Как можно найти ускорение без времени


Download Article


Download Article

If you’ve ever watched a bright red Ferrari fly ahead of your Honda Civic after a stoplight, you’ve experienced differing rates of acceleration firsthand. Acceleration is the rate of change in the velocity of an object as it moves. You can calculate this rate of acceleration, measured in meters per second, based on the time it takes you to go from one velocity to another, or based on the mass of an object.[1]

  1. Image titled 728025 4 1

    1

    Define Newton’s Second Law of Motion. Newton’s second law of motion states that when the forces acting on an object are unbalanced, the object will accelerate. This acceleration is dependent upon the net forces that act upon the object and the object’s mass.[2]
    Using this law, acceleration can be calculated when a known force is acting on an object of known mass.

    • Newton’s law can be represented by the equation Fnet = m x a, where Fnet is the total force acting on the object, m is the object’s mass, and a is the acceleration of the object.
    • When using this equation, keep your units in the metric system. Use kilograms (kg) for mass, newtons (N) for force, and meters per second squared (m/s2) for acceleration.
  2. Image titled 728025 5 1

    2

    Find the mass of your object. To find the mass of an object, simply place it on a balance or scale and find its mass in grams. If you have a very large object, you may need to find a reference that can provide you with the mass.[3]
    Larger objects will likely have a mass with the unit of kilograms (kg).

    • For this equation, you will want to convert the mass into kilograms. If the mass you have is in grams simply divide that mass by 1000 to convert to kilograms.

    Advertisement

  3. Image titled 728025 6 1

    3

    Calculate the net force acting on your object. A net force is an unbalanced force. If you have two forces opposing each other and one is larger than the other, you will have a net force in the direction of the larger force.[4]
    Acceleration happens when an unbalanced force acts on an object, causing it to change speeds towards the direction the force is pushing or pulling it.

    • For example: Let’s say you and your big brother are playing tug-of-war. You pull the rope to the left with a force of 5 newtons while your brother pulls the rope in the opposite direction with a force of 7 newtons. The net force on the rope is 2 newtons to the right, in the direction of your brother.
    • In order to properly understand the units, know that 1 newton (N) is equal to 1 kilogram X meter/second squared (kg X m/s2).[5]
  4. Image titled 728025 7 1

    4

    Rearrange the equation F = ma to solve for acceleration. You can change this formula around to solve for acceleration by dividing both sides by the mass, so: a = F/m.[6]
    To find the acceleration, simply divide the force by the mass of the object being accelerated.

    • Force is directly proportional to the acceleration, meaning that a greater force will lead to a greater acceleration.
    • Mass is inversely proportional to acceleration, meaning that with a greater mass, the acceleration will decrease.
  5. Image titled 728025 8 1

    5

    Use the formula to solve for acceleration. Acceleration is equal to the net force acting on an object divided by the mass of the object. Once you’ve established the values for your variables, do the simple division to find the acceleration of the object.

    • For example: A 10 Newton force acts uniformly on a mass of 2 kilograms. What is the object’s acceleration?
    • a = F/m = 10/2 = 5 m/s2
  6. Advertisement

  1. Image titled 728025 1 1

    1

    Define the equation for average acceleration. You can calculate the average acceleration of an object over a period of time based on its velocity (its speed traveling in a specific direction), before and after that time. To do this you need to know equation for acceleration: a = Δv / Δt where a is acceleration, Δv is the change in velocity, and Δt is the amount of time it took for that change to occur.[7]

    • The unit for acceleration is meters per second per second or m/s2.[8]
    • Acceleration is a vector quantity, meaning it has both a magnitude and a direction.[9]
      The magnitude is the total amount of acceleration whereas the direction is the way in which the object is moving. If it is slowing down the acceleration will be negative.
  2. Image titled 728025 2 1

    2

    Understand the variables. You can further define Δv and Δt: Δv = vf — vi and Δt = tf — ti where vf is the final velocity, vi is the initial velocity, tf is the ending time, and ti is the starting time.[10]

    • Because acceleration has a direction, it is important to always subtract the initial velocity from the final velocity. If you reverse them, the direction of your acceleration will be incorrect.
    • Unless otherwise stated in the problem, the starting time is usually 0 seconds.
  3. Image titled 728025 3 1

    3

    Use the formula to find acceleration. First write down your equation and all of the given variables. The equation is a = Δv / Δt = (vf — vi)/(tf — ti). Subtract the initial velocity from the final velocity, then divide the result by the time interval. The final result is your average acceleration over that time.

    • If the final velocity is less than the initial velocity, acceleration will turn out to be a negative quantity or the rate at which an object slows down.
    • Example 1: A race car accelerates uniformly from 18.5 m/s to 46.1 m/s in 2.47 seconds. What is its average acceleration?
      • Write the equation: a = Δv / Δt = (vf — vi)/(tf — ti)
      • Define the variables: vf = 46.1 m/s, vi = 18.5 m/s, tf = 2.47 s, ti = 0 s.
      • Solve: a = (46.1 – 18.5)/2.47 = 11.17 meters/second2.
    • Example 2: A biker traveling at 22.4 m/s comes to halt in 2.55 s after applying brakes. Find his deceleration.
      • Write the equation: a = Δv / Δt = (vf — vi)/(tf — ti)
      • Define the variables: vf = 0 m/s, vi = 22.4 m/s, tf = 2.55 s, ti = 0 s.
      • Solve: a = (0 – 22.4)/2.55 = -8.78 meters/second2.
  4. Advertisement

  1. Image titled 728025 9 1

    1

    Understand the Direction of Acceleration. The physics concept of acceleration doesn’t always match how we would use the term in everyday life. Every acceleration has a direction, usually represented as positive if it’s UP or RIGHT, and negative if DOWN or LEFT. See if your answer makes sense based on this breakdown:

      Behavior of a Car How is Velocity Changing? Direction of Acceleration
      Driver moving right (+) hits gas pedal

      + → ++ (more positive)

      positive

      Driver moving right (+) hits brakes

      ++ → + (less positive)

      negative

      Driver moving left (-) hits gas pedal

      — → — (more negative)

      negative

      Driver moving left (-) hits brakes

      — → — (less negative)

      positive

      Driver moves at constant velocity

      remains the same

      acceleration is zero

  2. Image titled 728025 10 1

    2

    Understand the Direction of Force. Remember, a force only causes acceleration in the direction of the force. Some problems may try to trick you with irrelevant values.

    • Example Problem: A toy boat with mass 10kg is accelerating north at 2 m/s2. A wind blowing due west exerts a force of 100 Newtons on the boat. What is the boat’s new northward acceleration?
    • Solution: Because the force is perpendicular to the direction of motion, it does not have an effect on motion in that direction. The boat continues to accelerate north at 2 m/s2.
  3. Image titled 728025 11 1

    3

    Understand Net Force. If more than one force acts on an object, combine them into a net force before you calculate acceleration. For a problem in two dimensions, this looks something like this:

    • Example Problem: April is pulling a 400 kg container right with a force of 150 newtons. Bob stand on the left of the container and pushes with a force of 200 newtons. A wind blowing left exerts a force of 10 newtons. What is the acceleration of the container?
    • Solution: This problem uses tricky language to try and catch you. Draw a diagram and you’ll see the forces are 150 newtons right, 200 newtons right, and 10 newtons left. If «right» is the positive direction, the net force is 150 + 200 — 10 = 340 newtons. Acceleration = F / m = 340 newtons / 400 kg = 0.85 m/s2.
  4. Advertisement

Calculator, Practice Problems, and Answers

Add New Question

  • Question

    How do you solve acceleration word problems?

    Sean Alexander, MS

    Sean Alexander is an Academic Tutor specializing in teaching mathematics and physics. Sean is the Owner of Alexander Tutoring, an academic tutoring business that provides personalized studying sessions focused on mathematics and physics. With over 15 years of experience, Sean has worked as a physics and math instructor and tutor for Stanford University, San Francisco State University, and Stanbridge Academy. He holds a BS in Physics from the University of California, Santa Barbara and an MS in Theoretical Physics from San Francisco State University.

    Sean Alexander, MS

    Academic Tutor

    Expert Answer

    answer video

  • Question

    What is the SI unit for acceleration?

    wikiHow Staff Editor

    This answer was written by one of our trained team of researchers who validated it for accuracy and comprehensiveness.

    wikiHow Staff Editor

    wikiHow Staff Editor

    Staff Answer

    SI units are standardized units that are used internationally in scientific writing. When describing acceleration, use the SI units meters per seconds squared (m/s^2).

  • Question

    How do you calculate acceleration without time?

    wikiHow Staff Editor

    This answer was written by one of our trained team of researchers who validated it for accuracy and comprehensiveness.

    wikiHow Staff Editor

    wikiHow Staff Editor

    Staff Answer

    If you know that acceleration is constant, you can solve for it without time if you have the initial and final velocity of the object as well as the amount of displacement. Use the formula v^2=u^2+2as where v is the final velocity, u is the initial velocity, a is acceleration, and s is displacement. Solve for a to find acceleration.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

References

About This Article

Article SummaryX

To calculate acceleration, use the equation a = Δv / Δt, where Δv is the change in velocity, and Δt is how long it took for that change to occur. To calculate Δv, use the equation Δv = vf — vi, where vf is final velocity and vi is initial velocity. To caltulate Δt, use the equation Δt = tf — ti, where tf is the ending time and ti is the starting time. Once you’ve calculated Δv and Δt, plug them into the equation a = Δv / Δt to get the acceleration. To learn how to calculate acceleration from a force, read the article!

Did this summary help you?

Thanks to all authors for creating a page that has been read 1,763,292 times.

Reader Success Stories

  • DrDave Alpenschnee

    DrDave Alpenschnee

    Mar 5, 2018

    «I am an Alpine ski instructor, and was interested in how unbalanced forces cause one ski to accelerate more than…» more

Did this article help you?

Существует формула, с помощью которой можно посчитать путь, пройденный телом, когда нам известны его начальная скорость, ускорение и конечная скорость.

Сокращенно эту формулу называют «путь без времени». Так ее называют потому, что в правой ее части время t движения отсутствует (рис. 1).

Формула, по которой можно вычислить путь тела без учета времени движения

Рис.1. Так выглядит формула, по которой можно вычислить путь тела, не зная, сколько времени занимало движение

Формула пути без времени помогает упростить решение некоторых задач кинематики. Особенно, задач, части C.

Однако, не торопитесь на ЕГЭ записывать эту формулу в готовом виде. Сначала в решении задачи нужно записать вывод этой формулы. И только потом ее можно использовать.

Формулу выводят из выражений для равнопеременного движения. Сейчас я помогу вам вывести эту формулу с помощью нескольких простых шагов.

Выводим формулу пути без времени

Для определенности будем считать, что тело движется по прямой все быстрее и быстрее. То есть, скорость тела увеличивается, так как появляется ускорение.

В таком случае векторы ускорения и скорости тела будут сонаправленными (параллельными и направленными в одну и ту же сторону).

Сонаправленные или противоположно направленные векторы называют коллинеарными векторами. Прочитайте подробнее о коллинеарных векторах.

Чтобы вычислить путь тела, когда скорость его увеличивается, нужно использовать две формулы:

[ large begin{cases} S  = v_{0} cdot t + displaystylefrac{a}{2} cdot t^{2} \ v  = v_{0} + a cdot t end{cases} ]

( large v_{0} left( frac{text{м}}{c} right)) – начальная скорость тела;

( large v left( frac{text{м}}{c} right)) – конечная скорость;

( large a left( frac{text{м}}{c^{2}} right)) – ускорение тела;

( large S left( text{м} right)) – путь, пройденный телом;

(large t left( c right)) – время, за которое тело прошло этот путь.

В формуле для пути S присутствует время t. Получим из нее формулу для пути, в которой время будет отсутствовать.

Что сделать, чтобы получить формулу пути, в которой отсутствует время:

  • сначала получить выражение для времени t из уравнения для скорости;
  •  затем в формулу пути подставить полученное выражение вместо времени t.

Выражаем время из формулы для скорости

Выпишем формулу, связывающую начальную и конечную скорость тела:

[ large v  = v_{0} + a cdot t ]

Избавимся в правой части от начальной скорости, обозначенной символом ( v_{0}). Для этого из обеих частей уравнения вычтем число ( v_{0}). Получим такую запись:

[ large v — v_{0} = a cdot t ]

Теперь, чтобы справа в формуле оставалось только время «t», избавимся от ускорения «a». Для этого разделим обе части уравнения на «a»:

[ large frac{ v — v_{0}}{a} = t ]

Это выражение нам пригодится для дальнейшего вывода формулы «путь без времени».

В формулу пути подставим выражение для времени

Запишем теперь формулу для пути S и полученную формулу для времени t, объединив их в систему:

[ large begin{cases} S  = v_{0}cdot t + displaystyle frac{a}{2}cdot t^{2}\ displaystyle frac{v — v_{0}}{a} = t end{cases} ]

В первом уравнении системы будем заменять символ t дробью из второго уравнения. Тогда система из двух уравнений превратится в единственное уравнение. И в этом уравнении не будет символа t времени:

[large S = v_{0} cdot frac{ v — v_{0}}{a} + frac{a}{2} cdot left( frac{ v — v_{0}}{a} right)^{2}]

Осталось теперь упростить полученное выражение. Будем производить упрощение по частям.

Упрощаем выражение, расположенное до знака «плюс» в правой части

Выпишем отдельно все, что располагается до знака «плюс» в правой части уравнения:

[large v_{0} cdot frac{ v — v_{0}}{a} ]

Умножим числитель дроби на число (v_{0}).

Для этого:

  • сначала числитель обособим скобками;
  • затем запишем число (v_{0}) перед скобками;
  • а потом внесем это число внутрь скобок.

В числитель дроби, обособленный с помощью скобок помещаем число (v_{0}):

[large v_{0} cdot frac{ (v — v_{0})}{a} = frac{ v_{0} cdot (v — v_{0})}{a} ]

Теперь необходимо умножить скобку на число (v_{0}).  На рисунке 2 указано, как правильно выражение в скобках умножить на число, стоящее за скобками.

Правильно умножить скобку на число можно так

Рис. 2. Чтобы умножить скобку на число, нужно умножить каждое слагаемое в скобке на это число

Нужно к каждой скорости в скобках дописать число (v_{0}), умножая его на эти скорости. Получим такое выражение:

[large frac{ v_{0} cdot (v — v_{0})}{a} = frac{ (v_{0} cdot v — v_{0} cdot v_{0})}{a} = frac{ (v_{0} cdot v – v^{2}_{0} )}{a} ]

То есть, вместо первоначальной записи, мы получили такую запись:

[large v_{0} cdot frac{ (v — v_{0})}{a} = frac{ (v_{0} cdot v – v^{2}_{0} )}{a} ]

Возводим в квадрат дробь

После знака «плюс» в правой части уравнения располагается дробь, которую нужно возвести в квадрат. Обратим внимание на эту дробь:

[large left( frac{ v — v_{0}}{a} right)^{2}]

Правильно возвести дробь в степень поможет рисунок 3.

Чтобы дробь возвести в степень, нужно отдельно возвести в эту степень ее числитель и знаменатель отдельно

Рис. 3. Дробь возводим в степень, отдельно возводя в эту степень ее числитель и знаменатель

В результате возведения в квадрат дробь приобретет такой вид:

[large left( frac{ v — v_{0}}{a} right)^{2} = frac{ (v — v_{0})^{2}}{a^{2}}]

В числителе этой дроби находится выражение в скобках, которое нужно возвести в квадрат. И нам придется применить одну из формул сокращенного умножения. Запоминать формулы сокращенного умножения удобно в виде, приведенном на рисунке 4.

Вид формул сокращенного умножения, удобный для запоминания

Рис. 4. Удобный для запоминания вид формул сокращенного умножения

Используем для этого формулу сокращенного умножения, которая содержит знак «минус». Она называется «Квадрат разности». Тогда числитель дроби превратится в такую запись:

[large ( v — v_{0})^{2} = (v^{2} + v^{2}_{0} — 2vv_{0})]

Теперь можем записать полученную дробь:

[large frac{ (v — v_{0})^{2}}{a^{2}} = frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{a^{2}} ]

Упрощаем правую часть, записанную после знака «плюс»

Обратим внимание на все, что располагается в правой части уравнения после знака «плюс»:

[large frac{a}{2} cdot left( frac{ v — v_{0}}{a} right)^{2}]

Мы уже провели некоторые преобразования и можем теперь заменить дробь, возводимую в квадрат более подробной записью:

[large frac{a}{2} cdot left( frac{ v — v_{0}}{a} right)^{2} = frac{a}{2} cdot frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{a^{2}}]

Примечание: Когда мы умножаем одну дробь на другую, то можем менять местами знаменатели этих дробей.

Итак, поменяем местами знаменатели дробей:

[large frac{a}{2} cdot frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{a^{2}} = frac{a}{a^{2}} cdot frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{2}]

Теперь видно, что мы можем сократить ускорение и еще немного упростить выражение:

[large frac{a}{a^{2}} cdot frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{2} = frac{1}{a} cdot frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{2}]

А перемножив числители и знаменатели двух дробей, получим такую запись:

[large frac{1}{a} cdot frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{2} = frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{2a}]

Теперь, первоначальную дробь можно заменить дробью, полученной в ходе преобразований:

[large frac{a}{2} cdot left( frac{ v — v_{0}}{a} right)^{2} = frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{2a}]

Мы закончили преобразовывать выражения, содержащиеся в правой части уравнения после знака «плюс».

Теперь, осталось сложить две дроби в правой части – дробь, записанную до знака «плюс» с дробью, записанной после знака «плюс». А чтобы эти дроби можно было сложить, нужно будет привести их к общему знаменателю.

Приводим к общему знаменателю дроби в правой части уравнения

Вернемся еще раз к первоначальному уравнению:

[large S = v_{0} cdot frac{ v — v_{0}}{a} + frac{a}{2} cdot left( frac{ v — v_{0}}{a} right)^{2}]

Заменим правую часть этого уравнения выражениями, которые мы получили:

[large S = frac{ (v_{0} cdot v – v^{2}_{0} )}{a} + frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{2a}]

Сравним знаменатели дробей.

Первая дробь обладает знаменателем «a», а вторая – «2a». Выберем число «2a» в качестве общего знаменателя обеих дробей.

Чтобы первую дробь привести к общему знаменателю «2a», умножим ее на единицу:

[large frac{ (v_{0} cdot v – v^{2}_{0} )}{a} = frac{ (v_{0} cdot v – v^{2}_{0} )}{a} cdot 1]

Примечания:

  1. Нам известно, что если какое-либо число умножить на единицу, то после умножения это число не изменится. Значит, если какое-либо выражение умножить на единицу, то полученное выражение останется равным самому себе. На единицу можно умножать все, что угодно – дроби, выражения в скобках и т. п.
  2. Математики часто применяют прием умножения на единицу. А после этого единицу записывают в виде некоторой дроби. При этом используют правило: Единица – это дробь, у которой числитель и знаменатель равны (одинаковые).

Так как снизу в первой дроби не хватает числа 2, то единицу представим в виде дроби 2/2:

[large frac{ (v_{0} cdot v – v^{2}_{0} )}{a} cdot 1 = frac{ (v_{0} cdot v – v^{2}_{0} )}{a} cdot frac{2}{2}]

Получим такую дробь:

[large frac{ (v_{0} cdot v – v^{2}_{0} )}{a} cdot frac{2}{2} = frac{ 2(v_{0} cdot v – v^{2}_{0} )}{2a} ]

Поместим ее в выражение для пути:

[large S = frac{ 2(v_{0} cdot v – v^{2}_{0} )}{2a} + frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{2a}]

Дроби с одинаковыми знаменателями складываем

Теперь знаменатели дробей равны. И мы можем записать эти дроби под общим знаменателем:

[large S = frac{ 2(v_{0} cdot v – v^{2}_{0} ) + (v^{2} + v^{2}_{0} — 2vv_{0})}{2a}]

Раскроем скобки в числителе полученного выражения:

[large S = frac{ 2v_{0} v – 2v^{2}_{0} + v^{2} + v^{2}_{0} — 2vv_{0}}{2a}]

Примечание: Обратим внимание на то, что в числителе дважды встречается член (2v_{0} v), обладающий различными знаками. В начале числителя – знаком «плюс», а в конце числителя – знаком «минус». Это означает, что из числа (2v_{0}v) вычитается такое же число (2vv_{0}). В конце концов, это число покидает нашу запись и, она упрощается:

[large S = frac{ – 2v^{2}_{0} + v^{2} + v^{2}_{0}}{2a}]

Перепишем выражение, записав все, что содержит знак «плюс» в начало числителя:

[large S = frac{ v^{2} + v^{2}_{0} – 2v^{2}_{0}}{2a}]

Вычтем подобные члены, содержащие ( v^{2}_{0}):

[large v^{2}_{0} – 2v^{2}_{0} = – v^{2}_{0} ]

В результате получим короткую запись. Именно о ней говорят, когда имеется ввиду формула пути без времени:

[large boxed{ S = frac{ v^{2} — v^{2}_{0}}{2a} }]

Примечания:

  1. Это формула, с помощью которой можно рассчитать путь тела, когда известны его начальная и конечная скорость, а, так же, ускорение.
  2. Видно, что время t в правой части этого выражения отсутствует.
  3. Мы выводили эту формулу для случая, когда тело увеличивало скорость.

Как выглядит формула пути без времени, когда скорость тела уменьшается

Если скорость тела будет уменьшаться, формулу для вычисления пути нужно будет переписать в таком виде:

[large boxed{ S = frac{ v^{2}_{0} — v^{2}}{2a} }]

Получить такую формулу можно, проделав все шаги, описанные выше. Попробуйте самостоятельно ее получить. Выводить формулу нужно, используя формулы для уменьшающейся скорости:

[ large begin{cases} S  = v_{0} cdot t — displaystyle frac{a}{2} cdot t^{2} \ v  = v_{0} — a cdot t end{cases} ]

Выводы

Пусть нам известны начальная и конечная скорость тела и его ускорение. Тогда путь, пройденный телом, можно рассчитать так:

  1. Когда движение равноускоренное и скорость тела увеличивается: [large boxed{ S = frac{ v^{2} — v^{2}_{0}}{2a} }]
  2. А когда движение равнозамедленное и скорость уменьшается: [large boxed{ S = frac{ v^{2}_{0} — v^{2}}{2a} }]


Загрузить PDF


Загрузить PDF

Ускорение характеризует быстроту изменения скорости движущегося тела.[1]
Если скорость тела остается постоянной, то оно не ускоряется. Ускорение имеет место только в том случае, когда скорость тела меняется. Если скорость тела увеличивается или уменьшается на некоторую постоянную величину, то такое тело движется с постоянным ускорением. [2]
Ускорение измеряется в метрах в секунду за секунду (м/с2) и вычисляется по значениям двух скоростей и времени или по значению силы, приложенной к телу.

  1. Изображение с названием Calculate Acceleration Step 1

    1

    Формула для вычисления среднего ускорения. Среднее ускорение тела вычисляется по его начальной и конечной скоростям (скорость – это быстрота передвижения в определенном направлении) и времени, которое необходимо телу для достижения конечной скорости. Формула для вычисления ускорения: a = Δv / Δt, где а – ускорение, Δv – изменение скорости, Δt – время, необходимое для достижения конечной скорости.[3]

    • Единицами измерения ускорения являются метры в секунду за секунду, то есть м/с2.
    • Ускорение является векторной величиной, то есть задается как значением, так и направлением.[4]
      Значение – это числовая характеристика ускорения, а направление – это направление движения тела. Если тело замедляется, то ускорение будет отрицательным.
  2. Изображение с названием Calculate Acceleration Step 2

    2

    Определение переменных. Вы можете вычислить Δv и Δt следующим образом: Δv = vк — vн и Δt = tк — tн, где vк – конечная скорость, vн – начальная скорость, tк – конечное время, tн – начальное время.[5]

    • Так как ускорение имеет направление, всегда вычитайте начальную скорость из конечной скорости; в противно случае направление вычисленного ускорения будет неверным.
    • Если в задаче начальное время не дано, то подразумевается, что tн = 0.
  3. Изображение с названием Calculate Acceleration Step 3

    3

    Найдите ускорение при помощи формулы. Для начала напишите формулу и данные вам переменные. Формула: a = Δv / Δt = (vк — vн)/(tк — tн). Вычтите начальную скорость из конечной скорости, а затем разделите результат на промежуток времени (изменение времени). Вы получите среднее ускорение за данный промежуток времени.

    • Если конечная скорость меньше начальной, то ускорение имеет отрицательное значение, то есть тело замедляется.
    • Пример 1: автомобиль разгоняется с 18,5 м/с до 46,1 м/с за 2,47 с. Найдите среднее ускорение.
      • Напишите формулу: a = Δv / Δt = (vк — vн)/(tк — tн)
      • Напишите переменные: vк = 46,1 м/с, vн = 18,5 м/с, tк = 2,47 с, tн = 0 с.
      • Вычисление: a = (46,1 — 18,5)/2,47 = 11,17 м/с2.
    • Пример 2: мотоцикл начинает торможение при скорости 22,4 м/с и останавливается через 2,55 с. Найдите среднее ускорение.
      • Напишите формулу: a = Δv / Δt = (vк — vн)/(tк — tн)
      • Напишите переменные: vк = 0 м/с, vн = 22,4 м/с, tк = 2,55 с, tн = 0 с.
      • Вычисление: а = (0 — 22,4)/2,55 = -8,78 м/с2.

    Реклама

  1. Изображение с названием Calculate Acceleration Step 4

    1

    Второй закон Ньютона. Согласно второму закону Ньютона тело будет ускоряться, если силы, действующие на него, не уравновешивают друг друга. Такое ускорение зависит от результирующей силы, действующей на тело.[6]
    Используя второй закон Ньютона, вы можете найти ускорение тела, если вам известна его масса и сила, действующая на это тело.

    • Второй закон Ньютона описывается формулой: Fрез = m x a, где Fрез – результирующая сила, действующая на тело, m – масса тела, a – ускорение тела.
    • Работая с этой формулой, используйте единицы измерения метрической системы, в которой масса измеряется в килограммах (кг), сила в ньютонах (Н), а ускорение в метрах в секунду за секунду (м/с2).
  2. Изображение с названием Calculate Acceleration Step 5

    2

    Найдите массу тела. Для этого положите тело на весы и найдите его массу в граммах. Если вы рассматриваете очень большое тело, поищите его массу в справочниках или в интернете. Масса больших тел измеряется в килограммах.

    • Для вычисления ускорения по приведенной формуле необходимо преобразовать граммы в килограммы. Разделите массу в граммах на 1000, чтобы получить массу в килограммах.
  3. Изображение с названием Calculate Acceleration Step 6

    3

    Найдите результирующую силу, действующую на тело. Результирующая сила не уравновешивается другими силами. Если на тело действуют две разнонаправленные силы, причем одна из них больше другой, то направление результирующей силы совпадает с направлением большей силы.[7]
    Ускорение возникает тогда, когда на тело действует сила, которая не уравновешена другими силами и которая приводит к изменению скорости тела в направлении действия этой силы.

    • Например, вы с братом перетягиваете канат. Вы тянете канат с силой 5 Н, а ваш брат тянет канат (в противоположном направлении) с силой 7 Н. Результирующая сила равна 2 Н и направлена в сторону вашего брата.
    • Помните, что 1 Н = 1 кг∙м/с2.[8]
  4. Изображение с названием Calculate Acceleration Step 7

    4

    Преобразуйте формулу F = ma так, чтобы вычислить ускорение. Для этого разделите обе стороны этой формулы на m (массу) и получите: a = F/m. Таким образом, для нахождения ускорения разделите силу на массу ускоряющегося тела.

    • Сила прямо пропорциональна ускорению, то есть чем больше сила, действующая на тело, тем быстрее оно ускоряется.
    • Масса обратно пропорциональна ускорению, то есть чем больше масса тела, тем медленнее оно ускоряется.
  5. Изображение с названием Calculate Acceleration Step 8

    5

    Вычислите ускорение по полученной формуле. Ускорение равно частному от деления результирующей силы, действующей на тело, на его массу. Подставьте данные вам значения в эту формулу, чтобы вычислить ускорение тела.

    • Например: сила, равная 10 Н, действует на тело массой 2 кг. Найдите ускорение тела.
    • a = F/m = 10/2 = 5 м/с2

    Реклама

  1. 1

    Направление ускорения. Научная концепция ускорения не всегда совпадает с использованием этой величины в повседневной жизни. Помните, что у ускорения есть направление; ускорение имеет положительное значение, если оно направлено вверх или вправо; ускорение имеет отрицательное значение, если оно направлено вниз или влево. Проверьте правильность вашего решения, основываясь на следующей таблице:

      Движение автомобиля Изменение скорости Значение и направление ускорения
      Движется вправо (+) и ускоряется + → ++ (более положительное) Положительное
      Движется вправо (+) и замедляется ++ → + (менее положительное) Отрицательное
      Движется влево (-) и ускоряется — → — (более отрицательное) Отрицательное
      Движется влево (-) и замедляется — → — (менее отрицательное) Положительное
      Движется с постоянной скоростью Не меняется Равно 0
  2. Изображение с названием Calculate Acceleration Step 10

    2

    Направление силы. Помните, что ускорение всегда сонаправлено силе, действующей на тело. В некоторых задачах даются данные, цель которых заключается в том, чтобы ввести вас в заблуждение.

    • Пример: игрушечная лодка массой 10 кг движется на север с ускорением 2 м/с2. Ветер, дующий в западном направлении, действует на лодку с силой 100 Н. Найдите ускорение лодки в северном направлении.
    • Решение: так как сила перпендикулярна направлению движения, то она не влияет на движение в этом направлении. Поэтому ускорение лодки в северном направлении не изменится и будет равно 2 м/с2.
  3. Изображение с названием Calculate Acceleration Step 11

    3

    Результирующая сила. Если на тело действуют сразу несколько сил, найдите результирующую силу, а затем приступайте к вычислению ускорения. Рассмотрим следующую задачу (в двумерном пространстве):

    Реклама

  • Владимир тянет (справа) контейнер массой 400 кг с силой 150 Н. Дмитрий толкает (слева) контейнер с силой 200 Н. Ветер дует справа налево и действует на контейнер с силой 10 Н. Найдите ускорение контейнера.
  • Решение: условие этой задачи составлено так, чтобы запутать вас. На самом деле все очень просто. Нарисуйте схему направления сил, так вы увидите, что сила в 150 Н направлена вправо, сила в 200 Н тоже направлена вправо, а вот сила в 10 Н направлена влево. Таким образом, результирующая сила равна: 150 + 200 — 10 = 340 Н. Ускорение равно: a = F/m = 340/400 = 0,85 м/с2.

Об этой статье

Эту страницу просматривали 190 401 раз.

Была ли эта статья полезной?

Равноускоренное
прямолинейное движение – движение по
прямой с постоянным ускорением (а = const
).

Ускорение
а (размерность: м/с2)
– векторная физическая величина,
показывающая, на сколько изменяется
скорость тела за 1 с.

В
векторном виде:

В
проекции на ось ОХ формула аналогичная

Знаки
проекции ускорения зависят от направления
вектора ускорения и оси – сонаправлены
они или направлены противоположно.

Измерительный
прибор – акселерометр. (В
ЕГЭ по физике есть вопросы, каким прибором
что измеряют.)

График
ускорения
 –
зависимость проекции ускорения от
времени:

График
ускорения при равноускоренном
прямолинейном
 движении –
прямая, параллельная оси времени (1,
2).

Чем
дальше график от оси времени (2), тем
больше модуль ускорения.

Мгновенная
скорость – скорость в данный момент
времени или
в данном месте пространства.

Скорость
при равноускоренном прямолинейном
движении.

В
векторном виде,

в проекции на ось OX,

с
учетом знака ускорения («+» разгон, «-»
торможение):

График
мгновенной скорости – зависимость
проекции скорости от времени.

График
скорости при равноускоренном
прямолинейном
 движении –
прямая (1,
2, 3).
 Если
график располагается над осью времени,
то тело движется по направлению оси ОХ.

Чем
больше угол наклона графика (3), тем
больше модуль ускорения.

Если
график пересекает ось времени (2),
то на первом этапе тело тормозило, в
какой-то момент скорость его стала
равной нулю, и далее тело двигалось
ускоренно в противоположную сторону.

Геометрический
смысл перемещения

Модуль
перемещения при равноускоренном
прямолинейном движенииравен площади
трапеции под графиком скорости.

Формулы для
определения кинематических величин
равноускоренного прямолинейного
движения:

«Без
ускорения
»
и «без
времени
»
означает, что в этих формулах не фигурирует
ускорение и время, но это не значит, что
ускорение равно нулю. 

Цветом
выделены основные формулы,
остальные легко выводятся из них. 

Уравнение координаты при
равноускоренном прямолинейном движении
позволяет определить кинематические
величины равноускоренного прямолинейного
движения даже в тех случаях, когда
направление движения меняется:

5.2 Задача

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

В кинематической теории расстояние, скорость, ускорение, смещение и время являются фундаментальными понятиями для вывода уравнения движения в 2-мерном пространстве.

Как правило, расстояние, пройденное телом за единицу времени, дает скорость. Если скорость изменяется со временем во время движения, тело обладает термином ускорение. В этом посте, как скорость, ускорение расстояние связаны подробно, и мы узнаем, как найти скорость с ускорением и расстоянием.

Как найти скорость с учетом ускорения и расстояния?

Предположим, тело начинает двигаться с начальной скоростью, равной нулю. Тело движется с ускорением «а» и преодолевает расстояние «d» метров; тогда нам нужно найти скорость при котором тело движется. Теперь возникает вопрос, как найти скорость с ускорением и расстоянием?

Скорость показывает, насколько быстро объект может перемещаться на расстояние за определенный период времени.

Выражение дается

v=х/т

Но из рассмотрения уравнения

v = а * т

т=в/а

Подставляя значение t и переставляя, получаем

v=x/(v/а)

v2 = а * х

v = √ топор

Полученное выше уравнение применимо, если тело начинает двигаться из нулевая скорость а потом разгоняется. Тело движется с постоянным ускорением, преодолев расстояние d.

Используя общее выражение, мы можем найти скорость тела с помощью ускорение и расстояние с учетом или без учета времени.

как найти скорость с ускорением и расстоянием

Изображение, описывающее, как скорость с ускорением и расстоянием

Как найти скорость из ускорения и расстояния без учета времени?

Скорость тела всегда измеряется с помощью время принято телом пройти определенное расстояние. Если к тому времени не указано время, как найти скорость с ускорением и расстоянием?

Мы следуем двум методам, чтобы найти скорость с заданными ускорением и расстоянием. Обычно мы рассматриваем время в самом первом уравнении; исключив фактор времени, мы получим уравнение скорости без время.

Алгебраическим методом:

Чтобы вычислить скорость без учета времени, рассмотрим уравнение скорости с ускорением и временем,

v = а * т

Отношение пройденного расстояния и времени дает скорость тела. Он задается уравнением,

v=х/т

Где x — пройденное расстояние, а t — время, необходимое для преодоления расстояния d,

х/т=при

Подставляя значение v в первое уравнение; мы получили,

х = при2

Из кинематической теории, если скорость тела изменяется со временем, то мы берем среднее значение скорости;

х= в2/2

Но мы можем сказать, что t= v/a, подставляя в вышеприведенное уравнение

Решая и переставляя термины, мы получаем,

х=v2/2а

v2 = 2 оси

v=√2ax

Приведенное выше уравнение отвечает как найти скорость с ускорением и расстояние.

Методом интегрального исчисления:

Ускорение можно записать как,

а=дв/дт

Скорость — это не что иное, как производная по времени от расстояния, пройденного телом; это дается,

dt=dx/v

Подставляя значение dt в уравнение ускорения, получаем

а=вдв/дх

a dx = v dv Так как мы считали, что исходное тело обладает нулевая скорость, мы интегрируем приведенное выше уравнение с предельным нулем до максимального значения скорости и расстояния.

топор=v2/2

v2 = 2 топора

v=√2ax

Как найти скорость по графику ускорения и расстояния?

График зависимости ускорения от расстояния дает уравнение движение в течение определенного периода времени.

Площадь под ускорение – расстояние график дает квадрат скорости движущегося тела. Согласно определению ускорения, это производная второго порядка от расстояния, так что скорость будет в два раза больше площади.

График, показывающий, как найти скорость с учетом ускорения и расстояния

Например, график ускорения-смещения для тела, движущегося с постоянным ускорением, по истечении определенного времени тело замедляется и преодолевает определенное расстояние, приведенный ниже, скорость тела может быть рассчитана с помощью графика.

Как найти скорость с помощью графика ускорения и расстояния

Область, покрываемая рекламным графом, представляет собой треугольник; следовательно, площадь треугольника определяется выражением

А=1/2 чб

А=1/2 5*7

A = 17. 5 единиц

Скорость можно записать как

А=√2*площадь

А=√35

Потому что 2А = 35 единиц.

v = 5.91 м / с.

Как найти начальную скорость по ускорению и расстоянию?

Начальная скорость — скорость, с которой тело начинает движение.

Чтобы вычислить начальную скорость, мы должны рассмотреть основное уравнение скорости; это дается;

v=х/т

Таким образом, расстояние задается как; х = v * т

Здесь скорость не постоянна; следовательно, мы можем взять среднее значение скорости как

v=vi+vf/2

Итак, уравнение будет

х=vi+vf/2т

Но уравнение движения vf = Vi + at, подставив значение vf, мы получаем

х=vi+(vi+ат)/2т

х=2вi+ат/2т

х=2вi+at/2

2х = 2вit + в2

После преобразования приведенного выше уравнения,

vi = х/т – 1/2ат

Приведенное выше уравнение дает начальную скорость с ускорением и расстоянием.

Как найти конечную скорость по ускорению и расстоянию?

Конечная скорость — это скорость, достигаемая телом до того, как движение остановится из-за какого-либо препятствия.

Когда движущееся тело начинает ускоряться, это означает, что скорость изменилась. Это изменение скорости определяется начальной и конечной скоростью тела. Предположим, мы предоставили только начальную скорость, тогда как найти скорость с ускорением и расстоянием в конечной точке движения, будет дан ответ ниже.

Чтобы вывести уравнение для конечная скорость, рассмотрим движение автомобиля. Автомобиль движется с начальной скоростью vi, и через некоторое время t автомобиль начинает разгоняться. Автомобиль достигает ускорения «а» и преодолевает расстояние x.

Вывод можно сделать тремя способами

  • Алгебраическим методом
  • Расчетным методом
  • Графическим методом

Остановимся на детальном изучении трех указанных выше методов.

Алгебраическим методом:

Путь, пройденный телом, определяется выражением

х=vi+vf/2т

Скорость не постоянна; она изменяется с периодом времени, поэтому выберите усреднение скоростей.

Из кинематического уравнения движения имеем

vf = vi + при

Давайте изменим приведенное выше уравнение, чтобы получить время как

т = vf-vi/2а

Подставляя значение в первое уравнение,

х=vf-vi/2 Вf+vi/a

Вышеприведенное уравнение аналогично (a + b) (ab) = a2-b2, то искомое решение будет

х=vf-vi/2а

vf2— vi2 = 2 оси

vf2= Vi2 — 2ax

Полученное выше уравнение является требуемым уравнением конечной скорости. Мы можем еще больше упростить его, взяв квадратный корень с обеих сторон; мы получили

vf2=√(vi2-2акс)

Расчетным методом:

Мы знаем, что ускорение определяется первой производной скорости по времени t.

а=дв/дт

И скорость как

v=dx/dt

Перемножая оба уравнения крест-накрест, а затем интегрируя, выбирая предел от x = 0 до x = x и v = vi к v = vf мы получили;

vf2— vi2 = 2 оси

Изменение условий;

vf2= Vi2 — 2ax

Графическим методом:

График зависимости скорости от время может помогает найти конечную скорость тела.

Обычно расстояние, пройденное телом, можно определить, найдя область, покрытую телом. Используя эти доступные данные, мы можем рассчитать пройденное расстояние, чтобы можно было вычислить уравнение конечной скорости.

Как найти конечную скорость

Из приведенного выше графика площадь трапеции OABD дает расстояние, пройденное телом,

х=ОА+BD/2* ОД

OA — начальная скорость vi, BD — конечная скорость vf, OD — время, поэтому уравнение можно изменить как

х=vf+vi/2* т

Но мы знаем, что ]t = vf-vi/a

х=vi+vf/2* вf-vi/a

х=vf2-vi2/2а

vf2— vi2 = 2 оси

vf2= Vi2 — 2ax

Графическим методом получено требуемое уравнение конечной скорости.

Окончательное уравнение скорости на основе ускорения и расстояния может быть преобразовано для вычисления начальной скорости тела; это показано ниже:

vi2= Vf2 — 2ax

Как найти среднюю скорость с учетом ускорения и расстояния?

Если скорость продолжает меняться, то нам нужно найти среднюю скорость для описания движения.

Чтобы установить уравнение для средней скорости, мы должны знать начальную и конечную скорости. Но мы можем найти среднюю скорость, даже если начальная и конечная скорости неизвестны, зная ускорение и расстояние. Сообщите нам, как найти среднюю скорость.

Предположим, что автомобиль движется с начальной скоростью vi и поскольку он начинает ускоряться после прохождения некоторого расстояния xi и проходит расстояние xf при которой он имеет конечную скорость vf.

Расстояние, которое преодолевает тело — от xi до xf, т.е. на расстоянии xi, скорость тела vi, а в точке xf, скорость тела vf, тогда.

Общее выражение средней скорости дается как,

va=vi+vf/2

Уравнение движения для конечной скорости vf = Vi+ в

Подставляя в общее уравнение, имеем

va=vi+vi+в/2

va= 2 Вi+в/2

va=vi+1/2 в

Рассматривая исходное выражение для скорости, получаем

vi = x/t-1/2 при

va= x/t-1/2at+1/2 at

 Но t=√2x/a

Подставляя указанное выше выражение, получаем

va=х/√2х/а

Квадрат с обеих сторон, получаем

va2=x2/2x/в

va2= топор2/ 2x

va2= топор / 2

va=√ax/2

Вышеприведенное уравнение дает среднюю скорость движущегося тела.

Решенные задачи о том, как найти скорость через ускорение и расстояние

Приведено как найти скорость с ускорением и расстояние, если автомобиль движется с постоянным ускорением 12 м / с.2 и преодолевает расстояние 87 м и, следовательно, определяет время, за которое автомобиль преодолевает такое же расстояние.

Решение:

Приведенные данные — Расстояние, пройденное транспортным средством x = 87 м.

Ускорение автомобиля а = 12 м / с2.

Чтобы найти скорость автомобиля,

v = √ топор

v=√12*87

v=√1044

v = 32.31 м / с.

Из связи между скоростью, ускорением, расстоянием и временем мы получаем уравнение скорости.

v= х/т

т = х / v

т= 87/32.31

t = 2.69 с.

В гонке гонщик едет на байке с начальной скоростью 9 м / с. По истечении времени t скорость меняется, а ускорение составляет 3 м / с.2. Гонщик преодолевает дистанцию ​​10 м. рассчитать конечную скорость велосипеда для достижения заданного расстояния и, следовательно, найти среднюю скорость велосипеда.

Решение:

Уравнение для определения конечной скорости велосипеда имеет вид:

vf2= Vi2 — 2ax

vf2= (9) 2 — 2 (3 * 10)

vf2= 81 — 60

vf2= 21

vf = 4.58 м / с.

Средняя скорость определяется выражением

va=vi+vf/2

va=9+4.58/2

va= 13.58 / 2

v = 6.79 м / с.

Спортсмен бежит с начальной скоростью 10 м / с. Он преодолевает 10 м с постоянным ускорением 4 м / с.2. Найдите начальную скорость.

Решение:

Данные приведены для расчета — начальная скорость vi = 10 м / с.

Ускорение a = 4 м / с2.

Расстояние x = 10 м

vf2= Vi2 — 2ax

vf2= (10)2 — 2 (4 * 10)

vf2= 100 — 80

vf2= 100 — 80

vf2= 20

vf = 4.47 м / с.

Рассчитайте среднюю скорость движения частицы с ускорением 12 м / с.2 а расстояние, которое проходит частица, составляет 26 метров.

Решение:

Компания формула дает среднюю скорость для заданного ускорения и расстояния.

va=√ax/2

Приведены данные — Ускорение частицы а = 12 м / с.2.

Расстояние, пройденное частицей x = 26 м.

Подставляя заданные значения в уравнение

√12*26/2

va=√156

va = 12.48 м / с.

Автомобиль преодолевает расстояние 56 метров за 4 секунды. Ускорение автомобиля за указанное время составляет 2 м / с.2. Вычислите начальную скорость автомобиля.

Решение:

Дано — расстояние, пройденное автомобилем x = 56 м.

Автомобиль преодолевает расстояние xt = 4 с за время.

Разгон автомобиля a = 2 м / с2.

Начальная скорость автомобиля находится по формуле

vi = x/t-1/2 при

Подставляя данные значения в приведенное выше уравнение,

vi = 56/4-1/2*2*4

vi = 14 — 4

vi = 10 м / с.

Построен график ускорения и расстояния, затем на графике показано, как найти скорость с учетом ускорения и расстояния.

Расстояние, пройденное с ускорением, указанное на графике, образует трапецию, площадь трапеции определяется как

А=а+b/2*ч

Где a и b — смежная сторона трапеции, а h — высота.

Из приведенного выше графика

а = 4.5 единицы

b = 9 единиц

h = 4 шт.

Подставляя в данное уравнение,

А=(4.5+9/2)4

А = 27 шт.

Скорость задается как

v=√2*площадь

v=√2*27

v=√56

v = 7.34 м / с.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как составить смету по дизайну интерьеров
  • Как найти распаечную коробку под штукатуркой
  • Как исправить перекручивающиеся джинсы
  • Как составить задачу по математике 5 класс с уравнением
  • Как найти в инстаграме понравившиеся вам публикации

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии