Исследование функции как найти точки разрыва

Нахождение точек разрыва функции является одним из обязательных моментов исследования на непрерывность. Для кого-то это может прозвучать непонятно, а для остальных будет слишком банально.

Но и тем, и другим не стоит делать поспешные выводы: материал этой темы действительно предельно прост, но вместе с тем для успешного решения практических задач потребуется осмыслить и запомнить несколько технических приемов и нюансов.

Наглядный график  точки разрыва функции

Как минимум необходимо понимать, что за «зверь» кроется под понятием предела функции. И конечно же, нужно уметь их решать. Не менее полезным станет понимание геометрического смысла, дополненное графиком — большинство задач подобного характера требуют построения чертежа после решения.

Точки разрыва функции

Определение точки разрыва

Как уже упоминалось, их поиск напрямую связан с темой непрерывности. Если говорить простым языком, то это не что иное, как координаты графика функции, в которых точки не соединяются между собой. Образуются «рваные области», которые и называют местом разрыва. Вообще, чтобы понять смысл, достаточно всего лишь взглянуть на рисунок:

Он более чем очевидно иллюстрирует определение понятия. Если функция прерывается в X0, то непрерывность в этом месте нарушена одним из двух возможных способов:

  • первый род;
  • второй род.

Задачи похожего типа, где необходимо находить точки разрыва, могут выступать не только, как один из этапов полного исследования на непрерывность, но и в качестве самостоятельных заданий. Чтобы определить их вид, потребуется отыскать предел для найденных значений. Поэтому, если вы еще не умеете их решать, самое время ненадолго отвлечься, чтобы изучить базовые основы.

К счастью, на практике это не так сложно — самый трудный этап заключается в приведении примера к одному из табличных. Остальные моменты легко запомнить. Не стоит забывать и о большом количестве сервисов, которые в несколько кликов выдадут значение предела любой сложности онлайн.

Классификация точек разрыва.

Точки разрыва первого и второго рода

Если функция не определена, но односторонние пределы имеют конечное значение, то ее относят к случаю первого рода. Который, в свою очередь, может иметь характеристику устранимого или конечного:

  • Точки устранимого разрыва функции. Значения вычислений обоих пределов для них равны. Но также имеется возможность «исправить ситуацию»: нахождения между двумя координатами такой, левый и правый пределы которой будут одинаковы, а сама она — соединит «порванный» участок, сделав график непрерывным.
  • Точки конечного разрыва первого родаскачок функции. Пределы могут быть вычислены, но в то же время не равны друг другу, и поэтому доопределение уравнения невозможно. Разница первого и второго называется скачком.

  • Точки разрыва второго рода отличаются тем, что вычисляемые пределы не просто различны по значению, но результат хотя бы одного из них обязательно должен быть равен бесконечности или несуществующему числу.

Точки разрыва функции - определение

Как найти точки разрыва функции

Если в условиях задачи не были даны координаты проверяемого отрезка, то процесс решения делится на несколько этапов. Для начала нужно найти область определенных значений, с которой в дальнейшем пойдет работа. После это вычисляются односторонние пределы функции. Полученные результаты необходимо будет сравнить, чтобы однозначно определить род и характеристику разрыва.

Точка разрыва

Рассмотрим более подробно каждый из этих моментов на примере нахождения нужных нам точек у конкретного примера f (y)=(y² — 25)/(y — 5):

  1. Областью определения называют множество значений, в котором существует функция. Здесь не нужны никакие сложные вычисления, достаточно взять лишь знаменатель. Если y=5, то он будет (5−5)=0 и, как всем известно, делить на него нельзя. Таким образом, получаем область допустимых y ∈ (-∞; 5) ∪ (5; +∞) и предполагаем, что наша y = 5 является точкой разрыва.
  2. Вычисление односторонних пределов. Это самая сложная для учеников часть, т. к. пределы не всегда бывают удобными для вычисления, да не все на них «собаку съели». Но в этом случае функцию можно значительно упростить еще до начала вычисления: f (y) = (y ²-25)/(y — 5) = ((y-5)(y+5)) /(y — 5) = y+5. Никогда не пренебрегайте такой возможностью, если она есть. Заметим, что новая функция непрерывна при любом численном значении, т. ч. по всем математическим правилам пределы будут равны: lim (y + 5) = 5 + 5 = 10.
  3. Проверяя совпадение результатов, мы выяснили, что левый и правый предел функции в точке y=5 одинаковые. Но вместе с тем функция f(y) не может быть определена в этой координате, иначе ее знаменатель обращается в ноль, что невозможно по условиям. Следовательно, она действительно является разрывом, а именно: устранимым и первого рода.

Видео

Из этого видео вы узнаете, как исследовать непрерывность функции.

Содержание:

Непрерывность функций и точки разрыва

Непрерывность функции

Определение: Функция Непрерывность функций и точки разрыва с примерами решения

  • — она определена в этой точке и ее некоторой Непрерывность функций и точки разрыва с примерами решения-окрестности;
  • — существуют конечные лево- и правосторонние пределы от функции в этой точке и они равны между собой, т.е.

Непрерывность функций и точки разрыва с примерами решения

— предел функции в точке Непрерывность функций и точки разрыва с примерами решения равен значению функции в исследуемой точке, т.е. Непрерывность функций и точки разрыва с примерами решения

Пример:

Найти область непрерывности функции Непрерывность функций и точки разрыва с примерами решения

Решение:

Данная функция непрерывна Непрерывность функций и точки разрыва с примерами решения так как в каждой точке указанного интервала функция определена, в каждой точке существуют конечные и равные лево- и правосторонние пределы, а предел функции в каждой точке равен значению функции в этой точке.

Замечание: Всякая элементарная функция непрерывна в области своего определения.

Точки разрыва

Определение: Точки, в которых не выполняется хотя бы одно из условий непрерывности функции, называются точками разрыва. Различают точки разрыва первого и второго родов.

Определение: Точкой разрыва I рода называется точка, в которой нарушается условие равенства лево- и правостороннего пределов, т.е.

Непрерывность функций и точки разрыва с примерами решения

Пример:

Доказать, что функция Непрерывность функций и точки разрыва с примерами решенияв точке Непрерывность функций и точки разрыва с примерами решения имеет разрыв первого рода.

Решение:

Нарисуем график функции в окрестности нуля (Рис. 64): Непрерывность функций и точки разрыва с примерами решенияРис. 64. График функции Непрерывность функций и точки разрыва с примерами решения Область определения функции: Непрерывность функций и точки разрыва с примерами решения т.е. точка Непрерывность функций и точки разрыва с примерами решения является точкой подозрительной на разрыв. Вычислим лево- и правосторонние пределы в этой точке: Непрерывность функций и точки разрыва с примерами решения Следовательно, в изучаемой точке данная функция терпит разрыв первого рода.

Замечание: По поводу точки разрыва I рода иначе говорят, что в этой точке функция испытывает конечный скачок (на Рис. 64 скачок равен 1).

Определение: Точка, подозрительная на разрыв, называется точкой устранимого разрыва, если в этой точке левосторонний предел равен правостороннему.

Пример:

Доказать, что функцияНепрерывность функций и точки разрыва с примерами решения имеет в точке Непрерывность функций и точки разрыва с примерами решения устранимый разрыв.

Решение:

В точке Непрерывность функций и точки разрыва с примерами решения функция имеет неопределенность Непрерывность функций и точки разрыва с примерами решения поэтому эта точка является точкой, подозрительной на разрыв. Вычислив в этой точке лево- и правосторонний пределы Непрерывность функций и точки разрыва с примерами решения убеждаемся, что данная точка является точкой устранимого разрыва.

Определение: Все остальные точки разрыва называются точками разрыва II рода.

Замечание: Для точек разрыва второго рода характерен тот факт, что хотя бы

один из односторонних пределов равен Непрерывность функций и точки разрыва с примерами решения т.е. в такой точке функция терпит бесконечный разрыв.

Пример:

Исследовать на непрерывность функцию Непрерывность функций и точки разрыва с примерами решения

Решение:

Найдем область определения этой функции: Непрерывность функций и точки разрыва с примерами решения т.е. точка

Непрерывность функций и точки разрыва с примерами решения является точкой подозрительной на разрыв. Вычислим лево- и правосторонние пределы в этой точке: Непрерывность функций и точки разрыва с примерами решения Так как левосторонний предел конечен, а правосторонний предел бесконечен, то в изучаемой точке данная функция терпит разрыв II рода.

Пример:

Исследовать на непрерывность функцию Непрерывность функций и точки разрыва с примерами решения

Решение:

Найдем область определения этой функции: Непрерывность функций и точки разрыва с примерами решения т.е. точка Непрерывность функций и точки разрыва с примерами решенияявляется точкой подозрительной на разрыв. Вычислим лево- и правосторонние пределы в этой точке: Непрерывность функций и точки разрыва с примерами решения Так как левосторонний и правосторонний пределы бесконечены, то в изучаемой точке данная функция терпит разрыв II рода.

Операции над непрерывными функциями

Теорема: Сумма (разность) непрерывных функций есть непрерывная функция.

Доказательство: Докажем приведенную теорему для суммы двух функций Непрерывность функций и точки разрыва с примерами решениякоторые определены в некоторой Непрерывность функций и точки разрыва с примерами решения-окрестности точки Непрерывность функций и точки разрыва с примерами решения в которой лево- и правосторонние пределы равны между собой. Так как функции Непрерывность функций и точки разрыва с примерами решениянепрерывны в некоторой Непрерывность функций и точки разрыва с примерами решения-окрестности точки Непрерывность функций и точки разрыва с примерами решения то выполняются равенства: Непрерывность функций и точки разрыва с примерами решения В силу того, что существуют конечные пределы обеих функций, то по теореме о пределе суммы двух функций имеем, что Непрерывность функций и точки разрыва с примерами решения Аналогично теорема доказывается для суммы (разности) любого конечного числа непрерывных функций. Нижеприведенные теоремы доказываются так же, как и теорема.

Теорема: Произведение непрерывных функций есть непрерывная функция.

Теорема: Частное двух непрерывных функций Непрерывность функций и точки разрыва с примерами решения при условии, что во всех точках общей области определения функция Непрерывность функций и точки разрыва с примерами решения, есть непрерывная функция.

Теорема: Сложная функция от непрерывных функций есть непрерывная функция.

  • Заказать решение задач по высшей математике

Схема исследования функции на непрерывность

Исследование функции на непрерывность проводят по следующей схеме:

Пример:

Исследовать на непрерывность функцию Непрерывность функций и точки разрыва с примерами решения

Решение:

Согласно схеме исследования функции на непрерывность имеем:

Непрерывность функций и точки разрыва с примерами решения

Рис. 65. Поведение графика функции Непрерывность функций и точки разрыва с примерами решения в малой окрестности точки разрыва второго рода Непрерывность функций и точки разрыва с примерами решения

Из рисунка видно, что график функции Непрерывность функций и точки разрыва с примерами решения —неограниченно приближается к вертикальной прямой Непрерывность функций и точки разрыва с примерами решения нигде не пересекая эту прямую.

Свойства непрерывных функций на отрезке (a; b)

Свойства непрерывных функций на отрезке Непрерывность функций и точки разрыва с примерами решения.

Определение: Замкнутый интервал Непрерывность функций и точки разрыва с примерами решения будем называть сегментом.

Приведем без доказательства свойства непрерывных функций на сегменте Непрерывность функций и точки разрыва с примерами решения.

Теорема: Если функция Непрерывность функций и точки разрыва с примерами решения непрерывна на сегменте Непрерывность функций и точки разрыва с примерами решения, то она достигает своего наименьшего (Непрерывность функций и точки разрыва с примерами решения) и наибольшего (Непрерывность функций и точки разрыва с примерами решения) значения либо во внутренних точках сегмента, либо на его концах.

Пример:

Привести примеры графиков функций, удовлетворяющих условиям теорем(см. Рис. 66).

Непрерывность функций и точки разрыва с примерами решения

Рис. 66. Графики функций, удовлетворяющих условиям теоремы.

Решение:

На графике а) функция достигает своего наименьшего Непрерывность функций и точки разрыва с примерами решения и наибольшего Непрерывность функций и точки разрыва с примерами решения значений на концах сегмента Непрерывность функций и точки разрыва с примерами решения На графике б) функция достигает своего наименьшего Непрерывность функций и точки разрыва с примерами решения и наибольшего значения Непрерывность функций и точки разрыва с примерами решения во внутренних точках сегмента Непрерывность функций и точки разрыва с примерами решения На графике в) функция достигает своего наименьшего значения Непрерывность функций и точки разрыва с примерами решения на левом конце сегмента Непрерывность функций и точки разрыва с примерами решения а наибольшего значения Непрерывность функций и точки разрыва с примерами решения во внутренней точке сегмента Непрерывность функций и точки разрыва с примерами решения

Тб. Если функция Непрерывность функций и точки разрыва с примерами решения непрерывна на сегменте Непрерывность функций и точки разрыва с примерами решения и достигает своего наименьшего (Непрерывность функций и точки разрыва с примерами решения) и наибольшего (Непрерывность функций и точки разрыва с примерами решения) значений, то для любого вещественного числа С, удовлетворяющего неравенству Непрерывность функций и точки разрыва с примерами решения, найдется хотя бы одна точка Непрерывность функций и точки разрыва с примерами решения такая, что Непрерывность функций и точки разрыва с примерами решения.

Пример:

Изобразить графики функций, удовлетворяющих условиям Тб (см. Рис. 67). Непрерывность функций и точки разрыва с примерами решения

Рис. 67. Графики функций, удовлетворяющих условиям Тб.

Теорема: Если функция Непрерывность функций и точки разрыва с примерами решения непрерывна на сегменте Непрерывность функций и точки разрыва с примерами решения и на его концах принимает значения разных знаков, то найдется хотя бы одна точка Непрерывность функций и точки разрыва с примерами решения такая, чтоНепрерывность функций и точки разрыва с примерами решения.

Пример:

Изобразить графики функций, удовлетворяющих условиям теоремы(см. Рис. 68).

Непрерывность функций и точки разрыва с примерами решения

Рис. 68. Графики функций, удовлетворяющих условиям теоремы.

На графике а) существует единственная точка, в которой выполняются условия теоремы. На графиках б) и в) таких точек две и четыре, соответственно. Однако в случаях б) и в) для удовлетворения условий теоремы надо разбивать сегмент на отдельные отрезки.

  • Точки разрыва и их классификация
  • Дифференциальное исчисление
  • Исследование функций с помощью производных
  • Формула Тейлора и ее применение
  • Векторное и смешанное произведения векторов
  • Преобразования декартовой системы координат
  • Бесконечно малые и бесконечно большие функции
  • Замечательные пределы

Точки разрыва функции

Назначение

Сервис предназначен для определения типа точек разрыва функции.

  • Шаг №1
  • Шаг №2
  • Видеоинструкция
  • Оформление Word

Решение сохраняется в формате MS Word

Классификация точек разрыва

Для точек разрыва принята следующая классификация.

  1. Точка разрыва первого рода Если в точке имеются конечные пределы, но они не равны f(x0+0)≠f(x0-0), то x0 называется точкой разрыва первого рода, при этом разрыв называют скачком функции.
  2. Точка разрыва второго рода Точками разрыва второго рода называются точки, в которых хотя бы один из односторонних пределов равен или не существует.
  3. Устранимая точка разрыва Точка x=x0 называется точкой устранимого разрыва, если f(x0+0)=f(x0-0)≠f(x0). Разрыв «устраним» в том смысле, что достаточно изменить (доопределить или переопределить) функцию и функция станет непрерывной в точке x0.

см. также Непрерывность функции: основные понятия и свойства (разрывы функции и их классификации с подробными примерами).

Пример №1. Установить непрерывность или определить характер точек разрыва. Нарисовать график функции f(x) в окрестностях этих точек:


Решение. Найдем точки разрыва функции внутри указанной области.

Находим переделы в точке x=1.





В этой точке функция терпит разрыв. Предел равен ∞, поэтому это точка разрыва II-го рода.

Находим переделы в точке x=0





В этой точке функция терпит разрыв. Пределы существуют, но не равны, поэтому это точка разрыва I-го рода.



Ответ: точка x1=1 является точкой разрыва II-го рода, точка x2=0 является точкой разрыва I-го рода.

Пример №2. Найти точки разрыва функции, если они существуют. Сделать чертеж.



Решение. Исследуем точку стыка промежутков x=π/2





В этой точке пределы существуют и они равны, поэтому функция в этой точке непрерывна.

Исследуем поведение функции на отрезке (π/2;π).





Пределы существуют, на указанном промежутке функция непрерывна.

Исследуем точку стыка промежутков x=π





В этой точке пределы существуют, но они разные, поэтому это точка разрыва I-го рода.

Исследуем поведение функции на отрезке (pi;∞).





Пределы существуют, на указанном промежутке функция непрерывна.



Ответ: Точка x=π является точкой разрыва I-го рода.

Пример №3. Найти точки разрыва функции и определить их тип.

Задать свои вопросы или оставить замечания можно внизу страницы в разделе Disqus.
Можно также оставить заявку на помощь в решении своих задач у наших проверенных партнеров (здесь или здесь).

Онлайн калькуляторы

На нашем сайте собрано более 100 бесплатных онлайн калькуляторов по математике, геометрии и физике.

Справочник

Основные формулы, таблицы и теоремы для учащихся. Все что нужно, чтобы сделать домашнее задание!

Заказать решение

Не можете решить контрольную?!
Мы поможем! Более 20 000 авторов выполнят вашу работу от 100 руб!

Точки разрыва функции

Классификация точек разрыва функции

Точка x=a называется точкой устранимого разрыва функции y=fleft( x right), если в этой точке односторонние пределы конечны и равны между собой, но не равны значению функции в этой точке; или функция в точке x=a не определена (рис. 1).

Рис. 1

    [fleft( a+0 right)=fleft( a-0 right)ne fleft( a right)vee not{exists },fleft( a right)]

Точка x=a называется точкой разрыва первого рода функции y=fleft( x right), если в этой точке односторонние пределы конечны и не равны между собой (рис. 2).

    [fleft( a+0 right)ne fleft( a-0 right)]

Рис. 2

Модуль разности значений односторонних пределов left| fleft( a+0 right)-fleft( a-0 right) right| называется скачком функции.

Пример. На рисунке 2 скачок функции равен left| 2-1 right|=2

Точка x=a называется точкой разрыва второго рода функции y=fleft( x right), если в этой точке, по крайней мере, один из односторонних пределов равен бесконечности или не существует (рис. 3).

Рис. 3

Примеры решения задач

Понравился сайт? Расскажи друзьям!

Содержание:

  • Определение точки разрыва
  • Точка разрыва первого рода
  • Точка разрыва второго рода
  • Точка устранимого разрыва
  • Примеры решения задач

Определение точки разрыва

Определение

Точка $a$, в которой нарушено хотя бы одно
из трех условий непрерывности функции, а именно:

  1. функция $f(x)$ определена в точке и ее окрестности;
  2. существует конечный предел функции $f(x)$
    в точке $a$;
  3. это предел равен значению функции в точке $a$,
    т.е. $lim _{x rightarrow a} f(x)=f(a)$

называется точкой разрыва функции.

Пример

Функция $y=sqrt{x}$ не определена в точке
$x=-1$, а значит, эта точка является точкой
разрыва указанной функции.

Точка разрыва первого рода

Определение

Если в точке $a$ существуют конечные
пределы $f(a-0)$ и
$f(a+0)$, такие, что
$f(a-0) neq f(a+0)$, то точка
$a$ называется точкой разрыва первого рода.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Функция $f(x)=left{begin{array}{l}{0, x>1} \ {1, x leq 1}end{array}right.$ в точке
$x=1$ имеет разрыв первого рода, так как

$f(1-0)=1$, а
$f(1+0)=0$

Точка разрыва второго рода

Определение

Если хотя б один из пределов $f(a-0)$ или
$f(a+0)$ не существует или равен бесконечности, то
точка $a$ называется точкой разрыва второго рода.

Пример

Для функции $y=frac{1}{x}$ точка
$x=0$ — точка разрыва второго рода, так как
$f(0-0)=-infty$ .

Точка устранимого разрыва

Определение

Если существуют
левый и правый пределы функции в точке и они равны друг другу, но не совпадают со значением
функции $f(x)$ в точке
$a$:
$f(a) neq f(a-0)=f(a+0)$ или функция
$f(x)$ не определена в точке
$a$, то точка
$a$ называется точкой устранимого разрыва.

Пример

Рассмотрим функцию $f(x)=left{begin{array}{l}{3 x+1, x lt 0} \ {1-4 x, x>0} \ {e^{2}, x=0}end{array}right.$ .
Найдем односторонние пределы и значение функции в точке $x=0$:

$f(0)=e^{2}$

$f(0-0)=lim _{x rightarrow 0-} f(x)=lim _{x rightarrow 0-}(3 x+1)=1$

$f(0+0)=lim _{x rightarrow 0+} f(x)=lim _{x rightarrow 0+}(1-4 x)=1$

Так как $f(0-0)=f(0+0)$ и не равны значению функции в
точке, то точка $x=0$ — точка устранимого разрыва.

Примеры решения задач

Пример

Задание. Исследовать функцию $f(x)=left{begin{array}{l}{x^{2}, x lt 1} \ {(x-1)^{2}, 1 leq x leq 2} \ {3-x, x>2}end{array}right.$ на непрерывность.

Решение. Рассматриваемая функция определена и
непрерывна на промежутках
$(-infty ; 1)$,
$(1 ; 2)$ и
$(2 ;+infty)$, на которых она задана непрерывными
элементарными функциями $y_{1}(x)=x^{2}$,
$y_{2}(x)=(x-1)^{2}$ и
$y_{3}(x)=3-x$ соответственно. А тогда, разрыв возможен
только на концах указанных промежутков, то есть в точках
$x=1$ и
$x=2$ .

Найдем односторонние пределы и значение функции в каждой из точек.

1) Рассмотрим точку $x=1$ . Для нее

$f(1)=left.(x-1)^{2}right|_{x=1}=0$

$f(1-0)=lim _{x rightarrow 1-} f(x)=lim _{x rightarrow 1-} y_{1}(x)=lim _{x rightarrow 1-} x^{2}=1$

$f(1+0)=lim _{x rightarrow 1+} f(x)=lim _{x rightarrow 1+} y_{2}(x)=lim _{x rightarrow 1+}(x-1)^{2}=0$

Так как $f(1-0) neq f(1+0)$ , то в точке
$x=1$ функция терпит разрыв первого рода.

2) Для точки $x=2$ имеем:

$f(2)=left.(x-1)^{2}right|_{x=2}=1$

$f(2-0)=lim _{x rightarrow 2-} f(x)=lim _{x rightarrow 2-} y_{2}(x)=lim _{x rightarrow 2-}(x-1)^{2}=1$

$f(2+0)=lim _{x rightarrow 2+} f(x)=lim _{x rightarrow 2+} y_{3}(x)=lim _{x rightarrow 2+}(3-x)=1$

Так как односторонние пределы и значение функции в этой точке равны, то это означает, что в точке
$x=2$ функция непрерывна.

Ответ. В точке $x=1$ функция
терпит разрыв первого рода, а в точке $x=2$ непрерывна.

Пример

Задание. Исследовать функцию $y=e^{frac{1}{x-1}}$
на непрерывность в точках $x_{1}=1$ и
$x_{2}=0$ .

Решение. 1) Исследуем функцию на
непрерывность в точке
$x_{1}=1$:

$f(1-0)=lim _{x rightarrow 1-} e^{frac{1}{x-1}}=e^{-infty}=0$

$f(1+0)=lim _{x rightarrow 1+} e^{frac{1}{x-1}}=e^{+infty}=infty$

Так как один из односторонних пределов бесконечен, то точка $x_{1}=1$
точка разрыва второго рода.

2) Для точки $x_{2}=0$ получаем:

$f(0-0)=lim _{x rightarrow 0-} e^{frac{1}{x-1}}=e^{-1}=frac{1}{e}$

$f(0+0)=lim _{x rightarrow 0+} e^{frac{1}{x-1}}=e^{-1}=frac{1}{e}$

и значение функции в точке

$f(0)=e^{frac{1}{x-1}}=frac{1}{e}$

Таким образом, в точке $x_{2}=0$ заданная
функция является непрерывной.

Ответ. $x_{1}=1$
— точка разрыва второго рода, а в точке $x_{2}=0$
функция непрерывна.

Читать дальше: основные теоремы о непрерывности функций.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти подсобников в москве
  • Как найти человека по губам
  • Как составить жалобу на соседей в управляющую компанию образец
  • Как найти радиус на пересечении двух прямых
  • Как найти углы треугольника зная два угла

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии