Аналитическая геометрия — задача на расчет пирамиды (тетраэдра)
Краткая теория
Вузовская аналитическая геометрия отличается от курса школьной геометрии. Главное отличие состоит в том, что она основным своим инструментом имеет набор алгебраических формул и методов вычислений. В основе аналитической геометрии лежит метод координат.
Аналитическая геометрия имеет набор формул, готовых уравнений и алгоритмов действия. Для успешного и правильного решения главное — разобраться и уделить задаче достаточно времени.
Данная задача является типовой в курсе аналитической геометрии и требует использования различных методов и знаний, таких как декартовые прямоугольные координаты и вектора в пространстве.
Пример решения задачи
Задача
Даны координаты
вершин пирамиды
. Найти:
Сделать чертеж.
На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:
ВКонтакте
WhatsApp
Telegram
Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.
Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.
Решение
Длина ребра
Длину ребра
найдем по
формуле расстояния между 2-мя точками:
Угол между ребрами
Угол между ребрами
и
найдем как угол
между направляющими векторами
и
:
Косинус угла между
векторами:
Угол между ребром и гранью. Векторное произведение
Вычислим угол между
ребром
и гранью
.
Для этого вычислим
координаты нормального вектора плоскости
–им будет
векторное произведение векторов
и
.
Найдем векторное произведение. Для этого
вычислим определитель:
Нормальный вектор
плоскости:
Синус угла:
Площадь грани
Вычислим площадь
грани
. Она будет численно равна половине модуля векторного
произведения векторов
и
:
Искомая площадь:
Объем пирамиды. Смешанное произведение векторов
Вычислим объем
пирамиды. Он будет равен шестой части модуля смешанного произведения векторов
и
:
Для того чтобы вычислить смешанное произведение, необходимо
найти определитель квадратной матрицы, составленной из координат векторов:
Искомый объем
пирамиды:
Уравнение прямой в пространстве
Вычислим уравнение
прямой
. Направляющим
вектором искомой прямой является вектор
. Кроме того, прямая проходит через точку
Уравнение искомой
прямой:
Уравнение плоскости
Вычислим уравнение
плоскости
. Нормальный вектор плоскости
. кроме того, плоскость проходит через точку
-уравнение
грани
Уравнение высоты, опущенной на грань
Составим уравнение
высоты, опущенной на грань
из вершины
:
Нормальный вектор
является
направляющим вектором высоты, кроме того, высота проходит через точку
Искомое уравнение
высоты:
Сделаем схематический чертеж:
Онлайн решение Пирамиды по координатам вершин
Данный онлайн-сервис вычисляет (показываются промежуточные расчёты) следующие параметры треугольной пирамиды (тетраэдра):
1) чертёж пирамиды по координатам её вершин;
2) длины и уравнения рёбер, медиан, апофем, высот;
3) площади и уравнения граней;
4) система линейных неравенств, определяющих пирамиду;
5) основания и точка пересечения медиан (центроид);
6) уравнения плоскостей, проходящих через вершины параллельно противолежащим граням;
7) объём пирамиды;
основания, площади и уравнения биссекторов;
9) углы между рёбрами, между рёбрами и гранями, двугранные (внутренние между гранями), телесные;
10) параметры и уравнения вписанной и описанной сфер;
Внимание! Этот сервис может не работать в браузере Internet Explorer.
Запишите координаты вершин пирамиды и нажмите кнопку.
Математический форум (помощь с решением задач, обсуждение вопросов по математике).
Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.
16
Задание
1.1.
Даны
координаты вершин пирамиды
,
,
,
.
1).
длину ребра
;
2).
угол между ребрами
и
;
3).
угол между ребром
и гранью
;
4).
площадь грани
;
5).
объём пирамиды;
6).
уравнение прямой
;
7).
уравнение плоскости
;
8).
уравнение высоты, опущенной из вершины
на грань
.
Решение.
1).
Используем формулу для нахождения длины
ребра через
координаты его конечных точек:
.
2).
Запишем координаты векторов
и
:
;
Угол
между ребрами
– это угол между векторами
и
,
поэтому используем соответствующую
формулу:
.
Тогда,
получим:
.
3).
Угол между
ребром и гранью
– это угол между вектором
и нормальным вектором плоскости
.
Находим
нормальный вектор
плоскости
как векторное произведение векторов
и
:
.
Далее,
используем соответствующую формулу
для вычисления искомого угла:
.
Следовательно,
.
4).
Площадь грани
вычисляется как половина длины векторного
произведения векторов
и
,
на которых она построена, т.е. половина
длины нормального вектора плоскости
.
Тогда, получим:
Векторное
произведение:
i(5
• 2-0 • (-3)) — j(0 • 2-(-3) • (-3)) + k(0 • 0-(-3) • 5)
= 10i + 9j + 15k
.
5).
Используем формулу для нахождения
объёма
пирамиды
через координаты векторов
;
;
,
на которых она построена:
.
6).
Запишем симметричные уравнения
прямой
через координаты точки
и направляющего вектора
:
;
.
7).
Запишем уравнение
плоскости
по известному нормальному вектору
и точке плоскости
:
;
;
;
.
8).
Направляющим вектором искомой высоты
есть нормальный вектор плоскости
:
(поскольку высота перпендикулярна к
этой плоскости).
Запишем
симметричные уравнения
высоты через
координаты точки
и направляющего вектора
:
;
;.
.
Задание
1.2.
Составить
уравнение и построить линию, расстояния
каждой точки которой от начала координат
и от точки
относятся как 2:1.
Решение.
Пусть
– произвольная точка данной линии.
Находим
расстояние от точки линии к началу
координат по соответствующей формуле
расстояния между двумя точками:
.
Находим
расстояние от точки на линии к точке
:
.
По
условию, найденные расстояния относятся
как 2:1. Следовательно,
;
;
.
Преобразуем
полученное уравнение указанной линии:
;
;
;
;
;
.
Выделяем
полные квадраты:
;
;
;
;
;
.
Следовательно,
– каноническое уравнение окружности
с центром в точке
и радиусом
.
Задание
1.3.
Дана
система линейных уравнений. Доказать
её совместность и решить методом Гаусса.
.
Решение.
Теорема
Кронекера-Капелли: для того, чтобы
линейная система уравнений являлась
совместной необходимо и достаточно,
чтобы ранг основной матрицы системы
был равен рангу расширенной матрицы.
Запишем
расширенную матрицу системы:
.
Сводим
расширенную матрицу системы к
трапециевидной форме, используя
эквивалентные преобразования.
Поменяем
местами первую и третью строки расширенной
матрицы:
.
Разделим
первую строку на 2.
.
Умножим
первую строку на (-2) и прибавим ко второй.
Полученные результаты запишем во вторую
строку новой расширенной матрицы.
.
Умножим
первую строку на (-3) и прибавим к третьей.
Полученные результаты запишем в третью
строку новой расширенной матрицы.
.
Прибавим
вторую строку к третьей. Полученные
результаты запишем в третью строку
новой расширенной матрицы.
.
Требуемая
форма расширенной матрицы получена.
Количество ненулевых строк основной и
расширенной матрицы одинаковы, поэтому
ранг основной матрицы равен рангу
расширенной. Это означает, что система
линейных уравнений является
совместной.
Из
последней расширенной матрицы находим
решение системы (обратный ход):
1).
из третьей строки получим:
;
;
2).
из второй строки получим:
;
;
;
3).
из первой строки получим
;
;
.
Таким
образом
,
,
.
Выполним
проверку полученного решения. Подставляя
найденные значения x1,x2,x3.
Приходим
к тождеству.
Задание
1.4.
Привести
к каноническому виду уравнения линий
второго порядка. Сделать чертежи.
а).
;
б).
;
в).
.
Решение.
а).
.
Разделим
обе части уравнения на 2:
;
;
.
Следовательно,
имеем каноническое уравнение эллипса
с центром в начале координат, с фокусами
на оси ординат (поскольку
),
малой полуосью
и большой полуосью
.
б).
.
Разделим
обе части уравнения на 3:
;
;
.
Следовательно,
имеем каноническое уравнение гиперболы
с фокусами на оси абсцисс, действительной
полуосью
и мнимой полуосью
.
в).
.
Выделяем
полный квадрат по переменной
:
;
;
.
Тогда,
получим:
;
;
.
Следовательно,
получили каноническое уравнение параболы
с вершиной в точке
,
с фокусом на отрицательной полупрямой
(парабола опущена ветками вниз)
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Геометрия 10-11 класс
10 баллов
Даны координаты вершин пирамиды
A1A2A3A4. A1(2;5;8) A2(1;4;9) A3(2;1;6) A4(5;4;2)Найти:
1) длину ребра A1A2;
2) угол между ребрами A1A2 и A1A4;
3) уравнение плоскости A1A2A3 и угол между ребром A1A4 и плоскостью A1A2A3;
4) уравнение высоты, опущенной из вершины A4 на грань A1A2A3 и ее длину;
5) площадь грани A1A2A3 и объем пирамиды.
Сделать чертеж
Ирина Каминкова
14.12.2020 20:24:47
Ответ эксперта
Ирина Каминкова
14.12.2020 20:27:16
Ответ эксперта
Ирина Каминкова
14.12.2020 20:27:45
Ответ эксперта
Все предметы
Рейтинг пользователей
Пример 1:
Даны координаты вершин пирамиды А1А2А3А4.
Найти:
1) координаты и модули векторов А1 А2и А1 А4;
2) угол между ребрами А1 А2и А1 А4;
3) площадь грани А1 А2 А3;
4) объем пирамиды;
5) уравнение прямой А1 А2;
6) уравнение плоскости А1 А2 А3;
7) уравнение высоты, опущенной из вершины А4 на грань А1 А2 А3.
Сделать чертеж.
А1 (0; 4; -4), А2 (5; 1; -1), А3 (-1; -1; 3), А4 (0; -3; 7).
Решение от преподавателя:
Пример 2:
Даны координаты вершин пирамиды А1А2А3А4.
Найти: 1) длину ребра А1 А2;
2) угол между ребрами А1 А2и А1 А4;
3) угол между ребром А1 А4 и гранью А1 А2 А3;
4) площадь грани А1 А2 А3;
5) объем пирамиды;
6) уравнение прямой А1 А2;
7) уравнение плоскости А1 А2 А3;
уравнение высоты, опущенной из вершины А4 на грань А1 А2 А3. Сделать чертеж.
1. А1 (7; 7; 3), А2 (6; 5; 8), А3 (3; 5; 8), А4 (8; 4; 1).
Решение от преподавателя:
Пример 3:
Решение от преподавателя:
Уравнение плоскости.
Если точки A1(x1; y1; z1), A2(x2; y2; z2), A3(x3; y3; z3) не лежат на одной прямой, то проходящая через них плоскость представляется уравнением:
|
= 0 |
Уравнение плоскости A1A2A3
(x-3)(1*2-0*3) — (y-2)((-2)*2-3*3) + (z+2)((-2)*0-3*1) = 2x + 13y — 3z-38 = 0
Угол между прямой A1A4 и плоскостью A1A2A3.
Синус угла между прямой с направляющими коэффициентами (l; m; n) и плоскостью с нормальным вектором N(A; B; C) можно найти по формуле:
Уравнение плоскости A1A2A3: 2x + 13y — 3z-38 = 0
Уравнение прямой A1A4:
γ = arcsin(0.267) = 15.486o
Уравнение высоты пирамиды через вершину A4(0,2,2)
Прямая, проходящая через точку M0(x0;y0;z0) и перпендикулярная плоскости Ax + By + Cz + D = 0 имеет направляющий вектор (A;B;C) и, значит, представляется симметричными уравнениями:
Уравнение плоскости A1A2A3: 2x + 13y — 3z-38 = 0
Уравнение плоскости через вершину A4(0,2,2)
Плоскость, проходящая через точку M0(x0;y0;z0) и параллельная плоскости Ax + By + Cz + D = 0 имеет направляющий вектор (A;B;C) и, значит, представляется уравнением:
A(x-x0) + B(y-y0) + C(z-z0) = 0
Уравнение плоскости A1A2A3: 2x + 13y — 3z-38 = 0
2(x-0)+13(y-2)-3(z-2) = 0
или
2x+13y-3z-20 = 0
Пример 4:
Решение от преподавателя:
Даны координаты пирамиды: A1(0,1,1), A2(3,4,4), A3(-3,9,3), A4(0,5,4)
- Уравнение плоскости.
Если точки A1(x1; y1; z1), A2(x2; y2; z2), A3(x3; y3; z3) не лежат на одной прямой, то проходящая через них плоскость представляется уравнением:
|
= 0 |
Уравнение плоскости A1A2A3
(x-0)(3*2-8*3) — (y-1)(3*2-(-3)*3) + (z-1)(3*8-(-3)*3) = -18x — 15y + 33z-18 = 0
Упростим выражение: -6x — 5y + 11z-6 = 0
2) Угол между прямой A1A4 и плоскостью A1A2A3.
Синус угла между прямой с направляющими коэффициентами (l; m; n) и плоскостью с нормальным вектором N(A; B; C) можно найти по формуле:
Уравнение плоскости A1A2A3: -6x — 5y + 11z-6 = 0
Уравнение прямой A1A4:
γ = arcsin(0.193) = 11.128o
3) Уравнение высоты пирамиды через вершину A4(0,5,4)
Прямая, проходящая через точку M0(x0;y0;z0) и перпендикулярная плоскости Ax + By + Cz + D = 0 имеет направляющий вектор (A;B;C) и, значит, представляется симметричными уравнениями:
Уравнение плоскости A1A2A3: -6x — 5y + 11z-6 = 0
4) Уравнение плоскости через вершину A4(0,5,4)
Плоскость, проходящая через точку M0(x0;y0;z0) и параллельная плоскости
Ax + By + Cz + D = 0 имеет направляющий вектор (A;B;C) и, значит, представляется уравнением:
A(x-x0) + B(y-y0) + C(z-z0) = 0
Уравнение плоскости A1A2A3: -6x — 5y + 11z-6 = 0
-6(x-0)-5(y-5)+11(z-4) = 0
или
-6x-5y+11z-19 = 0
5) Координаты вектора A1A4(0;4;3)
Уравнение прямой, проходящей через точку А1(0,1,1) параллельно вектору А1А2(0,4,3) имеет вид:
Пример 5:
Даны координаты вершин пирамиды А1А2А3А4.
Найти: 1) длину ребра А1 А2;
2) угол между ребрами А1 А2и А1 А4;
3) угол между ребром А1 А4 и гранью А1 А2 А3;
4) площадь грани А1 А2 А3;
5) объем пирамиды;
6) уравнение прямой А1 А2;
7) уравнение плоскости А1 А2 А3;
уравнение высоты, опущенной из вершины А4 на грань А1 А2 А3. Сделать чертеж.
А1 (4; 4; 10), А2 (4; 10; 2), А3 (2; 8; 4), А4 (9; 6; 9).
Решение от преподавателя:
Пример 6:
Решение от преподавателя:
1) Даны координаты вершин пирамиды: A1(0,1,1), A2(3,4,4), A3(-3,9,3), A4(0,5,4)
Координаты векторов.
Координаты векторов: A1A2(3;3;3) A1A4(0;4;3)
Модули векторов (длина ребер пирамиды)
Длина вектора a(X;Y;Z) выражается через его координаты формулой:
Угол между ребрами.
Угол между векторами a1(X1;Y1;Z1), a2(X2;Y2;Z2) можно найти по формуле: , где a1a2 = X1X2 + Y1Y2 + Z1Z2
Найдем угол между ребрами A1A2(3;3;3) и A1A3(0;4;3):
А1 = arccos(0,808)
Найдем площадь грани с учётом геометрического смысла векторного произведения:
S =
Найдем векторное произведение
=i(3*2-8*3) — j(3*2-(-3)*3) + k(3*8-(-3)*3) = -18i — 15j + 33k
3) Объем пирамиды.
Объем пирамиды, построенный на векторах a1(X1;Y1;Z1), a2(X2;Y2;Z2), a3(X3;Y3;Z3) равен:
|
Координатывекторов:A1A2(3;3;3) A1A3(-3;8;2) A1A4(0;4;3) :
|
|
где определитель матрицы равен:
∆ = 3*(8*3-4*2)-(-3)*(3*3-4*3)+0*(3*2-8*3) = 39
Пример 7:
Решение от преподавателя:
- Угол между ребрами.
Угол между векторами a1(X1;Y1;Z1), a2(X2;Y2;Z2) можно найти по формуле:
где a1a2 = X1X2 + Y1Y2 + Z1Z2
Найдем угол между ребрами A1A2(-2;1;3) и A1A3(3;0;2):
γ = arccos(0) = 90.0030 - Площадь грани
Площадь грани можно найти по формуле:
где
Найдем площадь грани A1A2A3
Найдем угол между ребрами A1A2(-2;1;3) и A1A3(3;0;2):
Площадь грани A1A2A3 - Объем пирамиды, построенный на векторах a1(X1;Y1;Z1), a2(X2;Y2;Z2), a3(X3;Y3;Z3) равен:
|
|
|
где определитель матрицы равен:
∆ = (-2)*(0*4-0*2)-3*(1*4-0*3)+(-3)*(1*2-0*3) = -18
Пример 8:
Даны координаты вершин пирамиды А1А2А3А4 . Найти:
1) длину ребра А1А2;
2) угол между рёбрами А1А2 и А1А4 ;
3) угол между ребром А1А4 и гранью А1А2А3;
4) площадь грани А1А2А3;
5) объём пирамиды;
6) уравнение прямой А1А2;
7) уравнение плоскости А1А2А3;
уравнение высоты, опущенной из вершины А4 на грань А1А2А3;
Сделать чертёж.
А1(3; 5; 4), А2(8; 7; 4), А3(5; 10; 4), А4(4; 7; 8).
Решение от преподавателя:
1) Длина ребра A1A2;
2) угол между ребрами А1А2 и А1А4;
3) угол между ребрами А1А4 и гранью А1А2А3;
Найдем уравнение стороны А1А4:
Вектор нормали: к плоскости А1А2А3.
4) площадь грани А1А2А3;
5) объем пирамиды;
6) уравнение прямой А1А2;
7) уравнение плоскости А1А2А3;
Итак: z=4 – уравнение плоскости А1А2А3.
уравнение высоты, опущенной из вершины А4 на грань А1А2А3.
A4O – высота:
Уравнение A4O:
Т.к. , то
В результате получаем уравнение высоты:
Пример 9:
Даны координаты вершин пирамиды А1А2А3А4.
Найти: 1) длину ребра А1 А2;
2) угол между ребрами А1 А2и А1 А4;
3) угол между ребром А1 А4 и гранью А1 А2 А3;
4) площадь грани А1 А2 А3;
5) объем пирамиды;
6) уравнение прямой А1 А2;
7) уравнение плоскости А1 А2 А3;
уравнение высоты, опущенной из вершины А4 на грань А1 А2 А3. Сделать чертеж.
А1 (4; 4; 10), А2 (4; 10; 2), А3 (2; 8; 4), А4 (9; 6; 9).