Изотермический процесс как найти по графику

Изопроцессы

  • Темы кодификатора ЕГЭ: изопроцессы — изотермический, изохорный, изобарный процессы.

  • Изотермический процесс

  • Графики изотермического процесса

  • Изобарный процесс

  • Графики изобарного процесса

  • Изохорный процесс

  • Графики изохорного процесса

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: изопроцессы — изотермический, изохорный, изобарный процессы.

На протяжении этого листка мы будем придерживаться следующего предположения: масса и химический состав газа остаются неизменными. Иными словами, мы считаем, что:

m = const, то есть нет утечки газа из сосуда или, наоборот, притока газа в сосуд;

mu = const, то есть частицы газа не испытывают каких-либо изменений (скажем, отсутствует диссоциация — распад молекул на атомы).

Эти два условия выполняются в очень многих физически интересных ситуациях (например, в простых моделях тепловых двигателей) и потому вполне заслуживают отдельного рассмотрения.

Если масса газа и его молярная масса фиксированы, то состояние газа определяется тремя макроскопическими параметрами: давлением, объёмом и температурой. Эти параметры связаны друг с другом уравнением состояния (уравнением Менделеева — Клапейрона).

Термодинамический процесс (или просто процесс) — это изменение состояния газа с течением времени. В ходе термодинамического процесса меняются значения макроскопических параметров — давления, объёма и температуры.

Особый интерес представляют изопроцессы — термодинамические процессы, в которых значение одного из макроскопических параметров остаётся неизменным. Поочерёдно фиксируя каждый из трёх параметров, мы получим три вида изопроцессов.

1. Изотермический процесс идёт при постоянной температуре газа: T = const.
2. Изобарный процесс идёт при постоянном давлении газа: p = const.
3. Изохорный процесс идёт при постоянном объёме газа: V = const.

Изопроцессы описываются очень простыми законами Бойля — Мариотта, Гей-Люссака и Шарля. Давайте перейдём к их изучению.

к оглавлению ▴

Изотермический процесс

Пусть идеальный газ совершает изотермический процесс при температуре T. В ходе процесса меняются только давление газа и его объём.

Рассмотрим два произвольных состояния газа: в одном из них значения макроскопических параметров равны p_1, V_1, T, а во втором — p_2, V_2, T. Эти значения связаны уравнением Менделеева-Клапейрона:

p_1V_1=frac{displaystyle m}{displaystyle mu vphantom{1^a}}RT,

p_2V_2=frac{displaystyle m}{displaystyle mu vphantom{1^a}}RT.

Как мы сказали с самого начала,масса m и молярная масса mu предполагаются неизменными.

Поэтому правые части выписанных уравнений равны. Следовательно, равны и левые части:

p_1V_1=p_2V_2. (1)

Поскольку два состояния газа были выбраны произвольно, мы можем заключить, что в ходе изотермического процесса произведение давления газа на его объём остаётся постоянным:

pV = const. (2)

Данное утверждение называется законом Бойля — Мариотта.

Записав закон Бойля — Мариотта в виде

p=frac{displaystyle const}{displaystyle V vphantom{1^a}}, (3)

можно дать и такую формулировку: в изотермическом процессе давление газа обратно пропорционально его объёму. Если, например, при изотермическом расширении газа его объём увеличивается в три раза, то давление газа при этом в три раза уменьшается.

Как объяснить обратную зависимость давления от объёма с физической точки зрения? При постоянной температуре остаётся неизменной средняя кинетическая энергия молекул газа, то есть, попросту говоря, не меняется сила ударов молекул о стенки сосуда. При увеличении объёма концентрация молекул уменьшается, и соответственно уменьшается число ударов молекул в единицу времени на единицу площади стенки — давление газа падает. Наоборот, при уменьшении объёма концентрация молекул возрастает, их удары сыпятся чаще и давление газа увеличивается.

к оглавлению ▴

Графики изотермического процесса

Вообще, графики термодинамических процессов принято изображать в следующих системах координат:

pV-диаграмма: ось абсцисс V, ось ординат p;
VT-диаграмма: ось абсцисс T, ось ординат V;
pT-диаграмма: ось абсцисс T, ось ординат p.

График изотермического процесса называется изотермой.

Изотерма на pV-диаграмме — это график обратно пропорциональной зависимости p=frac{displaystyle const}{displaystyle V vphantom{1^a}}.

Такой график является гиперболой (вспомните алгебру — график функции y=frac{displaystyle k}{displaystyle x vphantom{1^a}}). Изотерма-гипербола изображена на рис. 1.

Рис. 1. Изотерма на pV-диаграмме

Каждая изотерма отвечает определённому фиксированному значению температуры. Оказывается, что чем выше температура, тем выше лежит соответствующая изотерма на pVдиаграмме.

В самом деле, рассмотрим два изотермических процесса, совершаемых одним и тем же газом (рис. 2). Первый процесс идёт при температуре T_1, второй — при температуре T_2.

Рис. 2. Чем выше температура, тем выше изотерма

Фиксируем некоторое значение объёма V. На первой изотерме ему отвечает давление p_1, на второй — p_2 > p_1. Но при фиксированном объёме давление тем больше, чем выше температура (молекулы начинают сильнее бить по стенкам). Значит, T_2 > T_1.

В оставшихся двух системах координат изотерма выглядит очень просто: это прямая, перпендикулярная оси T (рис. 3):

Рис. 3. Изотермы на VT и pT-диаграммах

к оглавлению ▴

Изобарный процесс

Напомним ещё раз, что изобарный процесс — это процесс, проходящий при постоянном давлении. В ходе изобарного процесса меняются лишь объём газа и его температура.

Типичный пример изобарного процесса: газ находится под массивным поршнем, который может свободно перемещаться. Если масса поршня M и поперечное сечение поршня S, то давление газа всё время постоянно и равно

p=p_0 + frac{displaystyle Mg}{displaystyle S vphantom{1^a}},

где p_0 — атмосферное давление.

Пусть идеальный газ совершает изобарный процесс при давлении p. Снова рассмотрим два произвольных состояния газа; на этот раз значения макроскопических параметров будут равны p, V_1, T_1 и p, V_2, T_2.

Выпишем уравнения состояния:

pV_1=frac{displaystyle m}{displaystyle mu vphantom{1^a}}RT_1,

pV_2=frac{displaystyle m}{displaystyle mu vphantom{1^a}}RT_2.

Поделив их друг на друга, получим:

frac{displaystyle V_1}{displaystyle V_2 vphantom{1^a}}=frac{displaystyle T_1}{displaystyle T_2 vphantom{1^a}}.

В принципе, уже и этого могло бы быть достаточно, но мы пойдём немного дальше. Перепишем полученное соотношение так, чтобы в одной части фигурировали только параметры первого состояния, а в другой части — только параметры второго состояния (иными словами, «разнесём индексы» по разным частям):

frac{displaystyle V_1}{displaystyle T_1 vphantom{1^a}}=frac{displaystyle V_2}{displaystyle T_2 vphantom{1^a}}. (4)

А отсюда теперь — ввиду произвольности выбора состояний! — получаем закон Гей-Люссака:

frac{displaystyle V}{displaystyle T vphantom{1^a}}=const. (5)

Иными словами, при постоянном давлении газа его объём прямо пропорционален температуре:

V=const cdot T. (6)

Почему объём растёт с ростом температуры? При повышении температуры молекулы начинают бить сильнее и приподнимают поршень. При этом концентрация молекул падает, удары становятся реже, так что в итоге давление сохраняет прежнее значение.

к оглавлению ▴

Графики изобарного процесса

График изобарного процесса называется изобарой. На VT-диаграмме изобара V = const cdot T является прямой линией (рис. 4):

Рис. 4. Изобара на VT-диаграмме

Пунктирный участок графика означает, что в случае реального газа при достаточно низких температурах модель идеального газа (а вместе с ней и закон Гей-Люссака) перестаёт работать. В самом деле, при снижении температуры частицы газа двигаются всё медленнее, и силы межмолекулярного взаимодействия оказывают всё более существенное влияние на их движение (аналогия: медленный мяч легче поймать, чем быстрый). Ну а при совсем уж низких температурах газы и вовсе превращаются в жидкости.

Разберёмся теперь, как меняется положение изобары при изменении давления. Оказывается, что чем больше давление, тем ниже идёт изобара на VTдиаграмме.
Чтобы убедиться в этом, рассмотрим две изобары с давлениями p_1 и p_2 (рис. 5):

Рис. 5. Чем ниже изобара, тем больше давление

Зафиксируем некоторое значение температуры T. Мы видим, что V_2 < V_1. Но при фиксированной температуре объём тем меньше, чем больше давление (закон Бойля — Мариотта!).

Стало быть, p_2 > p_1.

В оставшихся двух системах координат изобара является прямой линией, перпендикулярной оси p(рис. 6):

Рис. 6. Изобары на pV и pT-диаграммах

к оглавлению ▴

Изохорный процесс

Изохорный процесс, напомним, — это процесс, проходящий при постоянном объёме. При изохорном процессе меняются только давление газа и его температура.

Изохорный процесс представить себе очень просто: это процесс, идущий в жёстком сосуде фиксированного объёма (или в цилиндре под поршнем, когда поршень закреплён).

Пусть идеальный газ совершает изохорный процесс в сосуде объёмом V. Опять-таки рассмотрим два произвольных состояния газа с параметрами p_1, V, T_1 и p_2, V, T_2. Имеем:

p_1V=frac{displaystyle m}{displaystyle mu vphantom{1^a}}RT_1,

p_2V=frac{displaystyle m}{displaystyle mu vphantom{1^a}}RT_2.

Делим эти уравнения друг на друга:

frac{displaystyle p_1}{displaystyle p_2 vphantom{1^a}}=frac{displaystyle T_1}{displaystyle T_2 vphantom{1^a}}.

Как и при выводе закона Гей-Люссака, «разносим» индексы в разные части:

frac{displaystyle p_1}{displaystyle T_1 vphantom{1^a}}=frac{displaystyle p_2}{displaystyle T_2 vphantom{1^a}}. (7)

Ввиду произвольности выбора состояний мы приходим к закону Шарля:

frac{displaystyle p}{displaystyle T vphantom{1^a}}=const. (8)

Иными словами, при постоянном объёме газа его давление прямо пропорционально температуре:

p=const cdot T. (9)

Увеличение давления газа фиксированного объёма при его нагревании — вещь совершенно очевидная с физической точки зрения. Вы сами легко это объясните.

к оглавлению ▴

Графики изохорного процесса

График изохорного процесса называется изохорой. На pT-диаграмме изохора p = const cdot T является прямой линией (рис. 7):

Рис. 7. Изохора на pT-диаграмме

Смысл пунктирного участка тот же: неадекватность модели идеального газа при низких температурах.

Далее, чем больше объём, тем ниже идёт изохора на pTдиаграмме (рис. 8):

Рис. 8. Чем ниже изохора, тем больше объём

Доказательство аналогично предыдущему. Фиксируем температуру T и видим, что p_2 < p_1. Но при фиксированной температуре давление тем меньше, чем больше объём (снова закон Бойля — Мариотта). Стало быть, V_2 > V_1.

В оставшихся двух системах координат изохора является прямой линией, перпендикулярной оси V(рис. 9):

Рис. 9. Изохоры на pV и VT-диаграммах

Законы Бойля — Мариотта, Гей-Люссака и Шарля называются также газовыми законами.

Мы вывели газовые законы из уравнения Менделеева — Клапейрона. Но исторически всё было наоборот: газовые законы были установлены экспериментально, и намного раньше. Уравнение состояния появилось впоследствии как их обобщение.

Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Изопроцессы» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
08.05.2023

Содержание:

Изотермический, изобарный и изохорный процессы:

Свойство газов существенно изменять предоставленный им объём широко используют в тепловых двигателях. Анализируя процессы, происходящие с газом в этих устройствах, важно знать, каким законам подчиняются газы и каковы условия применимости этих законов.

Процессы в газах часто происходят так, что изменяются только два параметра из пяти Изопроцессы в физике - формулы и определение с примерами

Изотермический процесс

Процесс изменения состояния физической системы при постоянной температуре Изопроцессы в физике - формулы и определение с примерами называют изотермическим.

Если при переходе из начального состояния в конечное масса и молярная масса идеального газа не изменяются, то из уравнения Клапейрона—Менделеева следует:
Изопроцессы в физике - формулы и определение с примерами
 

Давление данной массы газа при постоянных молярной массе и температуре обратно пропорционально его объёму.

Это утверждение называют законом Бойля—Мариотта.

Справедливость закона Бойля—Мариотта можно продемонстрировать экспериментально, используя установку, представленную на рисунке 18 в § 5.

Если медленно изменять объём газа, находящегося в сосуде, то вследствие теплообмена с окружающей средой можно поддерживать температуру газа в сосуде практически постоянной. При этом уменьшение объёма газа при вращении винта 3 повлечёт за собой увеличение его давления и некоторое незначительное увеличение температуры. И наоборот, увеличение объёма приведёт к уменьшению давления и некоторому незначительному уменьшению температуры газа*.

* Незначительное изменение температуры газа принципиально необходимо для теплообмена с термостатом — передача тепла возможна только при разных температурах тел.

График изотермического процесса, совершаемого идеальным газом, в координатах Изопроцессы в физике - формулы и определение с примерами представляет собой гиперболу (рис. 22). В физике такую кривую называют изотермой. Разным значениям температуры газа соответствуют разные изотермы. Согласно соотношениям (6.1) для одинаковых объёмов газов с одинаковыми количествами вещества и разными температурами чем больше давление, тем выше температура (рис. 22).

Изопроцессы в физике - формулы и определение с примерами

Многочисленные опыты показали, что исследованные газы подчиняются закону Бойля —Мариотта тем точнее, чем меньше их плотность. При значительном увеличении давления газа этот закон перестаёт выполняться.

Интересно знать:

Лёгкие расположены в грудной клетке, объём которой при дыхании периодически изменяется благодаря работе межрёберных мышц и диафрагмы. Когда грудная клетка расширяется, давление воздуха в лёгких становится меньше атмосферного, и воздух через воздухоносные пути устремляется в лёгкие — происходит вдох. При выдохе объём грудной клетки уменьшается, что вызывает уменьшение объёма лёгких. Давление воздуха в них становится выше атмосферного, и воздух из лёгких устремляется в окружающую среду.

Изобарный процесс

Процесс изменения состояния газа при постоянном давлении (р = const) называют изобарным.

В 1802 г. французский учёный Жозеф Гей-Люссак (1778-1850) рассмотрел этот процесс для воздуха, водорода, кислорода и азота.

Если при переходе из начального состояния в конечное масса и молярная масса газа не изменяются, то объём газа, как следует из уравнения Клапейрона—Менделеева:

Изопроцессы в физике - формулы и определение с примерами

Объём данной массы газа при постоянных молярной массе и давлении прямо пропорционален абсолютной температуре.

Это утверждение называют законом Гей-Люссака.

Справедливость закона Гей-Люссака можно продемонстрировать экспериментально, используя установку, представленную на рисунке 23. Жидкость в сосуде находится в тепловом равновесии с тонкой трубкой, заполненной воздухом, запертым капелькой масла. При увеличении температуры жидкости объём воздуха, находящегося в трубке под капелькой масла, возрастает и капелька движется вверх. При уменьшении температуры объём воздуха уменьшается — и капелька движется вниз.

Изопроцессы в физике - формулы и определение с примерами

Поскольку Изопроцессы в физике - формулы и определение с примерами то в координатах Изопроцессы в физике - формулы и определение с примерами график изобарного процесса, совершаемого идеальным газом, представляет собой прямую линию, продолжение которой проходит через начало координат (рис. 24). Эту линию называют изобарой.

Изопроцессы в физике - формулы и определение с примерами

Изобара реальных газов не может быть продлена до нулевого значения температуры (на графике пунктирная линия), потому что при низких температурах все газы существенно отличаются от модели «идеальный газ» и при дальнейшем уменьшении температуры превращаются в жидкости.

В одних и тех же координатах Изопроцессы в физике - формулы и определение с примерами можно построить несколько изобар, которые соответствуют разным давлениям данной массы идеального газа при неизменной молярной массе. Анализ соотношений (6.2) позволяет сделать вывод, что большему давлению соответствует меньший наклон изобары к оси температур (см. рис. 24).

Изохорный процесс

Процесс изменения состояния газа при постоянном объёме (V = const) называют изохорным.

Впервые этот процесс рассмотрел в 1787 г. французский учёный Жак Шарль (1746-1823)*.

* Несмотря на то что Шарль не опубликовал результаты своих исследований, история физики отдаёт приоритет открытия ему.

Если при переходе из начального состояния в конечное масса и молярная масса идеального газа не изменяются, то давление газа, как следует из уравнения Клапейрона—Менделеева:

Изопроцессы в физике - формулы и определение с примерами

Давление данной массы газа при постоянных молярной массе и объёме прямо пропорционально абсолютной температуре.

Это утверждение называют законом Шарля.

Изопроцессы в физике - формулы и определение с примерами

Справедливость закона Шарля можно продемонстрировать экспериментально, используя установку, представленную на рисунке 25. Колба, наполненная воздухом и соединённая с манометром, находится в тепловом равновесии с жидкостью в сосуде. При увеличении температуры жидкости давление воздуха в колбе возрастает, а при уменьшении температуры — давление воздуха уменьшается.

В координатах Изопроцессы в физике - формулы и определение с примерами график изохорного процесса, совершаемого идеальным газом, представляет собой прямую линию, продолжение которой проходит через начало координат (рис. 26). Эту линию называют изохорой.

Изопроцессы в физике - формулы и определение с примерами

Как и в случае изобарного процесса, изохора реальных газов не может быть продлена до нулевого значения температуры.

В одних и тех же координатах Изопроцессы в физике - формулы и определение с примерами можно построить несколько изохор, соответствующих разным объёмам данной массы газа при неизменной моляр- О ной массе. Анализ соотношений (6.3) показывает, что большему объёму соответствует меньший наклон изохоры к оси температур (см. рис. 26).

Изопроцессы в физике - формулы и определение с примерами

Пример №1

На рисунке 28 представлен график трёх процессов изменения состояния некоторой массы идеального газа. Как изменялись параметры газа на участках Изопроцессы в физике - формулы и определение с примерамиИзопроцессы в физике - формулы и определение с примерами Изобразите эти процессы в координатах Изопроцессы в физике - формулы и определение с примерами

Изопроцессы в физике - формулы и определение с примерами

Решение. На участке Изопроцессы в физике - формулы и определение с примерами объём газа прямо пропорционален абсолютной температуре, следовательно, процесс перехода газа из состояния 1 в состояние 2 является изобарным. Из графика следует, что в состоянии 2 температура и объём газа больше в 4 раза, чем в состоянии 1. Следовательно, в процессе изобарного расширения некоторой массы газа из состояния 1 в состояние 2 температура и объём газа увеличились. Это можно записать таким образом:

переход  Изопроцессы в физике - формулы и определение с примерами
происходит изобарное нагревание газа.

В процессе перехода газа из состояния 2 в состояние 3 остаётся постоянным объём (процесс изохорный), а температура газа уменьшается в 4 раза. Из соотношения (6.3) следует, что при изохорном охлаждении давление газа уменьшается пропорционально его абсолютной температуре. Поэтому можно записать:
переход Изопроцессы в физике - формулы и определение с примерами
происходит изохорное охлаждение газа.

Процесс перехода газа из состояния 3 в состояние 1 — изотермический. При этом объём газа уменьшается в 4 раза, что влечёт за собой, согласно закону Бойля—Мариотта, увеличение давления газа в 4 раза:

  • переход Изопроцессы в физике - формулы и определение с примерами происходит изотермическое сжатие газа.

Опираясь на сделанные выводы, представим все три процесса в координатах Изопроцессы в физике - формулы и определение с примерами (рис. 29, а, б).
Изопроцессы в физике - формулы и определение с примерами

Пример №2

При изотермическом расширении идеального газа определённой массы его объём увеличился от Изопроцессы в физике - формулы и определение с примерами а давление уменьшилось на Изопроцессы в физике - формулы и определение с примерами Определите первоначальное давление газа.

Изопроцессы в физике - формулы и определение с примерами

Решение. Так как температура и масса газа не изменяются, то его начальное и конечное состояния связаны законом Бойля—Мариотта, т. е. Изопроцессы в физике - формулы и определение с примерами С учётом того, что Изопроцессы в физике - формулы и определение с примерами получим:

Изопроцессы в физике - формулы и определение с примерами

Откуда

Изопроцессы в физике - формулы и определение с примерами

Ответ: Изопроцессы в физике - формулы и определение с примерами

Обобщение и систематизация определений:

Изопроцессы в физике - формулы и определение с примерами

Изопроцессы в физике - формулы и определение с примерами

  • Твердые тела и их свойства в физике
  • Строение и свойства жидкостей в физике
  • Испарение и конденсация в физике
  • Влажность воздуха в физике
  • Уравнение состояния идеального газа
  • Температура в физике
  • Парообразование и конденсация 
  • Тепловое равновесие в физике

        Изопроцессы в МКТ — это процессы, протекающие в газах с каким-нибудь неизменным параметром. Для начала мы рассмотрим газ, у которого постоянная масса и химический состав. То есть в газе не меняется количество вещества ν . В этом случае мы можем упростить уравнение Менделеева-Клайперона.

    [p V=nu R T]

    [frac{p V}{T}  =  nu R]

    [frac{p V}{T}  =  operatorname{const}]

        Я не буду углубляться в названия газовых законов, вы это прочтете в учебниках. Займемся чистой математикой

        Итак, у нас есть некий  газ постоянной массы. Основные характеристики его состояния определяются   frac{p V}{T}  =  operatorname{const} . То есть, если мы будем на этот газ как-то воздействовать, меняя его характеристики, то

    [frac{p_1 V_1}{T_1}  =  frac{p_2 V_2}{T_2} = operatorname{const}]

        Получается, что все три его характеристики связаны.  Но можно рассмотреть случаи, когда один из этих компонентов не меняется. это и будут изопроцессы.  Посмотрим, как будут выглядеть графики изопроцессов в осях p(V),  p(T),  V(T).

        Теперь рассмотрим график конкретного циклического процесса, представленного на рисунке в координатах V-T :

АВ:   Изобара

P= const;   Vuparrow;   Tuparrow.

ВC:   Изохора

V= const;  Tuparrow Rightarrow  P uparrow.

CD:   Изобара

  P = const;   T downarrow   Rightarrow   V downarrow.

DA:   Изотерма

  T = const;    V uparrow   Rightarrow   P downarrow.

Стрелки заменяют слова «увеличивается» и «уменьшается. Отсюда можно смело говорить, что изобара АВ соответствует меньшему давлению, чем изобара CD. Тот же вывод можно сделать, если провести на графике изохору, как показано на рисунке1. При постоянном объеме бОльшей температуре соответствует бОльшее давление.

        А теперь можно построить этот же циклический процесс на графиках с другими координатами.

Обратите внимание, что значения в эти графики из риунка1 можно перенести только на оси температуры и объема. Значения для давления произвольные, но… ВС — изохора, следовательно, прямая, ей соответствующая, обязательно должна начинаться в нуле в осях Р-Т!  В осях P-V изотерма DA — кривая (гипербола)

Разбор некоторых задач  →

Для изотермического процесса характерен определенный процесс, который происходит с газовым веществом, который в свою очередь имеет неизменную массу и постоянную неизменяемую температуру вещества.

Изотермический процесс для температуры газа, основные формулы и величины

Формулы

Изотермический процесс характеризует состояние газа и данное состояние записывается следующими формулами:

[p_{1} V_{1}=v R T]

[p_{2} V_{2}=v R T]

Изотермический процесс для системы координат

Характерные изотермические процессы   зачастую отражают на термодинамических графиках и диаграммах.

Если рассмотреть подробно график можно увидеть линию, именно ее и принято называть изотермой. Она непосредственно является основной характеристикой процесса.

Изотермический процесс для системы координат

Изотермический процесс — закон Бойля-Мариотта

Разделим уравнение для второго состояния газа на выражение первого состояния и получим основное уравнение изотермического процесса.

[frac{p_{2} V_{2}}{p_{1} V_{1}}=1] или [p V=mathrm{const}] (постоянное значение)

Полученное уравнение и будет называться законом Бойля-Мариотта.

Данный процесс осуществляется с использованием тепловой энергии.

В случае, когда объем увеличивается, или отводится, для его уменьшения.

Составим первое значение термодинамики.

Затем постепенно получим уравнение для определения работы.

А также вычисления внутренней энергии и количества теплоты тела при изотермическом процессе.

[delta Q=d cup+d A=frac{i}{2} v R d T+p d V]

Температура является неизменной, поэтому, изменение значения внутренней энергии будет равняться нулевому значению. [(d cup=0)].

Из этого следует, что для изотермического процесса все подводимое тепло направлено  на работу, которую совершает газ:

[ Delta Q=int_{V_{1}}^{V_{2}} d A ]

где:

  • [delta Q] — тепло элементарного характера, которое подводится ко всей системе;
  • dA  — работа элементарного типа, совершаемая газом  в изотермическом процессе; 
  • i —  количество  свободных степеней  газовых молекул; 
  • R —   газовое значение постоянной; 
  • d —   значение молей для газа;
  • V1— первоначальное значение объема газа;
  • V2— окончательное значение объема газа.

[A=int_{V_{1}}^{V_{2}} p d V]

Давление газа, которое зависит от уравнения газа в идеальном состоянии.

[p V=v R T rightarrow p=frac{v R T}{V}]

Подставим вышеуказанное выражение в подынтегральное выражение:

[A=int_{V_{1}}^{V_{2}} frac{v R T}{V}=v R T int_{V_{1}}^{V_{2}} frac{d V}{V}=mathrm{u} R T ln left(frac{V_{2}}{V_{1}}right)]

Составленное уравнение необходимо  определения значения работы, которую совершает газ  в изотермическом процессе.

[ A=v R T ln left(frac{p_{1}}{p_{2}}right) ]

[ Delta Q=A ]

Нет времени решать самому?

Наши эксперты помогут!

Как найти изотермический процесс — примеры решения задач

Пример №1

Основное содержание задания: газ идеального состояния, имеет способность расширяется, имея постоянную температуру, от объема.

[V_{1}=0.2 mathrm{~m}^{3}]

[V_{2}=0.6 mathrm{~m}^{3}]

Известно  сила давления во втором состоянии и  оно равняется [p_{2}=1 cdot 10^{5} mathrm{Pi a}].

Определить:

  • Величину изменения внутренней энергии газа;
  • Значение работы, которую совершает газовое вещество в данном процессе;
  • Какое необходимое количество теплоты получает газ в процессе работы.

Методика решения:

Внутренняя энергия газа неизменна, так как процесс который рассматривается в задаче, является изотермическим:

[Delta mathrm{U}=0]

Из основного закона термодинамики можно определить:

[Delta cup=A]

[A=v R T ln left(frac{V_{2}}{V_{1}}right)]

Составим и запишем уравнение, которое отражает окончательное (конечное) состояние газа:

[p_{2} V_{2}=v R T rightarrow T=frac{p_{2} V_{2}}{v R}]

Подставим в уравнение для температуры вышеизложенные формулы и получим решение:

[A=v R frac{p_{2} V_{2}}{v R} ln left(frac{V_{2}}{V_{1}}right)=p_{2} V_{2} ln left(frac{V_{2}}{V_{1}}right) .]

Следовательно, все величины расположены в международной системе единиц (СИ), можно провести вычисления и определить неизвестные значения:

[A=0.6 cdot 10^{5} ln left(frac{0.6}{0.2}right)=0.6 cdot 10^{5} cdot 1.1=6.6 cdot 10^{4} text { (Дж) }]

Ответ задачи:

  • значение изменения внутренней энергии газа в рассматриваемой процессе равно нулевому значению.
  • работа, которая совершается в процессе газовым веществом равняется  [6,6 cdot 10^{4} text { Дж }].
  • Необходимое количество тепловой энергии равно: [6,6 cdot 10^{4} text { Дж }].

Пример №2

Задание: изображен график, где изменяется идеальное состояние массы газа равное m в координатных осях p (V).

Нужно перенесите данный процесс на координатные оси в p(T).

Пример решения задачи 1

На данном графике изображен круговой процесс.

Где:

  1. Прямая 1-2  является изотермическим процессом с константой [(T=text { cons } t)].  Следовательно  значение объема будет уменьшается [(mathrm{V} downarrow)],  а давления соответственно расти [(p uparrow)].
  2. Прямая 2-3  отражает изобарический процесс [(p=text { const })]

const). Для данного процесса характерно увеличение объема  [mathrm{V} uparrow] и  применяя закон Гей-Люссака,  увеличение [Т uparrow]

  • Прямая (отрезок) 3-1  является изохорным процессом объем будет постоянной величиной  [(mathrm{V}=text { const })], а  [p downarrow],а исходя из  закона Шарля [T downarrow].

Все перечисленные процессы изобразим на координатных осях  p(T).

Пример решения задачи 2

Изотермический процесс

Если в некотором
процессе не изменяются масса и температура
газа, то такой процесс называется
изотермическим.

При
const
T = const

P1V1 = P2V2
или
PV = const.

Полученное
PV = const
уравнение называется уравнением
изотермического процесса
.

Это уравнение
было получено английским физиком
Робертом Бойлем в 1662 году и французским
физиком Эдмоном Мариоттом в 1676г.

Уравнение
Р
1 / Р2 = V2 / V1
называется уравнением Бойля-Мариотта.

Состояние газа
характеризуется тремя макропараметрами:

P —
давлением,

V —
объёмом,

T —
температурой.

При графическом
изображении процесса можно указать
только два параметра, которые изменяются,
поэтому один и тот же процесс можно
представить в трёх координатных
плоскостях: (Р – V),
(
V – T),
(
P – T).

График изотермического
процесса называется изотермой. Изотерма,
изображенная в прямоугольной системе
координат (P – V),
по оси ординат которой отсчитывается
давление газа, а по оси абсцисс — его
объем, является гиперболой (рис.3).

Изотерма, изображенная
в прямоугольной системе координат
(V – T),
является прямой, параллельной оси
ординат (рис.4).

Изотерма, изображенная
в прямоугольной системе координат
(P – T),
является прямой, параллельной оси
ординат (рис.5).

Графики
изотермического процесса изображаются
так:


Рис.3


Рис.4


Рис.5

ИЗОХОРНЫЙ ПРОЦЕСС

Изохорным
процессом

называется процесс, протекающий при
постоянном объёме (V = const)
и при условии
m = const
и М = const.

При этих условиях
из уравнения состояния идеального газа
для двух значений температуры Т0
и Т следует:

P0V = m RT0

РV = МRT
или Р / Р
0 = Т / Т0

Для газа данной
массы отношение давления к температуре
постоянно, если объем газа не меняется.
При P1 / P= T1 / T2
(это
уравнение называется законом
Шарля), оно
применимо для изохорного процесса:
V
=
const.

Это уравнение
изохорного процесса.

Если V —
объем газа при абсолютной температуре
Т, V0 —
объем газа при
температуре 0С;
коэффициент а,
равный 1/273 K-1,
называемый температурным коэффициентом
объемного расширения газов, то уравнение
для изохорного процесса можно записать
как P = P× a ×T.

Кривая изохорного
процесса называется изохорой.

Изохора, изображенная
в прямоугольной
системе координат (
P – V),
по оси ординат которой отсчитывается
давление газа, а по оси абсцисс — его
объем, является прямой, параллельной
оси ординат (рис.6).

Изохора, изображенная
в прямоугольной
системе координат (
V – T),
является прямой, параллельной оси
абсцисс (рис.7).

Изохора, изображенная
в прямоугольной
системе координат (
P – T),
по оси ординат которой отсчитывается
давление газа, а по оси абсцисс — его
абсолютная температура, является прямой,
проходящей через начало координат
(рис.8).

Экспериментальным
путем зависимость давления газа от
температуры исследовал французский
физик Жак
Шарль
в
1787г.

Изохорный процесс
можно осуществить, например нагреванием
воздуха при постоянном объеме.

Графики изохорного
процесса изображаются так:


Рис. 6

Рис. 7


Рис. 8

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти последний бой в танках
  • Как исправить прикус зубов у собаки
  • Как составить опись печатей
  • У моего ребенка одно плечо выше другого как это исправить
  • Как найти модуль разности длин отрезков

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии