементы матричного анализа с примерами решениялинейно зависимы. Таким образом, пространство Элементы матричного анализа с примерами решения Элементы матричного анализа с примерами решения-мерно и Элементы матричного анализа с примерами решения — его базис. ■

Пример:

В базисе Элементы матричного анализа с примерами решения заданы векторы Элементы матричного анализа с примерами решения Элементы матричного анализа с примерами решения и Элементы матричного анализа с примерами решения Показать, что векторы Элементы матричного анализа с примерами решения образуют базис.

Решение:

Векторы Элементы матричного анализа с примерами решения образуют базис, если они линейно независимы. Составим векторное равенство: Элементы матричного анализа с примерами решения Решая его аналогично примеру 3.2, можно убедиться в единственном нулевом его решении: Элементы матричного анализа с примерами решения, т.е. векторы Элементы матричного анализа с примерами решения образуют систему линейно независимых векторов и, следовательно, составляют базис. ►

Переход к новому базису

Пусть в пространстве Элементы матричного анализа с примерами решения имеются два базиса: старый Элементы матричного анализа с примерами решения и новый Элементы матричного анализа с примерами решения Каждый из векторов нового базиса можно выразить в виде линейной комбинации векторов старого базиса: Элементы матричного анализа с примерами решения

Полученная система означает, что переход от старого базиса Элементы матричного анализа с примерами решения кновому Элементы матричного анализа с примерами решения задается матрицей перехода Элементы матричного анализа с примерами решения и тд. Элементы матричного анализа с примерами решения

причем коэффициенты разложения новых базисных векторов по старому базису образуют столбцы этой матрицы.

Матрица Элементы матричного анализа с примерами решения— неособенная, так как в противном случае ее столбцы (а следовательно, и базисные векторы) оказались бы линейно зависимыми. Обратный переход от нового базиса Элементы матричного анализа с примерами решения к старому базису Элементы матричного анализа с примерами решенияосуществляется с помощью обратной матрицы Элементы матричного анализа с примерами решения.

Найдем зависимость между координатами вектора в разных базисах. Пусть рассматриваемый вектор Элементы матричного анализа с примерами решения имеет координатыЭлементы матричного анализа с примерами решения относительно старого базиса и координаты Элементы матричного анализа с примерами решения относительно нового базиса, т.е.

Элементы матричного анализа с примерами решения

Подставив значения Элементы матричного анализа с примерами решения из системы (3.10) в левую часть равенства (3.11), получим после преобразований:

Элементы матричного анализа с примерами решения

т.е. в матричной форме

Элементы матричного анализа с примерами решения

Пример:

По условию примера 3.3 вектор Элементы матричного анализа с примерами решения заданный в базисе Элементы матричного анализа с примерами решения, выразить в базисе Элементы матричного анализа с примерами решения.

Решение:

Выразим связь между базисами: Элементы матричного анализа с примерами решения

Матрица перехода от базиса Элементы матричного анализа с примерами решения к базису Элементы матричного анализа с примерами решения имеет вид Элементы матричного анализа с примерами решения Вычисляем Элементы матричного анализа с примерами решения Теперь по (3.12) Элементы матричного анализа с примерами решения

т.е. новые координаты вектора Элементы матричного анализа с примерами решения в базисе Элементы матричного анализа с примерами решения есть 0,5; 2 и -0,5 и вектор Элементы матричного анализа с примерами решения может быть представлен в виде: Элементы матричного анализа с примерами решения

Евклидово пространство

Выше мы определили линейное (векторное) пространство, в котором можно складывать векторы и умножать их на числа, ввели понятие размерности и базиса, а теперь в данном пространстве введем метрику, т.е. способ измерять длины и углы. Это можно, например, сделать, если ввести понятие скалярного произведения.

Определение. Скалярным произведением двух векторов Элементы матричного анализа с примерами решения и Элементы матричного анализа с примерами решенияназывается число

Элементы матричного анализа с примерами решения

Скалярное произведение имеет экономический смысл. Если Элементы матричного анализа с примерами решения есть вектор объемов различных товаров, а Элементы матричного анализа с примерами решения вектор их цен, то скалярное произведениеЭлементы матричного анализа с примерами решения выражает суммарную стоимость этих товаров.

Скалярное произведение имеет следующие свойства:

  1. Элементы матричного анализа с примерами решения — коммутативное свойство;
  2. Элементы матричного анализа с примерами решения — дистрибутивное свойство;
  3. Элементы матричного анализа с примерами решения— для любого действительного числа;
  4. Элементы матричного анализа с примерами решенияесли Элементы матричного анализа с примерами решения — ненулевой вектор; Элементы матричного анализа с примерами решения, если Элементы матричного анализа с примерами решения — нулевой вектор.

Определение. Линейное (векторное) пространство, в котором задано скалярное произведение векторов, удовлетворяющее указанным четырем свойствам (рассматриваемым как аксиомы), называется евклидовым пространством.

Длиной (нормой) вектора Элементы матричного анализа с примерами решения в евклидовом пространстве называется корень квадратный из его скалярного квадрата:

Элементы матричного анализа с примерами решения

Имеют место следующие свойства длины вектора:

1. Элементы матричного анализа с примерами решения тогда и только тогда, когда Элементы матричного анализа с примерами решения;

2. Элементы матричного анализа с примерами решения, где Элементы матричного анализа с примерами решения — действительное число;

3. Элементы матричного анализа с примерами решения

(неравенство Коши—Буняковского);

4. Элементы матричного анализа с примерами решения (неравенство треугольника).

Угол Элементы матричного анализа с примерами решения между двумя векторами Элементы матричного анализа с примерами решения и Элементы матричного анализа с примерами решения определяется равенством

Элементы матричного анализа с примерами решения где Элементы матричного анализа с примерами решения

Такое определение вполне корректно, так как согласно неравенству Коши—Буняковского (3.15) Элементы матричного анализа с примерами решения, т.е. Элементы матричного анализа с примерами решения

Два вектора называются ортогональными, если их скалярное произведение равно нулю. Очевидно, что нулевой вектор ортогонален любому другому вектору. Из определения следует, что если два ненулевых вектора ортогональны, то угол между ними равен Элементы матричного анализа с примерами решения (ибо Элементы матричного анализа с примерами решения).

ВекторыЭлементы матричного анализа с примерами решенияЭлементы матричного анализа с примерами решения-мерного евклидова пространства образуют ортогональный базис, если эти векторы попарно ортогональны, и ортонормированный базис, если эти векторы попарно ортогональны и норма каждого из них равна единице, т.е. если Элементы матричного анализа с примерами решения при Элементы матричного анализа с примерами решения и |Элементы матричного анализа с примерами решения при Элементы матричного анализа с примерами решения

Для установления корректности приведенного определения необходимо убедиться в том, что входящие в него векторы Элементы матричного анализа с примерами решения образуют один из базисов рассматриваемого Элементы матричного анализа с примерами решения-мерного пространства Элементы матричного анализа с примерами решения (т.е. Элементы матричного анализа с примерами решения). Для этого достаточно показать, что векторы Элементы матричного анализа с примерами решения линейно независимы, т.е. равенство

Элементы матричного анализа с примерами решения

справедливо лишь при Элементы матричного анализа с примерами решения

Действительно, умножая скалярно равенство (3.17) на любой вектор Элементы матричного анализа с примерами решения, получим

Элементы матричного анализа с примерами решения

откуда, учитывая, что Элементы матричного анализа с примерами решенияпри Элементы матричного анализа с примерами решения и Элементы матричного анализа с примерами решения при всех Элементы матричного анализа с примерами решения , вытекает, чтоЭлементы матричного анализа с примерами решения при всех Элементы матричного анализа с примерами решения

Сформулируем теперь (без доказательства) основную теорему.

Теорема. Во всяком Элементы матричного анализа с примерами решения-мерном евклидовом пространстве существует ортонормированный базис.

Примером ортонормированного базиса является система Элементы матричного анализа с примерами решения единичных векторов Элементы матричного анализа с примерами решения у которых Элементы матричного анализа с примерами решения-я компонента равна единице, а остальные компоненты равны нулю: Элементы матричного анализа с примерами решенияЭлементы матричного анализа с примерами решения

Линейные операторы

Одно из фундаментальных понятий матричной алгебры — понятие линейного оператора.

Рассмотрим два линейных пространства: Элементы матричного анализа с примерами решения размерности Элементы матричного анализа с примерами решения и Элементы матричного анализа с примерами решения размерности Элементы матричного анализа с примерами решения

Определение. Если задан закон (правило), по которому каждому вектору Элементы матричного анализа с примерами решенияпространства Элементы матричного анализа с примерами решения ставится в соответствие единственный вектор у пространства Элементы матричного анализа с примерами решения, то говорят, что задан оператор (преобразование, отображение) Элементы матричного анализа с примерами решения действующий из Элементы матричного анализа с примерами решенияв Элементы матричного анализа с примерами решения, и записывают Элементы матричного анализа с примерами решения

Оператор (преобразование) называется линейным, если для любых векторов Элементы матричного анализа с примерами решения и Элементы матричного анализа с примерами решения пространства Элементы матричного анализа с примерами решения и любого числа Элементы матричного анализа с примерами решения выполнился соотношения:

ВекторЭлементы матричного анализа с примерами решения называется образом вектора Элементы матричного анализа с примерами решения, а сам вектор Элементы матричного анализа с примерами решенияпрообразом вектора Элементы матричного анализа с примерами решения.

Если пространства Элементы матричного анализа с примерами решения и Элементы матричного анализа с примерами решения совпадают, то оператор Элементы матричного анализа с примерами решения отображает пространство Элементы матричного анализа с примерами решения в себя. Именно такие операторы мы будем рассматривать в дальнейшем.

Выберем в пространстве Элементы матричного анализа с примерами решения базис eh Элементы матричного анализа с примерами решения и, учитывая (3.9), запишем разложение произвольного вектора Элементы матричного анализа с примерами решения по данному базису:

Элементы матричного анализа с примерами решения

В силу линейности оператора Элементы матричного анализа с примерами решения получаем

Элементы матричного анализа с примерами решения

Поскольку Элементы матричного анализа с примерами решения — также вектор из Элементы матричного анализа с примерами решения , то его можно разложить по базисЭлементы матричного анализа с примерами решения. Пусть

Элементы матричного анализа с примерами решения

Тогда

Элементы матричного анализа с примерами решения

С другой стороны, векторЭлементы матричного анализа с примерами решения, имеющий в том же базисе Элементы матричного анализа с примерами решениякоординаты Элементы матричного анализа с примерами решения, можно записать так:

Элементы матричного анализа с примерами решения

Ввиду единственности разложения вектора по базису равны правые части равенства (3.19) и (3.20), откуда

Элементы матричного анализа с примерами решения

МатрицаЭлементы матричного анализа с примерами решения называется матрицей оператора Элементы матричного анализа с примерами решения в базисе Элементы матричного анализа с примерами решения, а ранг Элементы матричного анализа с примерами решения матрицы Элементы матричного анализа с примерами решениярангом оператора Элементы матричного анализа с примерами решения.

Таким образом, каждому линейному оператору соответствует матрица в данном базисе. Справедливо и обратное: всякой матрице Элементы матричного анализа с примерами решения-го порядка соответствует линейный оператор Элементы матричного анализа с примерами решения-мерного пространства.

Связь между вектором Элементы матричного анализа с примерами решения и его образом Элементы матричного анализа с примерами решения можно выразить в матричной форме уравнением

Элементы матричного анализа с примерами решения

где Элементы матричного анализа с примерами решения — матрица линейного оператора, Элементы матричного анализа с примерами решения Элементы матричного анализа с примерами решения — матрицы-столбцы из координат векторов Элементы матричного анализа с примерами решения и Элементы матричного анализа с примерами решения

Пример:

Пусть в пространстве Элементы матричного анализа с примерами решениялинейный оператор Элементы матричного анализа с примерами решения в базисе Элементы матричного анализа с примерами решения задан матрицей Элементы матричного анализа с примерами решения Найти образ Элементы матричного анализа с примерами решения вектора Элементы матричного анализа с примерами решения

Решение:

По формуле (3.21) имеем Элементы матричного анализа с примерами решения

Следовательно, Элементы матричного анализа с примерами решения

Определим действия над линейными операторами.

Суммой двух линейных операторов Элементы матричного анализа с примерами решения и Элементы матричного анализа с примерами решения называется оператор Элементы матричного анализа с примерами решения, определяемый равенством: Элементы матричного анализа с примерами решения

Произведением линейного оператора Элементы матричного анализа с примерами решения на число Элементы матричного анализа с примерами решения называется оператор Элементы матричного анализа с примерами решения , определяемый равенством Элементы матричного анализа с примерами решения

Произведением линейных операторов Элементы матричного анализа с примерами решения и Элементы матричного анализа с примерами решения называется оператор Элементы матричного анализа с примерами решения, определяемый равенством: Элементы матричного анализа с примерами решения

Можно убедиться в том, что операторыЭлементы матричного анализа с примерами решения, полученные в результате этих действий, удовлетворяют отмеченным выше свойствам аддитивности и однородности, т.е. являются линейными.

Определим нулевой оператор Элементы матричного анализа с примерами решения, переводящий все векторы пространства Элементы матричного анализа с примерами решения в нулевые векторы Элементы матричного анализа с примерами решения, и тождественный оператор Элементы матричного анализа с примерами решения, действующий по правилу: Элементы матричного анализа с примерами решения

Зависимость между матрицами одного и того же оператора в разных базисах выражается теоремой.

Теорема. Матрицы Элементы матричного анализа с примерами решения и Элементы матричного анализа с примерами решения линейного оператора Элементы матричного анализа с примерами решения в базисах Элементы матричного анализа с примерами решения и Элементы матричного анализа с примерами решения связаны соотношением

Элементы матричного анализа с примерами решения

где Элементы матричного анализа с примерами решенияматрица перехода от старого базиса к новому.

Элементы матричного анализа с примерами решенияПри воздействии линейного оператора Элементы матричного анализа с примерами решения вектор Элементы матричного анализа с примерами решения пространства Элементы матричного анализа с примерами решения переводится в вектор Элементы матричного анализа с примерами решения этого пространства, т.е. справедливо равенство (3.21) (в старом базисе) и равенство

Элементы матричного анализа с примерами решения

(в новом базисе). Так как Элементы матричного анализа с примерами решения — матрица перехода от старого базиса к новому, то в соответствии с (3.12)

Элементы матричного анализа с примерами решения

Умножим равенство (3.24) слева на матрицу Элементы матричного анализа с примерами решения, получим Элементы матричного анализа с примерами решения или с учетом (3.21) Элементы матричного анализа с примерами решения. Заменив левую часть полученного выражения в соответствии с (3.25), имеем: Элементы матричного анализа с примерами решения или Элементы матричного анализа с примерами решения. Сравнивая найденное выражение с (3.23), мы получим доказываемую формулу (3.22). Элементы матричного анализа с примерами решения

Пример:

В базисе Элементы матричного анализа с примерами решения оператор (преобразование) Элементы матричного анализа с примерами решенияимеет матрицу Элементы матричного анализа с примерами решения. Найти матрицу оператора Элементы матричного анализа с примерами решения в базисе Элементы матричного анализа с примерами решения

Решение:

Матрица перехода здесь Элементы матричного анализа с примерами решения, а обратная к ней матрица Элементы матричного анализа с примерами решения Следовательно, по (3.22)

Элементы матричного анализа с примерами решения

Собственные векторы и собственные значения линейного оператора

Определение. Вектор Элементы матричного анализа с примерами решения называется собственным вектором линейного оператора Элементы матричного анализа с примерами решения, если найдется такое число Элементы матричного анализа с примерами решения, что

Элементы матричного анализа с примерами решения

Число Элементы матричного анализа с примерами решения называется собственным значением оператора Элементы матричного анализа с примерами решения (матрицы Элементы матричного анализа с примерами решения), соответствующим вектору Элементы матричного анализа с примерами решения.

Из определения следует, что собственный вектор под действием линейного оператора Элементы матричного анализа с примерами решения переходит в вектор, коллинеарный самому себе, т.е. просто умножается на некоторое число. В то же время несобственные векторы преобразуются более сложным образом. В связи с этим понятие собственного вектора является очень полезным и удобным при изучении многих вопросов матричной алгебры и ее приложений.

Равенство (3.26) можно записать в матричной форме:

Элементы матричного анализа с примерами решения

где вектор Элементы матричного анализа с примерами решения представлен в виде вектора-столбца, или в развернутом виде

Элементы матричного анализа с примерами решения

Перепишем систему так, чтобы в правых частях были нули:

Элементы матричного анализа с примерами решения

или в матричном виде

Элементы матричного анализа с примерами решения

Полученная однородная система всегда имеет нулевое решение Элементы матричного анализа с примерами решения Для существования ненулевого решения (см. § 2.5) необходимо и достаточно, чтобы определитель системы

Элементы матричного анализа с примерами решения

Определитель Элементы матричного анализа с примерами решения является многочленом Элементы матричного анализа с примерами решения-й степени относительно Элементы матричного анализа с примерами решения. Этот многочлен называется характеристическим многочленом оператора Элементы матричного анализа с примерами решения или матрицы Элементы матричного анализа с примерами решения, а уравнение (3.28) — характеристическим уравнением оператора Элементы матричного анализа с примерами решения или матрицы Элементы матричного анализа с примерами решения.

Характеристический многочлен линейного оператора не зависит от выбора базиса. В самом деле, преобразуем характеристический многочлен Элементы матричного анализа с примерами решения полученный в новом базисе Элементы матричного анализа с примерами решения, если известна матрица Элементы матричного анализа с примерами решения перехода от старого базиса Элементы матричного анализа с примерами решения к новому. С учетом (3.22) получим

Элементы матричного анализа с примерами решения

Учитывая, что определитель произведения квадратных матриц одинакового порядка равен произведению определителей этих матриц (см. §1.4), получим

Элементы матричного анализа с примерами решения

Элементы матричного анализа с примерами решениянезависимо от выбора базиса.

Пример:

Найти собственные значения и собственные векторы линейного оператора Элементы матричного анализа с примерами решения, заданного матрицейЭлементы матричного анализа с примерами решения

Решение:

Составляем характеристическое уравнение Элементы матричного анализа с примерами решения

откуда собственные значения линейного оператора Элементы матричного анализа с примерами решенияЭлементы матричного анализа с примерами решения

Находим собственный вектор Элементы матричного анализа с примерами решения, соответствующий собственному значениюЭлементы матричного анализа с примерами решения. Для этого решаем матричное уравнение

Элементы матричного анализа с примерами решения откуда находим Элементы матричного анализа с примерами решения. Положив Элементы матричного анализа с примерами решения, получим, что векторы Элементы матричного анализа с примерами решенияпри любом Элементы матричного анализа с примерами решения являются собственными векторами линейного оператора Элементы матричного анализа с примерами решения с собственным значением Элементы матричного анализа с примерами решения

Аналогично можно убедиться в том, что векторы Элементы матричного анализа с примерами решения при любом Элементы матричного анализа с примерами решения являются собственными векторами линейного оператора Элементы матричного анализа с примерами решения с собственным значением Элементы матричного анализа с примерами решения

Наиболее простой вид принимает матрица Элементы матричного анализа с примерами решения линейного оператора Элементы матричного анализа с примерами решения, имеющего Элементы матричного анализа с примерами решения линейно независимых собственных векторов Элементы матричного анализа с примерами решения с собственными значениями, соответственно равными Элементы матричного анализа с примерами решения Векторы Элементы матричного анализа с примерами решения примем за базисные. Тогда Элементы матричного анализа с примерами решения или с учетом (3.18)

Элементы матричного анализа с примерами решения

откуда Элементы матричного анализа с примерами решения если Элементы матричного анализа с примерами решения, и Элементы матричного анализа с примерами решения,если Элементы матричного анализа с примерами решения. Таким образом, матрица оператора Элементы матричного анализа с примерами решения в базисе, состоящем из его собственных векторов, является диагональной и имеет вид:

Элементы матричного анализа с примерами решения Верно и обратное: если матрица Элементы матричного анализа с примерами решения линейного оператора Элементы матричного анализа с примерами решения в некотором базисе является диагональной, то все векторы этого базиса — собственные векторы оператора Элементы матричного анализа с примерами решения .

Можно доказать, что если линейный оператор имеет Элементы матричного анализа с примерами решения попарно различных собственных значений, то отвечающие им собственные векторы линейно независимы, и матрица этого оператора в соответствующем базисе имеет диагональный вид.

  • Заказать решение задач по высшей математике

Пример:

Привести матрицу Элементы матричного анализа с примерами решения линейного оператора Элементы матричного анализа с примерами решения к диагональному виду.

Решение:

В примере 3.7 были найдены собственные значения матрицы Элементы матричного анализа с примерами решения и соответствующие им собственные векторы Элементы матричного анализа с примерами решения и Элементы матричного анализа с примерами решенияТак как координаты векторов Элементы матричного анализа с примерами решения не пропорциональны, то векторы Элементы матричного анализа с примерами решения линейно независимы. Поэтому в базисе, состоящем из любых пар собственных векторов Элементы матричного анализа с примерами решения и Элементы матричного анализа с примерами решения(т.е. при любых Элементы матричного анализа с примерами решениянапример при Элементы матричного анализа с примерами решения из векторов Элементы матричного анализа с примерами решенияи т.д.), матрица Элементы матричного анализа с примерами решениябудет иметь диагональный вид: Элементы матричного анализа с примерами решения Это легко проверить, взяв, например, в качестве нового базиса линейно независимые собственные векторы Элементы матричного анализа с примерами решенияи Элементы матричного анализа с примерами решения. Действительно, матрица Элементы матричного анализа с примерами решения перехода от старого базиса к новому в этом случае будет иметь вид Элементы матричного анализа с примерами решения Тогда в соответствии с (3.22) матрица Элементы матричного анализа с примерами решения в новом базисе Элементы матричного анализа с примерами решения примет вид:

Элементы матричного анализа с примерами решения

или после вычислений (которые мы опускаем) Элементы матричного анализа с примерами решения

т.е. получим ту же диагональную матрицу, элементы которой по главной диагонали равны собственным значениям матрицы Элементы матричного анализа с примерами решения. ►

Квадратичные формы

При решении различных прикладных задач часто приходится исследовать квадратичные формы.

Определение. Квадратичной формой Элементы матричного анализа с примерами решенияот Элементы матричного анализа с примерами решения переменных называется сумма, каждый член которой является либо квадратом одной из переменных, либо произведением двух разных переменных, взятых с некоторым коэффициентом:

Элементы матричного анализа с примерами решения

Предполагаем, что коэффициенты квадратичной формы Элементы матричного анализа с примерами решения— действительные числа, причем Элементы матричного анализа с примерами решения. Матрица Элементы матричного анализа с примерами решенияЭлементы матричного анализа с примерами решения, составленная из этих коэффициентов, называется матрицей квадратичной формы. В матричной записи квадратичная форма имеет вид:

Элементы матричного анализа с примерами решения

где Элементы матричного анализа с примерами решения — матрица-столбец переменных. В самом деле : Элементы матричного анализа с примерами решения

Элементы матричного анализа с примерами решения и эквивалентность формул (3.29) и (3.30) установлена.

Пример:

Дана квадратичная форма Элементы матричного анализа с примерами решения Элементы матричного анализа с примерами решения Записать ее в матричном виде.

Решение:

Найдем матрицу квадратичной формы. Ее диагональные элементы равны коэффициентам при квадратах переменных, т.е. 4, 1, -3, а другие элементы — половинам соответствующих коэффициентов квадратичной формы. Поэтому

Элементы матричного анализа с примерами решения

Выясним, как изменяется квадратичная форма при невырожденном линейном преобразовании переменных.

Пусть матрицы-столбцы переменных Элементы матричного анализа с примерами решения и Элементы матричного анализа с примерами решения связаны линейным соотношением Элементы матричного анализа с примерами решения, где, Элементы матричного анализа с примерами решения есть некоторая невырожденная матрица Элементы матричного анализа с примерами решения-го порядка. Тогда квадратичная форма

Элементы матричного анализа с примерами решения

, Итак, при невырожденном линейном преобразовании Элементы матричного анализа с примерами решения матрица квадратичной формы принимает вид:

Элементы матричного анализа с примерами решения

Пример:

Дана квадратичная форма Элементы матричного анализа с примерами решения Элементы матричного анализа с примерами решения Найти квадратичную форму Элементы матричного анализа с примерами решения, полученную из данной линейным преобразованием Элементы матричного анализа с примерами решения

Решение:

Матрица данной квадратичной формы Элементы матричного анализа с примерами решения, а матрица линейного преобразования Элементы матричного анализа с примерами решения

Следовательно, по (3.31) матрица искомой квадратичной формы Элементы матричного анализа с примерами решения а квадратичная форма имеет вид Элементы матричного анализа с примерами решения

Следует отметить, что при некоторых удачно выбранных линейных преобразованиях вид квадратичной формы можно существенно упростить.

Квадратичная форма Элементы матричного анализа с примерами решения, называется канонической (или имеет канонический вид), если все ее коэффициенты Элементы матричного анализа с примерами решения

Элементы матричного анализа с примерами решения

а ее матрица является диагональной. Справедлива следующая теорема.

Теорема. Любая квадратичная форма с помощью невырожденного линейного преобразования переменных может быть приведена к каноническому виду.

Пример:

Привести к каноническому виду квадратичную форму

Элементы матричного анализа с примерами решения

Решение:

Вначале вьделим полный квадрат при переменной Элементы матричного анализа с примерами решения, коэффициент при квадрате которой отличен от нуля:

Элементы матричного анализа с примерами решения

Теперь выделяем полный квадрат при переменной Элементы матричного анализа с примерами решения, коэффициент при которой отличен от нуля:

Элементы матричного анализа с примерами решения Итак, невырожденное линейное преобразование

Элементы матричного анализа с примерами решения

приводит данную квадратичную форму к каноническому виду

Элементы матричного анализа с примерами решения

Канонический вид квадратичной формы не является однозначно определенным, так как одна и та же квадратичная форма может быть приведена к каноническому виду многими способами. Однако полученные различными способами канонические формы обладают рядом общих свойств. Одно из этих свойств сформулируем в виде теоремы.

Теорема (закон инерции квадратичных форм). Число слагаемых с положительными (отрицательными) коэффициентами квадратичной формы не зависит от способа приведения формы к этому виду.

Например, квадратичную форму Элементы матричного анализа с примерами решения в примере 3.10 можно было привести к виду

Элементы матричного анализа с примерами решения

применив невырожденное линейное преобразование

Элементы матричного анализа с примерами решения

Как видим, число положительных и отрицательных коэффициентов (соответственно два и один) сохранилось.

Следует отметить, что ранг матрицы квадратичной формы, называемый рангом квадратичной формы, равен числу отличных от нуля коэффициентов канонической формы и не меняется при линейных преобразованиях.

Квадратичная форма Элементы матричного анализа с примерами решения называется положительно (отрицательно) определенной, если при всех значениях переменных, из которых хотя бы одно отлично от нуля,

Элементы матричного анализа с примерами решения

Так, например, квадратичная форма Элементы матричного анализа с примерами решения является положительно определенной, а форма Элементы матричного анализа с примерами решения — отрицательно определенной.

Теорема. Для того чтобы квадратичная форма Элементы матричного анализа с примерами решения была положительно (отрицательно) определенной, необходимо и достаточно, чтобы все собственные значения Элементы матричного анализа с примерами решения матрицы Элементы матричного анализа с примерами решениябыли положительны (отрицательны).

В ряде случаев для установления знакоопределенности квадратичной формы удобнее бывает применить критерий Сильвестра.

Теорема. Для того чтобы квадратичная форма была положительно определенной, необходимо и достаточно, чтобы все главные миноры матрицы этой формы были положительны, т.е. Элементы матричного анализа с примерами решениягде

Элементы матричного анализа с примерами решения Следует отметить, что для отрицательно определенных квадратичных форм знаки главных миноров чередуются, начиная со знака «минус» для минора первого порядка. ‘

Пример:

Доказать, что квадратичная форма Элементы матричного анализа с примерами решенияЭлементы матричного анализа с примерами решения является положительно определенной.

Решение:

Первый способ. Матрица Элементы матричного анализа с примерами решения квадратичной формы имеет вид Элементы матричного анализа с примерами решения Для матрицыЭлементы матричного анализа с примерами решения характеристическое

Элементы матричного анализа с примерами решения

Решая уравнение, найдем Элементы матричного анализа с примерами решенияТак как корни характеристического уравнения матрицы Элементы матричного анализа с примерами решения положительны, то на основании приведенной теоремы квадратичная форма Элементы матричного анализа с примерами решения — положительно определенная.

Второй способ. Так как главные миноры матрицы Элементы матричного анализа с примерами решения Элементы матричного анализа с примерами решения положительны, то по критерию Сильвестра данная квадратичная форма Элементы матричного анализа с примерами решения положительно определенная. ►

Линейная модель обмена

В качестве примера математической модели экономического процесса, приводящейся к понятию собственного вектора и собственного значения матрицы, рассмотрим линейную модель обмена (модель международной торговли).

Пусть имеется Элементы матричного анализа с примерами решения стран Элементы матричного анализа с примерами решения, национальный доход каждой из которых равен соответственно Элементы матричного анализа с примерами решения Обозначим коэффициентами Элементы матричного анализа с примерами решения долю национального дохода, которую страна Элементы матричного анализа с примерами решения тратит на покупку товаров у страны Элементы матричного анализа с примерами решения . Будем считать, что весь национальный доход тратится на закупку товаров либо внутри страны, либо на импорт из других стран, т.е.

Элементы матричного анализа с примерами решения

Рассмотрим матрицу Элементы матричного анализа с примерами решения

которая получила название структурной матрицы торговли. В соответствии с (3.32) сумма элементов любого столбца матрицы Элементы матричного анализа с примерами решения равна 1.

Для любой страны Элементы матричного анализа с примерами решения выручка от внутренней и внешней торговли составит: Элементы матричного анализа с примерами решения

Для сбалансированной торговли необходима бездефицитность торговли каждой страны Элементы матричного анализа с примерами решения, т.е. выручка от торговли каждой страны должна быть не меньше ее национального дохода:

Элементы матричного анализа с примерами решения

Если считать, что Элементы матричного анализа с примерами решения, то получаем систему неравенств

Элементы матричного анализа с примерами решения

Сложив все неравенства системы (3.33), получим после группировки Элементы матричного анализа с примерами решенияЭлементы матричного анализа с примерами решения

Учитывая (3.32), выражения в скобках равны единице, и мы приходим к противоречивому неравенству

Элементы матричного анализа с примерами решения

Таким образом, неравенство Элементы матричного анализа с примерами решения невозможно, и условиеЭлементы матричного анализа с примерами решения, принимает вид Элементы матричного анализа с примерами решения (С экономической точки зрения это понятно, так как все страны не могут одновременно получать прибыль.)

Вводя вектор Элементы матричного анализа с примерами решения национальных доходов стран, получим матричное уравнение

Элементы матричного анализа с примерами решения

В котором вектор х записан в виде вектор-столбца, т.е. задача свелась к отысканию собственного вектора матрицы Элементы матричного анализа с примерами решения отвечающего собственному значениюЭлементы матричного анализа с примерами решения

Пример:

Структурная матрица торговли трех стран Элементы матричного анализа с примерами решения имеет вид:

Элементы матричного анализа с примерами решения

Найти соотношение национальных доходов стран для сбалансированной торговли.

Решение:

Находим собственный вектор Элементы матричного анализа с примерами решения, отвечающий собственному значению Элементы матричного анализа с примерами решения, решив уравнение Элементы матричного анализа с примерами решения или систему

Элементы матричного анализа с примерами решения

методом Гаусса. Найдем Элементы матричного анализа с примерами решения т.е. Элементы матричного анализа с примерами решения Полученный результат означает, что сбалансированность торговли трех стран достигается при векторе национальных доходов

Элементы матричного анализа с примерами решения т.е. при соотношении национальных доходов стран Элементы матричного анализа с примерами решения

  • Уравнение линии
  • Функции нескольких переменных
  • Комплексные числ
  • Координаты на прямой
  • Системы дифференциальных уравнений
  • Числовые ряды
  • Знакопеременные ряды
  • Степенные ряды

Характеристическое уравнение линейного оператора А: L → L, действующего в n-мерном линейном пространстве L, — это алгебраическое уравнение n-й степени с действительными коэффициентами. Среди его корней могут быть комплексные числа, но эти корни не относят к собственным значениям линейного оператора, так как, согласно определению, собственное значение линейного оператора — действительное число. Чтобы комплексные корни характеристического уравнения можно было рассматривать как собственные значения линейного оператора, в линейном пространстве должно быть определено умножение вектора на любые комплексные числа.

Как следует из доказательства теоремы 5.3, чтобы вычислить собственные значения линейного оператора А и найти его собственные векторы, нужно выполнить следующие операции:

— выбрать в линейном пространстве базис и сопоставить А матрицу А этого линейного оператора в выбранном базисе;

— составить характеристическое уравнение det (А — λЕ) = 0 и найти все его действительные корни λk, которые и будут собственными значениями линейного оператора;

— для каждого собственного значения λk найти фундаментальную систему решений
для однородной системы линейных алгебраических уравнений (СЛАУ) (А — λkЕ)х = 0. Столбцы фундаментальной системы решений представляют собой координаты векторов некоторого базиса в собственном подпространстве £(А, λk) линейного оператора А.

Любой собственный вектор с собственным значением λk принадлежит подпространству £(А,λk), и, следовательно, найденный базис в этом подпространстве позволяет представить любой собственный вектор с собственным значением λk.

Пример 5.4. Найдем собственные векторы и собственные значения линейного оператора А, имеющего в некотором базисе матрицу

Вычисление собственных значений и собственных векторов

В соответствии с описанной процедурой необходимо выполнить три действия. Первое действие можно опустить, так как оператор уже представлен своей матрицей в некотором базисе. Выполняем дальнейшие действия.

2) Находим собственные значения, решая характеристическое уравнение матрицы:

Вычисление собственных значений и собственных векторов

откуда λ1 = -3, λ2 = 1, λ3 = 3.

3) Находим столбцы координат собственных векторов, ре-шая для каждого из трех собственных значений однородную СЛАУ

Вычисление собственных значений и собственных векторов

3а) Для λ = λ1 = -3 система (5.5) имеет вид

Вычисление собственных значений и собственных векторов

или

Вычисление собственных значений и собственных векторов

Ранг матрицы этой системы равен 2:

Вычисление собственных значений и собственных векторов

Поэтому размерность линейного пространства решений систе-мы равна 3 — 2 = 1. Фундаментальная система решений содер-жит одно решение, например

Вычисление собственных значений и собственных векторов

Все множество собственных векторов линейного оператора с собственным значением λ1 = -3 в координатной форме имеет вид

Вычисление собственных значений и собственных векторов

где α — произвольное ненулевое действительное число.

3б) При λ = λ2 = 1 система (5.5) имеет вид

Вычисление собственных значений и собственных векторов

Как и в предыдущем случае, размерность линейного простран-ства решений равна 2 — 1 = 1 и фундаментальная система решений содержит одно решение. Выберем следующее:

Вычисление собственных значений и собственных векторов

Все множество собственных векторов с собственным значением λ = -1 в координатной форме имеет вид

Вычисление собственных значений и собственных векторов

где β — произвольное ненулевое действительное число.

3в) Для λ = λ3 = 3 аналогично предыдущим двум случаям находим столбец координат одного из собственных векторов, например

Вычисление собственных значений и собственных векторов

который порождает собственное подпространство линейного оператора А, отвечающее собственному значению λ = 3.

Пример 5.5. Найдем собственные значения линейного оператора А, действующего в n-мерном линейном пространстве, матрица А которого в некотором базисе является верхней треугольной порядка n:

Вычисление собственных значений и собственных векторов

причем все ее диагональные элементы аii попарно различны, т.е. аii ≠ ajj при i ≠ j.

Составляем характеристическое уравнение матрицы А:

det(А — λЕ) = (а11 — λ)(а22 — λ) … (аnn — λ) = 0

(определитель верхней треугольной матрицы равен произведе-нию ее диагональных элементов). Находим все действительные корни этого уравнения:

λk = akk, k = 1,n

Как видим, линейный оператор А имеет n попарно различных собственных значений.

Отметим, что пересечение любых двух собственных подпространств линейного оператора содержит лишь нулевой вектор, так как собственный вектор не может отвечать двум различным собственным значениям. Поэтому собственные подпространства линейного оператора образуют прямую сумму, а размерность прямой суммы линейных подпространств, согласно следствию из теоремы 2.5, равна сумме их размерностей. Из этих соображений следует, что каждое из n собственных подпространств рассматриваемого линейного оператора является одномерным, так как их размерность не может быть меньше, но если бы одно из подпространств имело размерность больше единицы, то суммарная их размерность превышала бы размерность самого линейного пространства.

Итак, все собственные подпространства линейного операто-ра в нашем случае одномерны. Рассмотрим то из них, которое отвечает собственному значению λr = аrr, где 1 ≤ r ≤ n. Соответствующий собственный вектор имеет столбец координат, который является ненулевым решением однородной СЛАУ

(А — arrЕ)х = 0. (5.6)

Достаточно очевидно, что ранг матрицы системы (5.6) равен n — 1, а базисный минор для этой матрицы получается вычер-киванием r-й строки и r-го столбца.

Наиболее просто решение системы (5.6) выглядит для r = 1. В этом случае собственным является вектор x1 со столбцом координат (1 0 … 0)T . При r = 2 все координаты собственного вектора, начиная с третьей, будут равны нулю, так как они удовлетворяют системе

Вычисление собственных значений и собственных векторов

получающейся выбрасыванием первых двух уравнений. Второе уравнение вытекает из всех последующих и может быть опуще-но, а первое уравнение определяет связь между первыми двумя координатами. Мы получаем, что собственному значению а22 отвечает вектор x2 со столбцом координат (-a12 a11 0 … 0)T . Собственному значению a33 отвечает вектор x3 со столбцом координат (x13 x23 x33 0 … 0)T , у которого лишь первые три координаты отличны от нуля. Эти три координаты удовлетворяют однородной системе из двух уравнений

Вычисление собственных значений и собственных векторов

Эти рассуждения можно продолжить.

Пример 5.6. Преобразование поворота в V3 на заданный острый угол вокруг некоторой оси — это линейный оператор. Его собственными векторами являются векторы, коллинеарные оси поворота. Например, если поворот выполняется вокруг оси Оz, то матрица оператора в базисе i, j, k будет иметь вид

Вычисление собственных значений и собственных векторов

а его собственными векторами будут векторы со столбцами координат вида λ(0 0 1)T , λ ≠ 0.

  1. Линейные операции над векторами

  2. Базис. Cкалярное произведение

  3. Векторное и смешанное произведения векторов

  4. Декартова система координат. прямая на плоскости

  5. Плоскость в пространстве

  6. Прямая в пространстве

  7. Кривые второго порядка — I

  8. Кривые второго порядка — II

  9. Поверхности второго порядка

  10. Матрицы и операции с ними

  11. Обратная матрица

  12. Ранг матрицы

  13. Системы линейных алгебраических уравнений

  14. Свойства решений однородных и неоднородных СЛАУ

Собственные векторы и собственные значения матрицы

Пусть A — числовая квадратная матрица n-го порядка. Матрица A-lambda E называется характеристической для A, а ее определитель Delta_{A}(lambda)=det(A-lambda E) характеристическим многочленом матрицы A:

A-lambda E=begin{pmatrix}a_{11}-lambda&cdots&a_{1n}\ vdots&ddots& vdots\ a_{n1}&cdots&a_{nn}-lambdaend{pmatrix}!,quad Delta_{A}(lambda)=det(A-lambda E)= begin{vmatrix} a_{11}-lambda&cdots&a_{1n}\ vdots&ddots&vdots\ a_{n1}&cdots&a_{nn}-lambdaend{vmatrix}!.

(7.12)

Характеристическая матрица — это λ-матрица. Ее можно представить в виде регулярного многочлена первой степени с матричными коэффициентами. Нетрудно заметить, что степень характеристического многочлена равна порядку n характеристической матрицы.

Пусть A — числовая квадратная матрица n-го порядка. Ненулевой столбец x=begin{pmatrix}x_1\vdots\x_nend{pmatrix}, удовлетворяющий условию

Acdot x=lambdacdot x,

(7.13)

называется собственным вектором матрицы A. Число lambda в равенстве (7.13) называется собственным значением матрицы A. Говорят, что собственный вектор x соответствует {принадлежит) собственному значению lambda.

Поставим задачу нахождения собственных значений и собственных векторов матрицы. Определение (7.13) можно записать в виде (A-lambda E)x=o, где E — единичная матрица n-го порядка. Таким образом, условие (7.13) представляет собой однородную систему n линейных алгебраических уравнений с n неизвестными x_1,x_2,ldots,x_n:

begin{cases}(a_{11}-lambda)x_1+a_{12}x_2+ldots+a_{1n}x_n=0,\ a_{21}x_1+(a_{22}-lambda)x_2+ldots+a_{2n}x_n=0,\ cdotscdotscdotscdotscdots\ a_{n1}x_1+a_{2n}x_2+ldots+(a_{nn}-lambda)x_n=0. end{cases}

(7.14)

Поскольку нас интересуют только нетривиальные решения (xne o) однородной системы, то определитель матрицы системы должен быть равен нулю:

det(A-lambda E)=begin{vmatrix}a_{11}-lambda&a_{12}&cdots&a_{1n}\ a_{21}&a_{22}-lambda&cdots&a_{2n}\ vdots&vdots&ddots&vdots\ a_{n1}&a_{n2}& cdots&a_{nn}-lambda end{vmatrix}=0.

(7.15)

В противном случае по теореме 5.1 система имеет единственное тривиальное решение. Таким образом, задача нахождения собственных значений матрицы свелась к решению уравнения (7.15), т.е. к отысканию корней характеристического многочлена Delta_{A}(lambda)=det(A-lambda E) матрицы A. Уравнение Delta_{A}(lambda)=0 называется характеристическим уравнением матрицы A. Так как характеристический многочлен имеет n-ю степень, то характеристическое уравнение — это алгебраическое уравнение n-го порядка. Согласно следствию 1 основной теоремы алгебры, характеристический многочлен можно представить в виде

Delta_{A}(lambda)= det(A-lambda E)= a_{n}(lambda-lambda_1)^{n_1}cdot (lambda-lambda_2)^{n_2}cdotldotscdot(lambda-lambda_k)^{n_k},

где lambda_1,lambda_2,ldots,lambda_k — корни многочлена кратности n_1,n_2,ldots,n_k соответственно, причем n_1+n_2+ldots+n_k=n. Другими словами, характеристический многочлен имеет п корней, если каждый корень считать столько раз, какова его кратность.


Теорема 7.4 о собственных значениях матрицы. Все корни характеристического многочлена (характеристического уравнения (7-15)) и только они являются собственными значениями матрицы.

Действительно, если число lambda — собственное значение матрицы A, которому соответствует собственный вектор xne o, то однородная система (7.14) имеет нетривиальное решение, следовательно, матрица системы вырожденная, т.е. число lambda удовлетворяет характеристическому уравнению (7.15). Наоборот, если lambda — корень характеристического многочлена, то определитель (7.15) матрицы однородной системы (7.14) равен нулю, т.е. operatorname{rg}(A-lambda E)&lt;n.В этом случае система имеет бесконечное множество решений, включая ненулевые решения. Поэтому найдется столбец xne o, удовлетворяющий условию (7.14). Значит, lambda — собственное значение матрицы A.


Свойства собственных векторов

Пусть A — квадратная матрица n-го порядка.

1. Собственные векторы, соответствующие различным собственным значениям, линейно независимы.

В самом деле, пусть s_1 и s_2 — собственные векторы, соответствующие собственным значениям lambda_1 и lambda_2, причем lambda_1ne lambda_2. Составим произвольную линейную комбинацию этих векторов и приравняем ее нулевому столбцу:

alpha_1cdot s_1+alpha_2cdot s_2=o.

(7.16)

Надо показать, что это равенство возможно только в тривиальном случае, когда alpha_1=alpha_2=0. Действительно, умножая обе части на матрицу A и подставляя As_1=lambda_1s_1 и As_2=lambda_2s_2 имеем

A(alpha_1s_1+alpha_2s_2)=oquad Leftrightarrowquad alpha_1As_1+ alpha_2As_2= oquad Leftrightarrowquad alpha_1 lambda_1s_1+alpha_2 lambda_2s_2=o.

Прибавляя к последнему равенству равенство (7.16), умноженное на (-lambda_2), получаем

alpha_1cdotlambda_1cdot s_1-alpha_2cdotlambda_2cdot s_2=oquad Leftrightarrowquad alpha_1cdot(lambda_1-lambda_2)cdot s_1=o.

Так как s_1ne o и lambda_1ne lambda_2, делаем вывод, что alpha_1=0. Тогда из (7.16) следует, что и alpha_2=0 (поскольку s_2ne o). Таким образом, собственные векторы s_1 и s_2 линейно независимы. Доказательство для любого конечного числа собственных векторов проводится по индукции.

2. Ненулевая линейная комбинация собственных векторов, соответствующих одному собственному значению, является собственным вектором, соответствующим тому же собственному значению.

Действительно, если собственному значению lambda соответствуют собственные векторы s_1,ldots,s_k, то из равенств S_i=lambda s_i, i=1,ldots,k, следует, что вектор s=alpha_1s_1+ldots+alpha_ks_k также собственный, поскольку:

As=A(alpha_1s_1+ldots+alpha_ks_k)= alpha_1lambda s_1+ldots+alpha_klambda s_k=lambda(alpha_1s_1+ldots+alpha_ks_k)=lambda s.

3. Пусть (A-lambda E)^{+} — присоединенная матрица для характеристической матрицы (A-lambda E). Если lambda_0 — собственное значение матрицы A, то любой ненулевой столбец матрицы (A-lambda E)^{+} является собственным вектором, соответствующим собственному значению lambda_0.

В самом деле, применяя формулу (7.7) имеем (A-lambda E)(A-lambda E)^{+}=Delta_k(lambda)cdot E. Подставляя корень lambda_0, получаем (A-lambda_0E)(A-lambda_0E)^{+}=O. Если s — ненулевой столбец матрицы (A-lambda_0E)^{+}, то (A-lambda_0E)s=oLeftrightarrow As=lambda_0s. Значит, s — собственный вектор матрицы A.


Замечания 7.5

1. По основной теореме алгебры характеристическое уравнение имеет п в общем случае комплексных корней (с учетом их кратностей). Поэтому собственные значения и собственные векторы имеются у любой квадратной матрицы. Причем собственные значения матрицы определяются однозначно (с учетом их кратности), а собственные векторы — неоднозначно.

2. Чтобы из множества собственных векторов выделить максимальную линейно независимую систему собственных векторов, нужно для всех раз личных собственных значений lambda_1,lambda_2, ldots,lambda_k записать одну за другой системы линейно независимых собственных векторов, в частности, одну за другой фундаментальные системы решений однородных систем

(A-lambda_1E)cdot x=o,quad (A-lambda_2E)cdot x=o,quad ldots,quad (A-lambda_kE)cdot x=o.

Полученная система собственных векторов будет линейно независимой в силу свойства 1 собственных векторов.

3. Совокупность всех собственных значений матрицы (с учетом их кратностей) называют ее спектром.

4. Спектр матрицы называется простым, если собственные значения матрицы попарно различные (все корни характеристического уравнения простые).

5. Для простого корня lambda=lambda_0 характеристического уравнения соответствующий собственный вектор можно найти, раскладывая определитель матрицы (A-lambda_0E) по одной из строк. Тогда ненулевой вектор, компоненты которого равны алгебраическим дополнениям элементов одной из строк матрицы (A-lambda_0E), является собственным вектором.


Нахождение собственных векторов и собственных значений матрицы

Для нахождения собственных векторов и собственных значений квадратной матрицы A n-го порядка надо выполнить следующие действия.

1. Составить характеристический многочлен матрицы Delta_A(lambda)=det(A-lambda E).

2. Найти все различные корни lambda_1,lambda_2,ldots,lambda_k характеристического уравнения Delta_A(lambda)=0 (кратности n_1,n_2,ldots,n_k (n_1+n_2+ldots+n_k=n) корней определять не нужно).

3. Для корня lambda-lambda_1 найти фундаментальную систему varphi_1,varphi_2,ldots,varphi_{n-r} решений однородной системы уравнений

(A-lambda_1E)cdot x=o, где r=operatorname{rg}(A-lambda_1E)

Для этого можно использовать либо алгоритм решения однородной системы, либо один из способов нахождения фундаментальной матрицы (см. пункт 3 замечаний 5.3, пункт 1 замечаний 5.5).

4. Записать линейно независимые собственные векторы матрицы A, отвечающие собственному значению lambda_1:

s_1=C_1varphi_1,quad s_2=C_2varphi_2,quad ldots,quad s_{n-r}=C_{n-r}varphi_{n-r},

(7.17)

где C_1,C_2,ldots,C_{n-r} — отличные от нуля произвольные постоянные. Совокупность всех собственных векторов, отвечающих собственному значению lambda_1, образуют ненулевые столбцы вида s=C_1varphi_1+C_2varphi_2+ldots+C_{n-r}varphi_{n-r}. Здесь и далее собственные векторы матрицы будем обозначать буквой s.

Повторить пункты 3,4 для остальных собственных значений lambda_1,lambda_2,ldots,lambda_k.


Пример 7.8. Найти собственные значения и собственные векторы матриц:

A=begin{pmatrix}1&-2\3&8end{pmatrix}!,quad B=begin{pmatrix}1&-4\ 1&1 end{pmatrix}!,quad C=begin{pmatrix}1&1&1\1&1&1\1&1&1end{pmatrix}!.

Решение. Матрица A. 1. Составляем характеристический многочлен матрицы

Delta_{A}(lambda)=begin{vmatrix}1-lambda&-2\3&8-lambdaend{vmatrix}= (1-lambda)(8-lambda)+6=lambda^2-9 lambda+8+6= lambda^2-9 lambda+14.

2. Решаем характеристическое уравнение: lambda^2-9 lambda+14=0~Rightarrow~! left[!begin{gathered}lambda_1=2,\ lambda_2=7.end{gathered}right..

3(1). Для корня lambda_1=2 составляем однородную систему уравнений (A-lambda_1E)x=o:

begin{pmatrix}1-2&-2\ 3&8-2 end{pmatrix}!cdot! begin{pmatrix}x_1\x_2 end{pmatrix}= begin{pmatrix}0\0end{pmatrix}quad Leftrightarrowquad begin{pmatrix}-1&-2\ 3&6 end{pmatrix}!cdot! begin{pmatrix}x_1\x_2 end{pmatrix}= begin{pmatrix}0\0 end{pmatrix}!.

Решаем эту систему методом Гаусса, приводя расширенную матрицу системы к упрощенному виду

begin{pmatrix}-1&-2!!&vline!!&0\ 3&6!!&vline!!&0end{pmatrix}sim begin{pmatrix}1&2!!&vline!!&0\ 3&6!!&vline!!&0end{pmatrix}sim begin{pmatrix}1&2!!& vline!!&0\ 0&0!!&vline!!&0end{pmatrix}!.

Ранг матрицы системы равен 1 (r=1), число неизвестных n=2, следовательно, фундаментальная система решений состоит из n-r=1 решения. Выражаем базисную переменную x_1 через свободную: x_1=-2x_2. Полагая x_2=1, получаем решение varphi_1= begin{pmatrix}-2\1end{pmatrix}.

4(1). Записываем собственные векторы, соответствующие собственному значению lambda_1=2colon~ s_1=C_1cdotvarphi_1, где C_1 — отличная от нуля произвольная постоянная.

Заметим, что, согласно пункту 5 замечаний 7.5, в качестве собственного вектора можно выбрать вектор, составленный из алгебраических дополнений элементов второй строки матрицы begin{pmatrix}-1&-2\3&6end{pmatrix}, то есть begin{pmatrix}2\-1 end{pmatrix}. Умножив этот столбец на (-1), получим varphi_1.

3(2). Для корня lambda_2=7 составляем однородную систему уравнений (A-lambda_2E)x=o:

begin{pmatrix}1-7&-2\ 3&8-7 end{pmatrix}!cdot! begin{pmatrix}x_1\x_2 end{pmatrix}= begin{pmatrix}0\0end{pmatrix}quad Leftrightarrowquad begin{pmatrix}-6&-2\ 3&1 end{pmatrix}!cdot! begin{pmatrix}x_1\x_2 end{pmatrix}= begin{pmatrix}0\0 end{pmatrix}!.

Решаем эту систему методом Гаусса, приводя расширенную матрицу системы к упрощенному виду

begin{pmatrix}-6&-2!!&vline!!&0\ 3&1!!&vline!!&0end{pmatrix}sim begin{pmatrix}3&1!!&vline!!&0\ -6&-2!!&vline!!&0end{pmatrix}sim begin{pmatrix}1&1/3!!& vline!!&0\ -6&-2!!&vline!!&0end{pmatrix}sim begin{pmatrix}1&1/3!!& vline!!&0\ 0&0!!&vline!!&0end{pmatrix}!.

Ранг матрицы системы равен 1 (r=1), число неизвестных n=2, следовательно, фундаментальная система решений состоит из n-r=1 решения. Выражаем базисную переменную x_1 через свободную: x_1=-frac{1}{3}x_2. Полагая x_2=1, получаем решение varphi_2=begin{pmatrix}-1/3\1end{pmatrix}.

4(2). Записываем собственные векторы, соответствующие собственному значению lambda_2=7colon~ s_2=C_2cdotvarphi_2, где C_2 — отличная от нуля произвольная постоянная.

Заметим, что, согласно пункту 5 замечаний 7.5, в качестве собственного вектора можно выбрать вектор, составленный из алгебраических дополнений элементов первой строки матрицы begin{pmatrix}-6&-2\3&1end{pmatrix}, т.е. begin{pmatrix}1\-3 end{pmatrix}. Поделив его на (- 3), получим varphi_2.

Матрица B. 1. Составляем характеристический многочлен матрицы

Delta_{B}(lambda)= begin{vmatrix}1-lambda&-4\1&1-lambdaend{vmatrix}= (1-lambda)^2+4=lambda^2-2 lambda+1+4= lambda^2-2 lambda+5.

2. Решаем характеристическое уравнение: lambda^2-2 lambda+5=0~Rightarrow~! left[! begin{gathered}lambda_1=1+2i,\ lambda_2=1-2i.end{gathered}right..

3(1). Для корня lambda_1=1+2i составляем однородную систему уравнений (B-lambda_1E)x=o

begin{pmatrix}1-(1+2i)&-4\ 1&8-1-(1+2i) end{pmatrix}!cdot! begin{pmatrix}x_1\x_2 end{pmatrix}= begin{pmatrix}0\0end{pmatrix}quad Leftrightarrowquad begin{pmatrix}-2i&-4\ 1&-2i end{pmatrix}!cdot! begin{pmatrix}x_1\x_2 end{pmatrix}= begin{pmatrix}0\0 end{pmatrix}!.

Решаем эту систему методом Гаусса, приводя расширенную матрицу системы к упрощенному виду

begin{pmatrix}-2i&-4!!&vline!!&0\ 1&-2i!!&vline!!&0end{pmatrix}sim begin{pmatrix} 1&-2i!!&vline!!&0\ -2i&-4!!&vline!!&0end{pmatrix}sim begin{pmatrix}1&-2i!!& vline!!&0\ 0&0!!&vline!!&0end{pmatrix}.

Ранг матрицы системы равен 1 (r=1), число неизвестных n=2, следовательно, фундаментальная система решений состоит из n-r=1 решения. Выражаем базисную переменную x_1 через свободную: x_1=2i,x_2. Полагая x_2=1, получаем решение varphi_1= begin{pmatrix}2i\1 end{pmatrix}.

4(1). Записываем собственные векторы, соответствующие собственному значению lambda_1= 1+2icolon~ s_1=C_1cdotvarphi_1, где C_1 — отличная от нуля произвольная постоянная.

Заметим, что, согласно пункту 5 замечаний 7.5, в качестве собственного вектора можно выбрать вектор, составленный из алгебраических дополнений элементов первой строки матрицы begin{pmatrix}-2i&-4\1&-2iend{pmatrix}, то есть begin{pmatrix}-2i\ -1 end{pmatrix}. Умножив этот столбец на (-1), получим varphi_1.

3(2). Для корня lambda_2=1-2i составляем однородную систему уравнений (B-lambda_2E)x=o:

begin{pmatrix}1-(1-2i)&-4\ 1&8-1-(1-2i) end{pmatrix}!cdot! begin{pmatrix}x_1\x_2 end{pmatrix}= begin{pmatrix}0\0end{pmatrix}quad Leftrightarrowquad begin{pmatrix}2i&-4\ 1&2i end{pmatrix}!cdot! begin{pmatrix}x_1\x_2 end{pmatrix}= begin{pmatrix}0\0 end{pmatrix}!.

Решаем эту систему методом Гаусса, приводя расширенную матрицу системы к упрощенному виду

begin{pmatrix}2i&-4!!&vline!!&0\ 1&2i!!&vline!!&0end{pmatrix}sim begin{pmatrix} 1&2i!!&vline!!&0\ 2i&-4!!&vline!!&0end{pmatrix}sim begin{pmatrix}1&2i!!& vline!!&0\ 0&0!!&vline!!&0end{pmatrix}.

Ранг матрицы системы равен 1 (r=1), число неизвестных n=2, следовательно, фундаментальная система решений состоит из n-r=1 решения. Выражаем базисную переменную x_1 через свободную: x_1=-2i,x_2. Полагая x_2=1, получаем решение varphi_2= begin{pmatrix}-2i\1 end{pmatrix}.

4(2). Записываем собственные векторы, соответствующие собственному значению lambda_2=1-2icolon~ s_2=C_2cdotvarphi_2, где C_2 — отличная от нуля произвольная постоянная.

Заметим, что, согласно пункту 5 замечаний 7.5, в качестве собственного вектора можно выбрать вектор, составленный из алгебраических дополнений элементов первой строки матрицы begin{pmatrix}2i&-4\1&2iend{pmatrix}, т.е. begin{pmatrix}2i\-1 end{pmatrix}. Умножив его на (-1), получим varphi_2.

Матрица C 1. Составляем характеристический многочлен матрицы

Delta_{C}(lambda)= det(C-lambda E)= begin{vmatrix}1-lambda&1&1\1&1-lambda&1\ 1&1&1-lambda end{vmatrix}= (1-lambda)^3+2-3(1-lambda)= -lambda^3+3 lambda^2.

2. Решаем характеристическое уравнение: -lambda^3+3 lambda^2=0~Rightarrow~! left[! begin{gathered}lambda_1=3,\ lambda_2=0end{gathered}right..

3(1). Для корня lambda_1=3 составляем однородную систему уравнений (C-lambda_1E)x=o:

begin{pmatrix}1-3&1&1\ 1&1-3&1\ 1&1&1-3end{pmatrix}!cdot! begin{pmatrix} x_1\x_2\x_3end{pmatrix}=begin{pmatrix}0\0\0end{pmatrix}quad Leftrightarrowquad begin{cases}-2x_1+x_2+x_3=0,\ x_1-2x_2+x_3=0,\ x_1+x_2-2x_3=0.end{cases}

Решаем эту систему методом Гаусса, приводя расширенную матрицу системы к упрощенному виду (ведущие элементы выделены полужирным курсивом):

begin{gathered}begin{pmatrix}C-lambda_1Emid oend{pmatrix}= begin{pmatrix} -2&1&1!!&vline!!&0\ 1&-2&1!!&vline!!&0\ 1&1&-2!!&vline!!&0 end{pmatrix}sim begin{pmatrix} 1&1&-2!!&vline!!&0\ -2&1&1!!&vline!!&0\ 1&-2&1!!&vline!!&0 end{pmatrix}sim\[2pt] simbegin{pmatrix} 1&1&-2!!&vline!!&0\ 0&3&-3!!&vline!!&0\ 0&-3&3!!&vline!!&0 end{pmatrix}sim begin{pmatrix} 1&1&-2!!&vline!!&0\ 0&1&-1!!&vline!!&0\ 0&0&0!!&vline!!&0 end{pmatrix}sim begin{pmatrix} 1&0&-1!!&vline!!&0\ 0&1&-1!!&vline!!&0\ 0&0&0!!&vline!!&0 end{pmatrix}!.end{gathered}

Ранг матрицы системы равен 2 (r=2), число неизвестных n=3, следовательно, фундаментальная система решений состоит из n-r=1 решения. Выражаем базисные переменные x_1,x_2 через свободную x_3colon begin{cases}x_1=x_3,\x_2=x_3,end{cases} и, полагая x_3=1, получаем решение varphi=begin{pmatrix}1\1\1end{pmatrix}.

4(1). Все собственные векторы, соответствующие собственному значению lambda_1=3, вычисляются по формуле s=C_1cdotvarphi, где C_1 — отличная от нуля произвольная постоянная.

Заметим, что, согласно пункту 5 замечаний 7.5, в качестве собственного вектора можно выбрать вектор, составленный из алгебраических дополнений элементов первой строки матрицы begin{pmatrix}-2&1&1\1&-2&1\1&1&-2end{pmatrix}, то есть begin{pmatrix}3\3\3end{pmatrix}, так как

A_{11}=(-1)^{1+1}begin{vmatrix} -2&1\1&-2 end{vmatrix} =3;quad A_{12}=(-1)^{1+2} begin{vmatrix} 1&1\1&-2 end{vmatrix}= 3;quad A_{13}=(-1)^{1+3}begin{vmatrix}1&-2\ 1&1 end{vmatrix}=3.

Разделив его на 3, получим varphi.

3(2). Для собственного значения lambda_2=0 имеем однородную систему Cx=o. Решаем ее методом Гаусса:

begin{pmatrix}Cmid oend{pmatrix}= begin{pmatrix}1&1&1!!&vline!!&0\ 1&1&1!!&vline!!&0\ 1&1&1!!&vline!!&0 end{pmatrix}sim begin{pmatrix}1&1&1!!& vline!!&0\ 0&0&0!!&vline!!&0\ 0&0&0!!&vline!!&0 end{pmatrix}!.

Ранг матрицы системы равен единице (r=1), следовательно, фундаментальная система решений состоит из двух решений (n-r=2). Базисную переменную x_1, выражаем через свободные: x_1=-x_2-x_3. Задавая стандартные наборы свободных переменных x_2=1,~x_3=0 и x_2=0,~ x_3=1, получаем два решения

varphi_1=begin{pmatrix}-1\1\0end{pmatrix}!,qquad varphi_2=begin{pmatrix}-1\0\1 end{pmatrix}!.

4(2). Записываем множество собственных векторов, соответствующих собственному значению lambda_2=0colon~ s=C_1varphi_1+C_2varphi_2, где C_1,C_2 — произвольные постоянные, не равные нулю одновременно. В частности, при C_1=0, C_2=-1 получаем s_1=begin{pmatrix}1&0&-1end{pmatrix}^T; при C_1=0,~C_2=-1colon s_2=begin{pmatrix}1&-1&0end{pmatrix}^T. Присоединяя к этим собственным векторам собственный вектор s_3=begin{pmatrix}1&1&1 end{pmatrix}^T, соответствующий собственному значению lambda_1=3 (см. пункт 4(1) при C_1=1), находим три линейно независимых собственных вектора матрицы C:

s_1=begin{pmatrix}1\0\-1end{pmatrix}!,qquad s_2=begin{pmatrix}1\-1\0 end{pmatrix}!,qquad s_3=begin{pmatrix}1\1\1end{pmatrix}!.

Заметим, что для корня lambda_2=0 собственный вектор нельзя найти, применяя пункт 5 замечаний 7.5, так как алгебраическое дополнение каждого элемента матрицы A равно нулю.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти на карте кейптаун
  • Как найти произведение матрицы авс
  • Как найти свой окато для ип
  • Эксель не считает формулы автоматически как исправить
  • Как найти коэффициенты уравнения если даны корни

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии