Как через диагональ куба найти его сторону

как найти ребро куба, если известна диагональ

dnepr1

Светило науки — 9801 ответ — 46531 помощь

Примем ребро куба за а.
Диагональ d основания равна а√2.
Диагональ D куба — это гипотенуза треугольника, где катеты: диагональ  d основания и ребро куба a.
D = 
√(d²+a²) = √(2a²+a²) = √(3a²) = a√3.
Отсюда получаем: а = D/√3.

ramazanovramaz1

Светило науки — 3 ответа — 0 раз оказано помощи

если сторона куба равна х,
диагональ стороны куба равна корень из 2х квадрат.

теперь вычислить диагональ куба — гипотенуза прямоугольного треугольника со сторонами х и уже вычисленной стороной

Диагональ стороны куба является диагональю квадрата, который представляет собой грань куба. Исходя из этого, ребро куба может быть вычислено по формуле отношения диагонали стороны куба к корню из двух.
a=d/√2

Тогда площадь стороны куба, равная квадрату его ребра, будет рассчитываться как квадрат диагонали, деленный на два. Чтобы вычислить площадь боковой и полной поверхности куба, необходимо умножить полученное выражение на 4 или 6 соответственно.
S=a^2=d^2/2
S_(б.п.)=4a^2=(4d^2)/2=2d^2
S_(п.п.)=6a^2=(6d^2)/2=3d^2

Чтобы вычислить объем куба, нужно возвести его ребро в третью – кубическую – степень, для этого все выражение, полученное для ребра куба через диагональ его стороны, возводится в степень.
V=a^3=(d/√2)^3=d^3/(2√2)

Периметр куба равен ребру куба, умноженному на двенадцать. Подставив вместо ребра куба выражение через диагональ и сократив коэффициенты, получим следующую формулу для периметра:
P=12a=12d/√2=6√2 d

Диагональ куба через диагональ его стороны можно найти, используя теорему Пифагора, согласно которой квадрат диагонали куба равен сумме квадратов диагонали стороны и бокового ребра, соединенных в прямоугольный треугольник. (рис.2.1.)
a^2+d^2=D^2
D^2=d^2/2+d^2
D^2=(3d^2)/2
D=√(3/2) d

Чтобы вычислить радиус сферы, вписанной в куб, необходимо разделить на два ребро куба, то есть разделить на два корня из двух диагональ его стороны. Радиус сферы, описанной вокруг куба, в свою очередь равен половине диагонали куба, вместо которой также можно использовать полученное через диагональ стороны выражение. (рис.2.2.,2.3)
r=a/2=d/(2√2)
R=D/2=(√(3/2) d)/2

Длина ребра куба

  1. Главная
  2. /
  3. Математика
  4. /
  5. Геометрия
  6. /
  7. Длина ребра куба

Чтобы найти длину ребра куба воспользуйтесь нашим очень удобным онлайн калькулятором:

Онлайн калькулятор

Длина ребра куба через объём

Длина ребра куба через объём
Чему равна длина ребра куба, если:

объём Vкуба =

a =

0

Округление ответа:

Длина ребра куба через диагональ

Длина ребра куба через диагональ
Чему равна длина ребра куба, если:

диагональ d =

a =

0

Округление ответа:

Длина ребра куба через площадь поверхности куба

Длина ребра куба через площадь поверхности куба
Чему равна длина ребра куба, если:

Sпов =

a =

0

Округление ответа:

Теория

Как найти ребро куба зная его объём

Чему равна длина ребра куба a, если объём куба Vкуба:

Формула

a = 3Vкуба

Пример

Для примера, посчитаем чему равна длина ребра куба a, если его объём Vкуба = 8 см³:

a = 38 = 2 см

Как найти ребро куба зная его диагональ

Чему равна длина ребра куба a, если его диагональ d:

Формула

a = d 3

Пример

Для примера, посчитаем чему равна длина ребра куба a, если длина его диагонали d = 9 см:

a = 9 ⁄ 3 ≈ 9/1.732 ≈ 5.196 см

Как найти ребро куба через площадь поверхности

Чему равна длина ребра куба a, если площадь его поверхности Sпов:

Формула

a = Sпов6

Пример

Для примера, посчитаем чему равна длина ребра куба a, если площадь его поверхности Sпов = 150 см²:

a = 150 / 6 = 25 = 5 см

См. также

В публикации мы рассмотрим определение и основные свойства куба, а также формулы, касающиеся данной геометрической фигуры (расчет площади поверхности, периметра ребер, объема, радиуса описанного/вписанного шара и т.д.).

  • Определение куба

  • Свойства куба

    • Свойство 1

    • Свойство 2

    • Свойство 3

  • Формулы для куба

    • Диагональ

    • Диагональ грани

    • Площадь полной поверхности

    • Периметр ребер

    • Объем

    • Радиус описанного вокруг шара

    • Радиус вписанного шара

Определение куба

Куб – это правильный многогранник, все грани которого являются квадратами.

Куб

  • Вершины куба – это точки, являющиеся вершинами его граней.
    Всего их 8: A, B, C, D, A1, B1, C1 и D1.
  • Ребра куба – это стороны его граней.
    Всего их 12: AB, BC, CD, AD, AA1, BB1, CC1, DD1, A1B1, B1C1, C1D1 и A1D1.
  • Грани куба – это квадраты, из которого состоит фигура.
    Всего их 6: ABCD, A1B1C1D1, AA1B1B, BB1C1C, CC1D1D и AA1D1D.

Примечание: куб является частным случаем параллелепипеда или призмы.

Свойства куба

Свойство 1

Как следует из определения, все ребра и грани куба равны. Также противоположные грани фигуры попарно параллельны, т.е.:

  • ABCD || A1B1C1D1
  • AA1B1B || CC1D1D
  • BB1C1C || AA1D1D

Свойство 2

Диагонали куба (их всего 4) равны и в точке пересечения делятся пополам.

Пересечение диагоналей куба

  • AC1 = BD1 = A1C = B1D (диагонали куба).
  • О – точка пересечения диагоналей:
    AO = OC1 = BO = OD1 = A1O = OC = B1O = OD.

Свойство 3

Все двугранные углы куба (углы между двумя гранями) равны 90°, т.е. являются прямыми.

Прямой двугранный угол куба

Например, на рисунке выше угол между гранями ABCD и AA1B1B является прямым.

Формулы для куба

Примем следующие обозначения, которые будут использоваться далее:

  • a – ребро куба;
  • d – диагональ куба или его грани.

Диагональ

Длина диагонали куба равняется длине его ребра, умноженной на квадратный корень из трех.

Формула для расчета диагонали куба через длину его ребра

Диагональ грани

Диагональ грани куба равна его ребру, умноженному на квадратный корень из двух.

Формула для расчета диагонали грани куба через длину его ребра

Площадь полной поверхности

Площадь полной поверхности куба равняется шести площадям его грани. В формуле может использоваться длина ребра или диагонали.

Формула расчета площади полной поверхности куба через длину его ребра/диагонали

Периметр ребер

Периметр куба равен длине его ребра, умноженной на 12. Также может рассчитываться через диагональ.

Формула расчета периметра куба через длину его ребра/диагонали

Объем

Объем куба равен длине его ребра, возведенной в куб.

Формула расчета объема куба через длину его ребра/диагонали

Радиус описанного вокруг шара

Радиус шара, описанного около куба, равняется половине его диагонали.

Формула расчета радиуса шара описанного вокруг куба через длину его ребра/диагонали

Радиус вписанного шара

Радиус вписанного в куб шара равен половине длины его ребра.

Формула расчета радиуса вписанного в куб шара через длину его ребра/диагонали

Викториныч

20 марта, 19:42

Как найти ребро куба, если известна диагональ

  1. Радомира

    20 марта, 20:16


    0

    Если сторона куба равна х,

    диагональ стороны куба равна корень из 2 х квадрат.

    теперь вычислить диагональ куба — гипотенуза прямоугольного треугольника со сторонами х и уже вычисленной стороной

    • Комментировать
    • Жалоба
    • Ссылка
  2. Примем ребро куба за а.

    Диагональ d основания равна а√2.

    Диагональ D куба — это гипотенуза треугольника, где катеты: д иагональ d основания и ребро куба a.

    D = √ (d²+a²) = √ (2a²+a²) = √ (3a²) = a√3.

    Отсюда получаем: а = D / √3.

    • Комментировать
    • Жалоба
    • Ссылка

Найдите правильный ответ на вопрос ✅ «Как найти ребро куба, если известна диагональ …» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.

Смотреть другие ответы

Новые вопросы по математике

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти тангенс 360 градусов
  • Как найти девушку для содержания
  • Как найти большее основание трапеции если известна
  • Код ошибки 0х80071ас3 как исправить
  • Как составить развернутый план на произведение

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии