Геометрическая прогрессия
Кусочек теории.
Геометрическая прогрессия — это последовательность чисел, не равных нулю, в которой каждый следующий член, начиная со второго, в одно и то же количество раз больше (или меньше) предыдущего.
Последовательность чисел 2; 4; 8; 16; 32; 64; … будет являться геометрической прогрессией, причем возрастающей, т.к. каждое следующее число больше предыдущего в 2 раза. В данном случае число 2 является знаменателем этой прогрессии.
Также геометрической прогрессией будет являться последовательность чисел 12; 6; 3; 1,5; 0,75; 0,375; … , причем убывающей, т.к. в ней числа уменьшаются в 2 раза. Но геометрическую прогрессию прежде всего связывают с умножением, поэтому правильнее сказать, что в последовательности числа увеличиваются в 0,5 раз. Здесь знаменателем будет число 0,5.
Знаменатель геометрической прогрессии обозначают буквой q. Если знаменатель не дан, то найти его можно делением текущего члена прогрессии на предыдущий:
Найти любой по счету член геометрической прогрессии можно, зная ее первый член и знаменатель. Запишем формулу n-ого члена:
Но необязательно знать именно первый член прогрессии. Пригодится может любое по счету число. Только тогда формула чутка изменится:
И держи третью формулу для нахождения n-ого члена геометрической прогрессии через предыдущий и последующий члены (правда по модулю)!
Помимо этих трех формул пригодится еще формула суммы:
Практика.
Задание 1.
Это задание можно решить без формул. Но если уж так хочется, то можно и по формулам, но мне вот не хочется)
Откинем пока минусы…
Если разделить 125 на 100, то мы увидим во сколько раз следующее число меньше предыдущего: в 1,25 раз. То же самое число получится, если 100 разделить на 80.
Найдем 4-ое число в этой последовательности: 80 : 1,25 = 64.
И 5-ое: 64 : 1,25 = 51,2.
Но не забываем, что знаки у чисел чередуются: четвертое число будет отрицательным, а пятое — положительным.
Ответ: 51,2.
Задание 2.
Опять знаки у чисел чередуются, значит число, спрятанное под иксом, будет отрицательным.
Не будем морочить голову формулами, пойдем задом наперед: разделим 4-ое число на 3-ое (найдем знаменатель прогрессии):
96 : 24 = 4 (знаки у чисел мы откинули временно).
Значит, чтобы найти икс надо 24 разделить на знаменатель 4 и взять результат с минусом.
Ответ: -6.
Задание 3.
По данной нам в условии задаче формуле можно сразу понять, что 2 — знаменатель прогрессии. Если это не понятно — вот доказательство:
Здесь схитрить не получится, поэтому используем формулу и находим b6.
Ответ: -192.
Задание 4.
Каждое следующее число в 4 раза больше предыдущего, значит знаменатель q равен 4.
Зная первый член прогрессии и знаменатель можно найти сумму первых шести членов (n = 6).
Ответ: 682,5.
Задание 5.
Похожее условие уже встречалось в задании 3. Из данной формулы делаем вывод, что знаменатель q = 3.
Находим сумму:
Ответ: -847.
Вот и всё!
С наилучшими пожеланиями, твой персональный препод)
Геометрической прогрессией называют числовую последовательность, каждый следующий член которой получается из предыдущего умножением его на постоянное число, не равное нулю.
Это число называют знаменателем геометрической прогрессии и обозначают буквой (q).
Например, последовательность (3); (6); (12); (24); (48)… является геометрической прогрессией, потому что каждый следующий элемент отличается от предыдущего в два раза (иначе говоря, может быть получен из предыдущего умножением его на два):
Как и любую последовательность, геометрическую прогрессию обозначают маленькой латинской буквой. Числа, образующие прогрессию, называют ее членами (или элементами). Их обозначают той же буквой, что и геометрическую прогрессию, но с числовым индексом, равным номеру элемента по порядку.
Например, геометрическая прогрессия (b_n = {3; 6; 12; 24; 48…}) состоит из элементов (b_1=3); (b_2=6); (b_3=12) и так далее. Иными словами:
порядковый номер элемента |
(1) |
(2) |
(3) |
(4) |
(5) |
… |
обозначение элемента |
(b_1) |
(b_2) |
(b_3) |
(b_4) |
(b_5) |
… |
значение элемента |
(3) |
(6) |
(12) |
(24) |
(48) |
… |
Если вы поняли вышеизложенную информацию, то уже сможете решить большинство задач на эту тему.
Пример (ОГЭ): Геометрическая прогрессия задана условиями (b_1=-2); (q=7). Найдите (b_4).
Решение:
|
Зная первый член и знаменатель, последовательно вычисляем элементы, пока не дойдем до нужного. |
|
Можно писать ответ. |
Ответ: (-686).
Пример (ОГЭ): Даны первые три члена прогрессии (324); (-108); (36)…. Найдите (b_5).
Решение:
|
Чтобы продолжить последовательность, нам нужно знать знаменатель. Найдем его из двух соседних элементов: на что нужно умножить (324), чтоб получилось (-108)? |
(324·q=-108) |
Отсюда без проблем вычисляем знаменатель. |
(q=-) (frac{108}{324})(=-) (frac{1}{3}) |
Теперь мы легко находим нужный нам элемент. |
|
Готов ответ. |
Ответ: (4).
Пример: Прогрессия задана условием (b_n=0,8·5^n). Какое из чисел является членом этой прогрессии:
а) (-5) б) (100) в) (25) г) (0,8) ?
Решение: Из формулировки задания очевидно, что одно из этих чисел точно есть в нашей прогрессии. Поэтому мы можем просто вычислять ее члены по очереди, пока не найдем нужное нам значение. Так как у нас прогрессия задана формулой n-го члена, то вычисляем значения элементов, подставляя разные (n):
(n=1); (b_1=0,8·5^1=0,8·5=4) – такого числа в списке нет. Продолжаем.
(n=2); (b_2=0,8·5^2=0,8·25=20) – и этого тоже нет.
(n=3); (b_3=0,8·5^3=0,8·125=100) – а вот и наш чемпион!
Ответ: (100).
Пример (ОГЭ): Даны несколько идущих последовательно друг за другом членов геометрической прогрессии …(8); (x); (50); (-125)…. Найдите значение элемента, обозначенного буквой (x).
Решение:
|
Найти (x), можно, например, умножив (8) на знаменатель прогрессии. Однако мы его не знаем, поэтому сначала найдем знаменатель из двух известных соседних членов. |
(50·q=-125) |
|
(q=-) (frac{125}{50})(=-)(2,5) |
Теперь вычисляем икс, умножая (8) на (-2,5). |
|
Задача решена. |
Ответ: (-20).
Пример (ОГЭ): Прогрессия задана условиями (b_1=7), (b_{n+1}=2b_n). Найдите сумму первых (4) членов этой прогрессии.
Решение:
(b_1=7), |
Мы знаем первый элемент и имеем рекуррентное соотношение — формулу для вычисления следующего элемента по предыдущему. |
|
(n=1); (b_{1+1}=2b_1 :: ⇔ :: b_2=2·7=14) |
Теперь найдем сумму. |
|
(S_4=b_1+b_2+b_3+b_4=) |
Ответ готов. |
Ответ: (105).
Пример (ОГЭ): Известно, что в геометрической прогрессии (b_6=-11), (b_9=704). Найдите знаменатель (q).
Решение:
|
Из схемы слева видно, что чтобы «попасть» из (b_6) в (b_9) – мы делаем три «шага», то есть три раза умножаем (b_6) на знаменатель прогрессии. Иными словами (b_9=b_6·q·q·q=b_6·q^3). |
(b_9=b_6·q^3) |
Подставим известные нам значения. |
(704=(-11)·q^3) |
«Перевернем» уравнение и разделим его на ((-11)). |
(q^3=) (frac{704}{-11})(::: ⇔ ::: )(q^3=-) (64) |
Какое число в кубе даст (-64)? |
(q=-4) |
Ответ найден. Его можно проверить, восстановив цепочку чисел от (-11) до (704). |
|
Все сошлось — ответ верен. |
Ответ: (-4).
Важнейшие формулы
Как видите, большинство задач на геометрическую прогрессию можно решать чистой логикой, просто понимая суть (это вообще характерно для математики). Но иногда знание некоторых формул и закономерностей ускоряет и существенно облегчает решение. Мы изучим две такие формулы.
Формула (n)-го члена: (b_n=b_1·q^{n-1}), где (b_1) – первый член прогрессии; (n) – номер искомого элемента; (q) – знаменатель прогрессии; (b_n) – член прогрессии с номером (n).
С помощью этой формулы можно, например, решить задачу из самого первого примера буквально в одно действие.
Пример (ОГЭ): Геометрическая прогрессия задана условиями (b_1=-2); (q=7). Найдите (b_4).
Решение:
(b_4=b_1·q^3) |
Нам нужен четвертый член, вот и вычисляем его сразу, напрямую, не находя всех промежуточных. |
|
(b_4=(-2)·7^3=(-2)·343=-686). |
Готов. |
Ответ: (-686).
Этот пример был простым, поэтому формула нам облегчила вычисления не слишком сильно. Давайте разберем задачку чуть посложнее.
Пример: Геометрическая прогрессия задана условиями (b_1=20480); (q=frac{1}{2}). Найдите (b_{12}).
Решение:
(b_{12}=b_1·q^{11}) |
Действуем как в предыдущей задаче. |
|
(b_4=20480·(frac{1}{2})^{11}=20480·frac{1}{2048}=10.) |
Есть ответ. |
Ответ: (10).
Конечно, возводить (frac{1}{2}) в (11)-ую степень не слишком радостно, но всё же проще чем (11) раз делить (20480) на два.
Сумма (n) первых членов: (S_n=)( frac{b_1·(q^n-1)}{q-1}), где (b_1) – первый член прогрессии; (n) – количество суммируемых элементов; (q) – знаменатель прогрессии; (S_n) – сумма (n) первых членов прогрессии.
Пример (ОГЭ): Дана геометрическая прогрессия (b_n), знаменатель которой равен (5), а первый член (b_1=frac{2}{5}). Найдите сумму первых шести членов этой прогрессии.
Решение:
(S_6=)( frac{b_1·(q^6-1)}{q-1}) |
Все данные есть, сразу вычисляем ответ. |
(S_6=)( frac{frac{2}{5}·(5^6-1)}{5-1})(=)( frac{frac{2}{5}·15624}{4})(=) |
Ответ готов. |
Ответ: (1562,4).
И вновь мы могли решить задачу «в лоб» – найти по очереди все шесть элементов, а затем сложить результаты. Однако количество вычислений, а значит и шанс случайной ошибки, резко возросли бы.
Для геометрической прогрессии есть еще несколько формул, которые мы не стали рассматривать тут из-за их низкой практической пользы. Вы можете найти эти формулы здесь.
Возрастающие и убывающие геометрические прогрессии
У рассмотренной в самом начале статьи прогрессии (b_n = {3; 6; 12; 24; 48…}) знаменатель (q) больше единицы и поэтому каждый следующий член больше предыдущего. Такие прогрессии называются возрастающими.
Если же (q) меньше единицы, но при этом положителен (то есть, лежит в пределах от нуля до единицы), то каждый следующий элемент будет меньше чем предыдущий. Например, в прогрессии (4); (2); (1); (0,5); (0,25)… знаменатель (q) равен (frac{1}{2}).
Эти прогрессии называются убывающими. Обратите внимание, что ни один из элементов такой прогрессии не будет отрицателен, они просто становятся всё меньше и меньше с каждым шагом. То есть, мы будем постепенно приближаться к нулю, но никогда его не достигнем и за него не перейдем. Математики в таких случаях говорят «стремиться к нулю».
Отметим, что при отрицательном знаменателе элементы геометрической прогрессии будут обязательно менять знак. Например, у прогрессии (5); (-15); (45); (-135); (675)… знаменатель (q) равен (-3), и из-за этого знаки элементов «мигают».
Смотрите также:
Числовая последовательность
Арифметическая прогрессия
Формулы геометрической прогрессии с примерами
Числовая последовательность
Если ты уже читал тему «Арифметическая прогрессия» ты можешь смело пропускать этот блок и переходить к самой сути.
Если нет, то советую ознакомиться, чтобы иметь общее представление о том, что такое прогрессия в целом и с чем ее едят.
Итак, сядем и начнем писать какие-нибудь числа. Например: ( displaystyle 4,text{ }7,text{ }-8,text{ }13,text{ }-5,text{ }-6,text{ }0,text{ }ldots )
Писать можно любые числа, и их может быть сколько угодно (в нашем случае их ( displaystyle 7)).
Сколько бы чисел мы не написали, мы всегда можем сказать, какое из них первое, какое – второе и так далее до последнего, то есть, можем их пронумеровать. Это и есть пример числовой последовательности:
Числовая последовательность – это множество чисел, каждому из которых можно присвоить уникальный номер.
Например, для нашей последовательности:
Присвоенный номер характерен только для одного числа последовательности. Иными словами, в последовательности нет трех вторых чисел. Второе число (как и ( displaystyle n)-ное число) всегда одно.
Число с номером ( displaystyle n) называетмя ( displaystyle n)-ным членом последовательности.
Всю последовательность мы обычно называем какой-нибудь буквой (например, ( displaystyle a)), и каждый член этой последовательности – той же буквой с индексом, равным номеру этого члена: ( displaystyle {{a}_{1}},text{ }{{a}_{2}},text{ }…,text{ }{{a}_{10}},text{ }…,text{ }{{a}_{n}}).
В нашем случае:
Самые распространенные виды прогрессии это арифметическая и геометрическая. В этой теме мы поговорим о втором виде – геометрической прогрессии.
Ограничения геометрической прогрессии
Первый член {( displaystyle {{b}_{1}})} не равен ( displaystyle 0) и ( displaystyle mathbf{q}text{ }ne text{ }0).
Эти ограничения не случайны!
Допустим, что их нет, и первый член прогрессии все же равен ( displaystyle 0), а q равно, хм.. пусть ( displaystyle 2), тогда получается:
( displaystyle {{b}_{1}}=0)
( displaystyle {{b}_{1}}=0cdot 2=0…) и так далее.
Согласись, что это уже никакая не прогрессия.
Как ты понимаешь, те же самые результаты мы получим, если ( displaystyle {{b}_{1}}) будет каким-либо числом, отличным от нуля, а ( displaystyle q=0).
В этих случаях прогрессии просто не будет, так как весь числовой ряд будут либо все нули, либо одно число, а все остальные нули.
Теперь поговорим поподробнее о знаменателе геометрической прогрессии, то есть о ( displaystyle q).
Знаменатель геометрической прогрессии
Повторим: ( displaystyle q) – это число, во сколько раз изменяется каждый последующий член геометрической прогрессии.
Как ты думаешь, каким может быть ( displaystyle q)? Правильно, положительным и отрицательным, но не нулем (мы говорили об этом чуть выше).
Допустим, что ( displaystyle q) у нас положительное. Пусть в нашем случае ( displaystyle q=3), а ( displaystyle {{b}_{1}}=4).
Чему равен второй член ( displaystyle {{b}_{2}}) и ( displaystyle {{b}_{3}})? Ты без труда ответишь, что:
( displaystyle {{b}_{2}}=4cdot 3=12)
( displaystyle {{b}_{3}}=12cdot 3=36)
Все верно. Соответственно, если ( displaystyle q>0), то все последующие члены прогрессии имеют одинаковый знак – они положительны.
А что если ( displaystyle q) отрицательное? Например, ( displaystyle q=-3), а ( displaystyle {{b}_{1}}=4). Чему равен второй член ( displaystyle {{b}_{2}}) и ( displaystyle {{b}_{3}})?
Это уже совсем другая история
( displaystyle {{b}_{2}}=4cdot -3=-12)
( displaystyle {{b}_{3}}=-12cdot left( -3 right)=36)
Попробуй посчитать ( displaystyle 4) член данной прогрессии. Сколько у тебя получилось? У меня ( displaystyle -108).
Таким образом, если ( displaystyle q<0), то знаки членов геометрической прогрессии чередуются.
То есть, если ты увидишь прогрессию, с чередующимися знаками у ее членов, значит ее знаменатель на ( displaystyle 100%) отрицательный.
Это знание может помочь тебе проверять себя при решении задач на эту тему.
Теперь немного потренируемся:
Пример 1. Попробуй определить, какие числовые последовательности являются геометрической прогрессией, а какие арифметической:
- ( displaystyle 3;text{ }6;text{ }12;text{ }24;text{ }48;text{ }56ldots )
- ( displaystyle 1;text{ }12;text{ }23;text{ }34;text{ }45text{ }ldots )
- ( displaystyle -99;text{ }33;text{ }-11ldots )
- ( displaystyle 5;text{ }7;text{ }9;text{ }11;text{ }13ldots )
- ( displaystyle -6;text{ }5;text{ }17;text{ }28;text{ }39ldots )
- ( displaystyle 64;text{ }16;text{ }4;text{ }1ldots )
- ( displaystyle 2;text{ }4;text{ }8;text{ }18ldots )
Разобрался? Сравним наши ответы:
- Геометрическая прогрессия – 3, 6.
- Арифметическая прогрессия – 2, 4.
- Не является ни арифметической, ни геометрической прогрессиями — 1, 5, 7.
Пример 2. Найти 6-й член прогрессии
Вернемся к нашей последней прогрессии ( displaystyle q=-3), а ( displaystyle {{b}_{1}}=4) и попробуем так же как и в арифметической найти ее ( displaystyle 6) член.
Как ты уже догадываешься, есть два способа его нахождения:
1-й способ. Последовательно умножаем каждый член на ( displaystyle q).
- ( displaystyle {{b}_{1}}=4)
- ( displaystyle {{b}_{2}}=4cdot left( -3 right)=-12)
- ( displaystyle {{b}_{3}}=-12cdot left( -3 right)=36)
- ( displaystyle {{b}_{4}}=36cdot left( -3 right)=-108)
- ( displaystyle {{b}_{5}}=-108cdot left( -3 right)=324)
- ( displaystyle {{b}_{6}}=324cdot left( -3 right)=-972)
Итак, ( displaystyle 6)-ой член описанной геометрической прогрессии равен ( displaystyle -972).
2-й способ. По формуле, которая поможет найти тебе любой член геометрической прогрессии.
( displaystyle {{b}_{6}}={{b}_{1}}cdot q{{ }^{6-1}})
Если нам нужно найти значение числа прогрессии с порядковым номером, то мы умножаем первый член геометрической прогрессии ( displaystyle {{b}_{1}}) на знаменатель ( displaystyle q) в степени, которая на ( displaystyle 1) единицу меньше, чем порядковый номер искомого числа.
( displaystyle {{b}_{6}}=4cdot {{left( -3 right)}^{6-1}}=4cdot {{left( -3 right)}^{5}}=-972)
Попробуем «обезличить» данную формулу – приведем ее в общий вид и получим:
( displaystyle {{b}_{n}}={{b}_{1}}cdot q{{ }^{n-1}}) — уравнение членов геометрической прогрессии, где
- n — порядковый номер члена прогрессии;
- b1 — первый член прогрессии;
- q — знаменатель.
Данная формула верна для всех значений — как положительных, так и отрицательных.
Как найти член геометрической прогрессии, зная два соседних. Формула в общем виде:
( displaystyle {{b}_{n}}=sqrt{{{b}_{n+1}}cdot {{b}_{n-1}}} ), при ( displaystyle n>2)
Не забывай про условие при ( displaystyle n>2)?
Подумай, почему оно важно, например, попробуй самостоятельно просчитать ( displaystyle {{b}_{n}} ), при ( displaystyle n=1). Что получится в этом случае?
Правильно, полная глупость так как формула выглядит так:
( displaystyle {{b}_{1}}=sqrt{{{b}_{1+1}}cdot {{b}_{1-1}}} )
Соответственно, не забывай это ограничение.
Возьмем, к примеру, простую геометрическую прогрессию, в которой нам известны ( displaystyle {{b}_{2}}=6) и ( displaystyle {{b}_{4}}=54).
И посчитаем, чему же равно ( displaystyle {{b}_{3}})
( displaystyle {{b}_{3}}=sqrt{6cdot 54}=sqrt{324}=…)
Правильный ответ – ( displaystyle {{b}_{3}}=pm 18)!
Теперь, когда ты усвоил основные моменты и вывел формулу на свойство геометрической прогрессии, найди ( displaystyle {{b}_{n}} ), зная ( displaystyle {{b}_{n+1}}) и ( displaystyle {{b}_{n-1}})
- ( displaystyle {{b}_{n+1}}=4), ( displaystyle {{b}_{n-1}}=36)
- ( displaystyle {{b}_{n+1}}=-3), ( displaystyle {{b}_{n-1}}=-12)
- ( displaystyle {{b}_{n+1}}=-2), ( displaystyle {{b}_{n-1}}=-32)
Сравни полученные ответы с правильными:
- ( displaystyle {{b}_{n}}=pm 12 )
- ( displaystyle {{b}_{n}}=pm 6 )
- ( displaystyle {{b}_{n}}=pm 8 )
Как найти равноудаленные члены геометрической прогрессии
Как ты думаешь, а если нам были бы даны не соседние с искомым числом значения членов геометрической прогрессии, а равноудаленные от него.
Например, нам необходимо найти ( displaystyle {{b}_{3}} ), а даны ( displaystyle {{b}_{1}} ) и ( displaystyle {{b}_{5}} ). Можем ли мы в этом случае использовать выведенную нами формулу?
Да! Формула работает не только при соседствующих с искомым членах геометрической прогрессии, но и с равноудаленными от искомого членами.
И она приобретает вид:
( displaystyle {{b}_{n}}=sqrt{{{b}_{n+k}}cdot {{b}_{n-k}}} ), при ( displaystyle k<n, kin N)
То есть, если в первом случае мы говорили, что ( displaystyle k=1), то сейчас мы говорим, что ( displaystyle k) может быть равен любому натуральному числу, которое меньше ( displaystyle n).
Главное, чтобы ( displaystyle k) был одинаков для обоих заданных чисел.
Потренируйся на конкретных примерах, только будь предельно внимателен!
Как найти неравноудаленные члены геометрической прогрессии
На самом деле это не так сложно, как кажется! Давай с тобой распишем, из чего состоит каждое данное нам и искомое числа.
( displaystyle {{b}_{3}}={{b}_{1}}cdot {{q}^{2}} )
( displaystyle {{b}_{6}}={{b}_{5}}cdot q={{b}_{1}}cdot {{q}^{5}} )
( displaystyle {{b}_{4}}={{b}_{3}}cdot q={{b}_{1}}cdot {{q}^{3}})
Итак, у нас есть ( displaystyle {{b}_{3}}) и ( displaystyle {{b}_{6}}). Посмотрим, что с ними можно сделать?
Предлагаю разделить ( displaystyle {{b}_{6}}) на ( displaystyle {{b}_{3}}). Получаем:
( displaystyle frac{{{b}_{6}}}{{{b}_{3}}}=frac{{{b}_{1}}cdot {{q}^{5}}}{{{b}_{1}}cdot {{q}^{2}}}={{q}^{3}})
Подставляем в формулу наши данные:
( displaystyle frac{{{b}_{6}}}{{{b}_{3}}}=frac{486}{18}=27)
Следующим шагом мы можем найти ( displaystyle q) – для этого нам необходимо взять кубический корень из полученного числа.
( displaystyle {{q}^{3}}=27 Rightarrow q=sqrt[3]{27}=3)
А теперь смотрим еще раз что у нас есть. У нас есть ( displaystyle {{b}_{3}}), а найти нам необходимо ( displaystyle {{b}_{4}}), а он, в свою очередь равен:
( displaystyle {{b}_{4}}={{b}_{3}}cdot q)
Все необходимые данные для подсчета мы нашли. Подставляем в формулу:
( displaystyle {{b}_{4}}=18cdot 3=54)
Наш ответ: ( displaystyle 54).
Попробуй решить еще одну такую же задачу самостоятельно:
Дано: ( displaystyle {{b}_{3}}=18), ( displaystyle {{b}_{5}}=648)
Найти: ( displaystyle {{b}_{2}})
Сколько у тебя получилось? У меня:
Получим:
( displaystyle {{S}_{n}}q={{b}_{1}}q+{{b}_{2}}q+{{b}_{3}}q+…+{{b}_{n-2}}q+{{b}_{n-1}}q+{{b}_{n}}q)
Посмотри внимательно: что общего в последних двух формулах? Правильно, общие члены, например ( displaystyle {{b}_{2}}={{b}_{1}}q) и так далее, кроме первого и последнего члена. Давай попробуем вычесть из 2-го уравнения 1-ое.
Что у тебя получилось?
( displaystyle {{S}_{n}}q-{{S}_{n}}={{b}_{n}}q-{{b}_{1}})
Теперь вырази ( displaystyle {{b}_{n}}) через формулу члена геометрической прогрессии и подставь полученное выражение в нашу последнюю формулу:
( displaystyle {{S}_{n}}q-{{S}_{n}}={{b}_{1}}{{q}^{n-1}}q-{{b}_{1}}={{b}_{1}}{{q}^{n}}-{{b}_{1}})
Сгруппируй выражение. У тебя должно получиться:
( displaystyle {{S}_{n}}(q-1)={{b}_{1}}({{q}^{n}}-1))
Все, что осталось сделать – выразить ( displaystyle {{S}_{n}}):
( displaystyle {{S}_{n}}=frac{{{b}_{1}}({{q}^{n}}-1)}{q-1}) или ( displaystyle {{S}_{n}}=frac{{{b}_{1}}(1-{{q}^{n}})}{1-q})
Соответственно, в этом случае ( displaystyle qne 1).
А что если ( displaystyle q=1)? Какая формула работает тогда? Представь себе геометрическую прогрессию при ( displaystyle q=1). Что она из себя представляет?
Правильно ряд одинаковых чисел, соответственно формула будет выглядеть следующим образом:
( displaystyle {{S}_{n}}=n{{b}_{1}})
Для начала запишем какую-нибудь геометрическую прогрессию, состоящую из ( displaystyle 5) членов.
Допустим, ( displaystyle {{b}_{1}}=1), а ( displaystyle q=frac{1}{2}), тогда:
- ( displaystyle {{b}_{2}}=1cdot frac{1}{2}=frac{1}{2})
- ( displaystyle {{b}_{3}}=frac{1}{2}cdot frac{1}{2}=frac{1}{4})
- ( displaystyle {{b}_{4}}=frac{1}{4}cdot frac{1}{2}=frac{1}{8})
- ( displaystyle {{b}_{5}}=frac{1}{8}cdot frac{1}{2}=frac{1}{16})
Мы видим, что каждый последующий член меньше предыдущего в ( displaystyle frac{1}{2}) раза, но будет ли какое-либо число ( displaystyle {{b}_{n}}=0)?
Ты сразу же ответишь – «нет». Вот поэтому и бесконечно убывающая – убывает, убывает, а нулем никогда не становится.
Чтобы четко понять, как это выглядит визуально, давай попробуем нарисовать график нашей прогрессии. Итак, для нашего случая формула ( displaystyle {{b}_{n}}={{b}_{1}}cdot q{{ }^{n-1}}) приобретает следующий вид:
( displaystyle {{b}_{n}}=1cdot {{left( frac{1}{2} right)}^{n-1}}={{left( frac{1}{2} right)}^{n-1}})
На графиках нам привычно строить зависимость ( displaystyle x) от ( displaystyle y), поэтому:
( displaystyle {{b}_{n}}=y(x)),
( displaystyle {{left( frac{1}{2} right)}^{n-1}}={{left( frac{1}{2} right)}^{x-1}})
Суть выражения не изменилась.
В первой записи у нас была показана зависимость значения члена геометрической прогрессии от его порядкового номера.
А во второй записи – мы просто приняли значение члена геометрической прогрессии за ( displaystyle y), а порядковый номер обозначили не как ( displaystyle n), а как ( displaystyle x).
Все, что осталось сделать – построить график. Посмотрим, что у тебя получилось. Вот какой график получился у меня:
Видишь?
Функция убывает, стремится к нулю, но никогда его не пересечет, поэтому она бесконечно убывающая.
Отметим на графике наши точки, а заодно и то, что обозначает координата ( displaystyle x) и ( displaystyle y):
Попробуй схематично изобразить график геометрической прогрессии при ( displaystyle q=2), если первый ее член также равен ( displaystyle 1).
Проанализируй, в чем разница с нашим предыдущим графиком?
Справился? Вот какой график получился у меня:
Сумма членов бесконечно убывающей геометрической прогрессии
Итак, для начала посмотрим еще раз на вот этот рисунок бесконечно убывающей геометрической прогрессии из нашего примера:
А теперь посмотрим на формулу суммы геометрической прогрессии, выведенную чуть ранее:
( displaystyle {{S}_{n}}=frac{{{b}_{1}}({{q}^{n}}-1)}{q-1}) или ( displaystyle {{S}_{n}}=frac{{{b}_{1}}(1-{{q}^{n}})}{1-q})
К чему у нас стремится ( displaystyle {{q}^{n}})? Правильно, на графике видно, что оно стремится к нулю.
То есть при ( displaystyle nto infty ), ( displaystyle {{q}^{n}}) будет почти равно ( displaystyle 0), соответственно, при вычислении выражения ( displaystyle 1-{{q}^{n}}) мы получим почти ( displaystyle 1).
В связи с этим, мы считаем, что при подсчете суммы бесконечно убывающей геометрической прогрессии, данной скобкой можно пренебречь, так как она будет равна ( displaystyle 1).
История возникновения геометрической прогрессии
Еще в древности итальянский математик Леонардо из Пизы (более известный под именем Фибоначчи) занимался решением практических нужд торговли.
Перед монахом стояла задача определить, с помощью какого наименьшего количества гирь можно взвесить товар?
В своих трудах Фибоначчи доказывает, что оптимальной является такая система гирь: ( displaystyle 1,text{ }2,text{ }4,text{ }8,text{ }16…)
Это одна из первых ситуаций, в которой людям пришлось столкнуться с геометрической прогрессией, о которой ты уже наверное слышал и имеешь хотя бы общее понятие.
Как только полностью разберешься в теме, подумай, почему такая система является оптимальной?
В настоящее время, в жизненной практике, геометрическая прогрессия проявляется при вложении денежных средств в банк под сложные проценты, или при оценке скорости распространения гриппа (или коронавируса), или при… создании финансовых пирамид!
Интересно? Давай разбираться.
Как быстро Вася заразит весь класс гриппом
Ученик 5 А класса Вася, заболел гриппом, но продолжает ходить в школу. Каждый день Вася заражает двух человек, которые, в свою очередь, заражают еще двух человек и так далее. Всего в классе ( displaystyle 31) человек.
Через сколько дней гриппом будет болеть весь класс?
Решение:
Итак, первый член геометрической прогрессии это Вася, то есть ( displaystyle 1) человек. ( displaystyle 2)-ой член геометрической прогрессии, это те два человека, которых он заразил в первый день своего прихода.
Общая сумма членов прогрессии равна количеству учащихся 5А.
Соответственно, мы говорим о прогрессии, в которой:
( displaystyle begin{array}{l}{{b}_{1}}=1\q=2\{{S}_{n}}=31end{array})
Подставим наши данные в формулу суммы членов геометрической прогрессии:
( displaystyle {{S}_{n}}=frac{{{b}_{1}}({{q}^{n}}-1)}{q-1})
( displaystyle 31=frac{1({{2}^{n}}-1)}{2-1}={{2}^{n}}-1)
( displaystyle begin{array}{l}{{2}^{n}}=31+1\{{2}^{n}}=32\{{2}^{n}}={{2}^{5}}\n=5end{array})
Весь класс заболеет за ( displaystyle 5) дней. Не веришь формулам и числам? Попробуй изобразить «заражение» учеников самостоятельно. Получилось?
Посчитай самостоятельно, за сколько дней ученики заболели бы гриппом, если каждый заражал бы по ( displaystyle 3) человека, а в классе училось ( displaystyle 26) человек.
Какое значение у тебя получилось? У меня получилось, что все начали болеть спустя ( displaystyle 3) дня.
Как ты видишь, подобная задача и рисунок к ней напоминает пирамиду, в которой каждый последующий «приводит» новых людей. Однако, рано или поздно настает такой момент, когда последние не могут никого привлечь.
В нашем случае, если представить, что класс изолирован, ( displaystyle 16) человек из ( displaystyle 31) замыкают цепочку (( displaystyle 51,6%)).
Таким образом, если бы ( displaystyle 31) человек были вовлечены в финансовую пирамиду, в которой деньги давались в случае, если ты приведешь двух других участников, то ( displaystyle 16) человек (( displaystyle {{b}_{5}}={{b}_{1}}{{q}^{4}}) или в общем случае ( displaystyle {{b}_{n}}={{b}_{1}}{{q}^{n}})) не привели бы никого, соответственно, потеряли бы все, что вложили в эту финансовую аферу.
Все, что было сказано выше, относится к убывающей или возрастающей геометрической прогрессии, но, как ты помнишь, у нас есть особый вид – бесконечно убывающая геометрическая прогрессия.
Как же считать сумму ее членов? И почему у данного вида прогрессии есть определенные особенности? Давай разбираться вместе.
Легенда о Сете, создателе шахмат
Узнав, что она изобретена одним из его подданных, царь решил лично наградить его. Он вызвал изобретателя к себе и приказал просить у него все, что он пожелает, пообещав исполнить даже самое искусное желание.
Сета попросил время на размышления, а когда на другой день Сета явился к царю, он удивил царя беспримерной скромностью своей просьбы. Он попросил выдать за первую клетку шахматной доски ( displaystyle 1) пшеничное зерно, за вторую ( displaystyle 2) пшеничных зерна, за третью ( displaystyle -4), за четвертую ( displaystyle -8) и т.д.
Царь разгневался, и прогнал Сета, сказав, что просьба слуги недостойна царской щедрости, но пообещал, что слуга получит свои зерна за все ( displaystyle 64) клетки доски.
А теперь вопрос: используя формулу суммы членов геометрической прогрессии, посчитай, сколько зерен должен получить Сета?
Начнем рассуждать.
Так как по условию за первую клетку шахматной доски Сета попросил ( displaystyle 1) пшеничное зерно, за вторую ( displaystyle 2), за третью ( displaystyle -4), за четвертую ( displaystyle -8) и т.д., то мы видим, что в задаче речь идет о геометрической прогрессии.
Чему равно ( displaystyle q) в этом случае? Правильно.
( displaystyle q=frac{2}{1}=frac{4}{2}=frac{8}{4}=2)
Всего клеток шахматной доски ( displaystyle 64). Соответственно, ( displaystyle n=64).
Все данные у нас есть, осталось только подставить в формулу и посчитать.
( displaystyle {{S}_{n}}=frac{1({{2}^{64}}-1)}{2-1}={{2}^{64}}-1)
Чтобы представить хотя бы приблизительно «масштабы» данного числа, преобразуем ( displaystyle {{2}^{64}}), используя свойства степени:
( displaystyle {{2}^{64}}={{2}^{10}}cdot {{2}^{10}}cdot {{2}^{10}}cdot {{2}^{10}}cdot {{2}^{10}}cdot {{2}^{10}}cdot {{2}^{4}})
Раскроем далее значения ( displaystyle {{2}^{10}}) и ( displaystyle {{2}^{4}}). Как ты знаешь, ( displaystyle {{2}^{10}}=1024), а ( displaystyle {{2}^{4}}=64).
Подставим данное значение в предыдущее выражение:
( displaystyle {{2}^{64}}=1024cdot 1024cdot 1024cdot 1024cdot 1024cdot 1024cdot 64)
Конечно, если ты хочешь, то можешь взять калькулятор и посчитать, что за число в итоге у тебя получится, а если нет, придется поверить мне на слово: итоговым значением выражения будет ( displaystyle 18~ 446~ 744~ 073~ 709~ 551~ 615).
То есть:
( displaystyle 18) квинтильонов ( displaystyle 446) квадрильонов ( displaystyle 744) триллиона ( displaystyle 73) миллиарда ( displaystyle 709) миллионов ( displaystyle 551) тысяч ( displaystyle 615).
Фух) Если желаете представить себе огромность этого числа, то прикиньте, какой величины амбар потребовался бы для вмещения всего количества зерна.
При высоте амбара ( displaystyle 4) м и ширине ( displaystyle 10) м длина его должна была бы простираться на ( displaystyle 300text{ }000text{ }000) км, — т.е. вдвое дальше, чем от Земли до Солнца.
Если бы царь был бы силен в математике, то он мог бы предложить самому ученому отсчитывать зерна, ведь чтобы отсчитать миллион зерен, ему бы понадобилось не менее ( displaystyle 10) суток неустанного счета, а учитывая, что необходимо отсчитать ( displaystyle 18) квинтильонов, зерна пришлось бы отсчитывать всю жизнь.
Задачи на вычисление сложных процентов
Ты наверняка слышал о так называемой формуле сложных процентов. Понимаешь ли ты, что она значит? Если нет, давай разбираться, так как осознав сам процесс, ты сразу поймешь, причем здесь геометрическая прогрессия.
Все мы ходим в банк и знаем, что существуют разные условия по вкладам: это и срок, и дополнительное обслуживание, и процент с двумя различными способами его начисления – простым и сложным.
С простыми процентами все более или менее понятно: проценты начисляются один раз в конце срока вклада.
То есть, если мы говорим о том, что мы кладем 100 рублей на год под ( displaystyle 10%), то ( displaystyle 10%) зачислятся только в конце года.
Соответственно, к окончанию вклада мы получим ( displaystyle 110) рублей.
Сложные проценты — это такой вариант, при котором происходит капитализация процентов, т.е. их причисление к сумме вклада и последующий расчет дохода не от первоначальной, а от накопленной суммы вклада.
Капитализация происходит не постоянно, а с некоторой периодичностью. Как правило, такие периоды равны и чаще всего банки используют месяц, квартал или год.
Допустим, что мы кладем все те же ( displaystyle 100) рублей по ( displaystyle 10%) годовых, но с ежемесячной капитализацией вклада. Что у нас получается?
( displaystyle 1) месяц — ( displaystyle 100cdot left( 1+frac{10}{100cdot 12} right))
Все ли тебе здесь понятно? Если нет, давай разбираться поэтапно.
Мы принесли в банк ( displaystyle 100) рублей. К концу месяца у нас на счете должна появиться сумма, состоящая из наших ( displaystyle 100) рублей плюс процентов по ним, то есть:
( displaystyle 100+100cdot x%)
Согласен?
Мы можем вынести ( displaystyle 100) за скобку и тогда мы получим:
( displaystyle 100+100cdot x%=100cdot left( 1+x% right))
Согласись, эта формула уже больше похожа на написанную нами в начале. Осталось разобраться с процентами
В условии задачи нам сказано про ( displaystyle 10%) годовых. Как ты знаешь, мы не умножаем ( displaystyle 100) на ( displaystyle 10) – мы переводим проценты в десятичные дроби, то есть:
( displaystyle 10%=frac{10}{100})
Верно? Сейчас ты спросишь, а откуда взялось число ( displaystyle 12)? Очень просто!
Повторюсь: в условии задачи сказано про ГОДОВЫЕ проценты, начисление которых происходит ЕЖЕМЕСЯЧНО.
Как ты знаешь, в году ( displaystyle 12) месяцев, соответственно, банк будет начислять нам в месяц ( displaystyle 12) часть от годовых процентов:
( displaystyle 10% ежегодно =frac{10}{100cdot 12} ежемесячно)
Осознал? А теперь попробуй написать, как будет выглядеть эта часть формулы, если я скажу, что проценты начисляются ежедневно.
Справился? Давай сравним результаты:
( displaystyle 10% ежегодно =frac{10}{100cdot 365} ежедневно)
Молодец!
Вернемся к нашей задаче: напиши, сколько будет начислено на наш счет на второй месяц, с учетом, что проценты начисляются на накопленную сумму вклада.
Вот, что получилось у меня:
( displaystyle 100cdot left( 1+frac{10}{100cdot 12} right)cdot left( 1+frac{10}{100cdot 12} right))
Я думаю, что ты уже заметил закономерность и увидел во всем этом геометрическую прогрессию.
Напиши, чему будет равен ее ( displaystyle 12) член, или, иными словами, какую сумму денежных средств мы получим в конце ( displaystyle 12) месяца.
Сделал? Проверяем!
Еще один тип задач на сложные проценты (о прибыли)
Компания «Звезда» начала инвестировать в отрасль в 2000 году, имея капитал ( displaystyle 5000) долларов. Каждый год, начиная с 2001 года, она получает прибыль, которая составляет ( displaystyle 100%) от капитала предыдущего года.
Сколько прибыли получит компания «Звезда» по окончанию 2003 года, если прибыль из оборота не изымалась?
Думаю, ты уже знаешь, как и что считать, но на всякий случай распишу подробно:
( displaystyle {{b}_{1}}=5000) — капитал компании «Звезда» в 2000 году.
( displaystyle {{b}_{2}}=5000cdot left( 1+frac{100%}{100} right)=5000cdot left( 1+1 right)=5000cdot 2=10000) — капитал компании «Звезда» в 2001 году.
( displaystyle {{b}_{3}}=5000cdot left( 1+frac{100%}{100} right)cdot left( 1+frac{100%}{100} right)=5000cdot 4=20000) — капитал компании «Звезда» в 2002 году.
( displaystyle {{b}_{4}}=5000cdot left( 1+frac{100%}{100} right)cdot left( 1+frac{100%}{100} right)cdot left( 1+frac{100%}{100} right)=5000cdot 8=40000) — капитал компании «Звезда» в 2003 году.
Либо мы можем написать кратко:
( displaystyle {{b}_{n}}={{b}_{1}}cdot q{{ }^{n-1}})
Для нашего случая:
( displaystyle {{b}_{1}}=5000)
( displaystyle n=4) — 2000 год, 2001 год, 2002 год и 2003 год.
( displaystyle q =2) — увеличивается на 100%, то есть в 2 раза.
Соответственно:
( displaystyle {{b}_{2003 года}}=5000cdot 2{{ }^{4-1}}=5000cdot {{2}^{3}}=5000cdot 8=40000) рублей
Заметь, в данной задаче у нас нет деления ни на ( displaystyle 12), ни на ( displaystyle 365), так как процент дан ЕЖЕГОДНЫЙ и начисляется он ЕЖЕГОДНО.
То есть, читая задачу на сложные проценты, обрати внимание, какой процент дан, и в какой период он начисляется, и только потом приступай к вычислениям.
Теперь ты знаешь о геометрической прогрессии все.
Бонус: Вебинар из нашего курса по подготовке к ЕГЭ по математике
Экономические задачи на вклады очень часто требуют знания геометрической прогрессии.
Эти задачи требуют также очень подробного и чёткого описания решения.
По сути, мы составляем математическую модель какой-то жизненной ситуации (например, связанной с банковскими вкладами или кредитами), и важно научиться ничего не пропускать при описании этой модели: описывать словами все введённые обозначения, обосновывать уравнения, которые мы записываем, и всё в таком духе.
Если не написать эти объяснения, вы гарантированно получите 0 баллов даже за правильно найденный ответ!
В этом видео мы узнаем, как работают вклады, научимся решать и, главное, правильно оформлять решение таких задач.
ЕГЭ №17. Экономическая задача. Вклады
План урока:
Геометрическая прогрессия
Сумма первых n членов геометрической прогрессии
Сумма бесконечно убывающей геометрической прогрессии
Геометрическая прогрессия
Изучим послед-ть
1, 2, 4, 8, 16, 32, 64, 128…
Здесь каждый следующее число больше предыдущего в 2 раза:
Подобные послед-ти именуют геометрическими прогрессиями. Они постоянно встречаются в реальной жизни в банковской сфере (при начислении процентов на вклад), при изучении демографических процессов и в ряде других дисциплин.
Из этого определения следует рекуррентная формула, которая задает геом. прог-сию:
где q – это какое-то постоянное число, которое называют знаменателем геометрической прогрессии. Так, в прог-сии
1, 2, 4, 8, 16, 32, 64, 128…
знаменатель равен 2. Чтобы найти его, достаточно поделить какой-нибудь член геометрической прогрессии на предыдущий, например:
или
Если q= 0, то и все числа послед-ти, начиная со второго, получатся равными нулю:
Такая послед-ть не представляет интерес для математиков, поэтому считается, что знаменатель q не должен равняться нулю.
Пример. Первое число геом. прог-сии z1 равно 10, а знаменатель q равен 3. Запишите первые пять чисел прог-сии.
Решение. Будем использовать рекуррентную формулу:
Итак, получаем послед-ть:
10, 30, 90, 270, 810…
Ответ: 10, 30, 90, 270, 810
Пример. Про геом. прог-сию известно, что v1 = 16, q = 0,5. Определите семь первых чисел прог-сии.
Решение: Снова используем рекуррентную формулу:
Пример. Геом. прог-сия начинается с числа 27, а знаменатель q = – 1. Запишите 4 первых числа прог-сии.
Решение. Используя рекуррентную формулу, можно записать:
Получили послед-ть:
27, -27, 27, -27
Ответ: 27, -27, 27, -27
Попытаемся вывести формулу n-ого члена геом. прог-сии. Пусть нам известны z1 и q. Тогда можно записать:
Легко заметить, что числа прог-сии вычисляются по формуле:
Докажем ее. Для этого необходимо использовать метод индукции. Очевидно, что формула справедлива для n = 1:
Здесь мы использовали тот факт, что любое число в нулевой степени равно единице, то есть q0 = 1.
Итак, мы доказали базис индукции. Теперь докажем ее шаг. Предположим, что формула работает для какого-то произвольного n = k:
Необходимо доказать, что (n + 1)-ый член вычисляется по формуле:
И действительно, используя рекуррентную формулу, можно получить:
Тем самым мы подтвердили справедливость формулы
Пример. Первое число послед-ти равно 5, а каждое следующее вдвое больше. Определите 15-тый член этой послед-ти.
Решение. Описанная послед-ть является геометрической, у которой z1 = 5, q = 2. Найдем ее 15 член:
Ответ: 81920.
Пример. Известно, что геом. прогрессия начинается с числа 6, а третий член – это число 216. Каким может быть второй этой прог-сии?
Решение. Сначала попробуем найти знаменатель прог-сии. Мы знаем, что z1 = 6, z3 = 216. Запишем формулу 2-его члена прогр-сии:
Получили квадратное уравнение. Решая его можем найти возможные значений q:
Получили два возможных значения знаменателя. Для каждого случая определим второй член прогр-сии:
при q = – 6 получаем z2 = z1•q = 6•(– 6) = – 36;
при q = 6 получаем z2 = z1•q = 6•6 = 36.
Ответ: – 6 или 6.
Пример. Вася решил положить 1 млн рублей на банковский вклад на 1 год. В банке «Золотой гном» ему предлагают доход в 25%, который выплатят в конце года. В банке «Слон» ему предлагают выплачивать каждый месяц по 2%. Какой из вариантов выгоднее для Васи?
Решение. Напомним, что получение дохода в 25% означает увеличение суммы вклада в 1 + 25/100 = 1,25 раза. Получение 2%-ого дохода означает увеличение суммы в 1 + 2/100 = 1,02 раза.
Посчитаем, сколько у Васи будет денег через год, если он выберет банк «Золотой гном»:
Во втором случае сумма будет увеличиваться в 1,02 раза каждый месяц. Если выписывать суммы, лежащие на вкладе в «Слоне», то получится геом. прог-сия, у которой знаменатель равен 1,02, а первый член – миллиону
Тогда сумма, лежащая на вкладе через 12 месяцев, составит
(Примечание.Величину 1,0212 можно посчитать на калькуляторе или компьютере.)
Получается, что второй вариант выгоднее, ведь он принесет Васе большую сумму денег.
Ответ: Лучше выбрать банк «Слон».
Пример. Дана геом. прог-сия, у которой z1 = 5, d = 3. Может ли в этой прог-сии находиться числа: 324; 405; 406?Также проверьте числа 123456789 и 5555555555.
Решение. Первый способ (простой, но требующий большого числа расчетов). Так как каждое следующее число в прог-сии больше предыдущего в 3 раза, то мы имеем дело с возрастающей последовательностью. Будем вычислять ее члены, пока не сможем получить число, большее 406:
Получили, что число 405 входит в прог-сию (z5 = 405), а числа 324 и 406 не входят в число первых 6 членов прог-сии. Однако, так как z6 = 1215 больше этих двух чисел, а каждый следующий член прог-сии ещё больше, то ясно, что 324 и 406 уже не встретятся в ней. Однако проверить таким способом длинные числа довольно тяжело.
Второй способ. Каждый член последовательности можно записать в виде
Напомним, что если один из множителей произведения делится нацело на какое-то число, то и всё произведение делится на это же число. Множитель 3n–1 делится на 3 (при n ≥2):
Число 5 делится само на себя. Следовательно, числа, входящие в эту геом. послед-ть, должны делится и на 3, и на 5.
Теперь проанализируем числа 1234546789 и 5555555555, используя признаки делимости на 3 и 5. Первое из них НЕ делится нацело на 5, так как заканчивается на 9. Число 5555555555 НЕ делится на 3, так как сумма его цифр не делится нацело на 3:
Значит, они не могут входить в геом. прог-сию.
Ответ: число 405 входит в прог-сию, а остальные – нет.
Сумма первых n членов геометрической прогрессии
Попытаемся вычислить сумму первых членов геом. прог-сии. Обозначим её как Sn:
Умножим обе части рав-ва на знаменатель прог-сии q:
Вспомним рекуррентную формулу:
Из нее следует, что
Тогда ур-ние (2) можно переписать так:
Теперь вычтем из (3) рав-во (1)
Обратите внимание – справа слагаемые z2, z3, z4… zn сначала идут со знаком «плюс», а потом – со знаком «минус». Это значит, что их можно сократить! Тогда справа останется разница zn+1– z1. Это связано с тем, что для слагаемых zn+1 и z1 не нашлось противоположного числа, чтобы сократиться. Можно записать:
Далее произведем замену zn+1 = z1•qn:
Если q– 1 ≠ 0, то можно поделить обе части рав-ва и получить окончательную формулу:
Отдельно рассмотрим случай, когда q– 1 = 0. Тогда полученная формула будет некорректной (будет получаться деление на ноль). Если q– 1 = 0, то q = 1. Это значит, что все члены прог-сии равны друг другу:
Тогда сумма n первых членов будет равна z1•n:
Пример. Найдите сумму первых шести членов геом. прог-сии, у которой z1 = 3, q = 2.
Решение. Используем формулу:
Ответ: 189.
Пример. Определите сумму первых пяти членов геом. послед-ти, у которой z1 =1 и q = 1/2.
Решение. Здесь в степень придется возводить дробь 1/2:
Ответ: 31/16
Сумма бесконечно убывающей геометрической прогрессии
Легко заметить, что если знаменателем геом. прог-сии – это положительное число, которое больше единицы, то прог-сия является убывающей послед-тью. Такие последовательности называют бесконечно убывающими геометрическими прогрессиями.
В качестве примера приведем послед-ть, у которой z1 = 1, q = 1/2:
Каждый ее член может быть рассчитан по формуле
Очевидно, что чем больше n, тем меньше zn, причем значение zn как бы стремится к нулю. Например, на компьютере можно посчитать, что
То, что величина (1/2)n–1 при больших n стремится к нулю, в математике записывается так:
Запись «lim» означает «предел», а символ «∞» означает бесконечность. Выражение читается так: «предел (1/2)n–1 при n, стремящемся к бесконечности, равен нулю». Мы не будем давать строгое определение понятия «предел», так как эта задача выходит за рамки элементарной математики и относится уже к математике высшей. Грубо говоря, предел – это то число, к которому выражение приближается как угодно близко, но не может его достигнуть. Так при – 1 <q< 1 выражение qn стремится к нулю, если n стремится к бесконечности:
Отобразим сумму первых n членов послед-ти
с помощью координатной прямой. Пусть в точке с координатой 0 находится точка B. Отложим от нее вправо точку А1 так, чтобы ВА1 =z1 = 1. Далее от точки А1 также вправо будем откладывать точку А2, но длина отрезка А1А2 будет уже вдвое меньше, то есть она составит 1/2. Будем и далее откладывать точки А3, А4… до какой то точки Аn:
С одной стороны, длина каждого следующего отрезка будет равна члену геом. прог-сии:
C другой стороны, длина отрезков BA1, BA2, BA3… будет равна сумме нескольких первых членов геом. прог-сии:
Отметим, что при таком построении с увеличением n точка Аn всё ближе приближается к числу 2, однако так и не доходит до нее. Действительно, каждая следующая точка делит оставшееся расстояние надвое, поэтому она всегда остается левее точки 2, но приближается к ней. Получается, что сумма первых n членов прог-сии c ростом n приближается к двойке. В математике говорят, что число 2 является пределом послед-ти Sn. Запишем это:
На рисунке мы рассмотрели поведение послед-ти, у которой q = 1/2. Однако оказывается, что и любая другая бесконечная убывающая геометрическая прогрессия ведет себя похожим образом. Для каждой такой послед-ти существует предел суммы ее членов. Покажем, как его найти.
Запишем формулу суммы n членов геом. прог-сии в более удобном дробном виде:
Умножим и числитель, и знаменатель одновременно на (– 1), при этом можно будет поменять местами уменьшаемое и вычитаемое:
Далее выделим целую часть:
Проанализируем полученное выражение. Уменьшаемое z1/(1 – q) не содержит переменной n, а потому не зависит от этой переменной. А вот вычитаемое содержит множитель qn. Можно доказать, что если выполняется условие–1 <q< 1, то с ростом n этот множитель стремится к нулю:
Значит, и всё вычитаемое также стремится к нулю:
Получается, что при, бесконечно большом значении n сумма S∞ может быть вычислена так:
Итак, удалось получить формулу S∞ = z1/(1 – q). Ещё раз отметим, что по-настоящему строгое доказательство требует использование понятие предела из высшей математики, а потому не рассматривается здесь.
Зачем вообще находить сумму бесконечной геометрической прогрессии? Оказывается, что такая задача встает при изучении ряда других разделов математики, а также при расчете вероятностей некоторых событий.
Пример. Найдите сумму S∞ для прог-сии, у которой z1 = 0,1, q = 0,1.
Решение. Запишем первые несколько членов прог-сии:
Теперь будем записывать суммы Sn этой прог-сии:
Очевидно, что при бесконечном n получается бесконечная периодическая дробь:
Подробнее о бесконечных периодических дробях можно узнать из этого урока.
Теперь найдем сумму S∞, используя формулу S∞ = z1/(1 – q):
Получили дробь 1/9. Получается, что обыкновенная дробь 1/9 и бесконечная периодическая дробь 0,(1) – это одно и то же число! И действительно, если на калькуляторе поделить 1 на 9, то он покажет 0,111111111…:
Пример. Какая дробь при разложении ее в бесконечную десятичную дробь дает число 0,010101010101 = 0,(01)?
Решение: По аналогии с предыдущей задачей можно записать:
0,(01) = 0,01010101… = 0,01 + 0,0001 + 0,000001 + 0,00000001…
Получили слева сумму бесконечной прог-сии
в которой z1 = 0,01, а знаменатель q = 0,01. Ее сумма может быть рассчитана по формуле:
Получили дробь 1/99. То есть
Проверим себя с помощью калькулятора:
Пример. В квадрат со стороной 1 вписали другой квадрат, причем его вершины располагаются на серединах описанного квадрата. По тому же принципу в полученный квадрат вписали следующий квадрат, в него ещё один и т. д. Чему равна общая площадь всех полученных квадратов и каков их общий периметр?
Решение. Сторона первого квадрата равна 1. Найдем сторону вписанного треугольника:
Изучим треугольник АВС. В нем АВ = ВС = 1/2 (ведь они составляют половину от сторон DB и BF, который по условию равны 1). Угол АВС – прямой, а потому можно воспользоваться теоремой Пифагора:
Получили, что сторона вписанного квадрата в √2 раз меньше, чем сторона исходного квадрата. Аналогично можно показать, что и у следующего квадрата сторона будет ещё в √2 раз меньше и т. д. Соответственно и периметры квадратов будут уменьшаться в √2 раз, при этом периметр первого квадрата равен 4•1 = 4.
Получаем, что периметры квадратов образуют убывающую геом. прог-сию, в которой
Найдем сумму S∞ для этой прог-сии:
Итак, общий периметр найден. Теперь найдем сумму площадей. Площадь исходного квадрата равна 1•1 = 1. Площадь вписанного квадрата составляет:
Получили, что площадь вписанного квадрата вдвое меньше площади исходного. Тогда площади квадратов образуют геом. прог-сию, в которой
Найдем и для этой прог-сии сумму:
Итак, суммарная площадь всех квадратов равна двум.
Наконец, рассмотрим задачу, имеющую практическое содержание.
Пример. Два спортсмена, Вася и Петя, играют в настольный теннис. Счет в их партии равен 10:10, и поэтому у них действует правило «баланса». Согласно нему, игроки при равном счете должны разыграть два очка, причем в первом розыгрыше подавать будет Вася, а во втором – Петя. Если одному игроку удастся выиграть оба очка, то он выиграет всю партию. Если каждый из игроков выиграет по одному розыгрышу, то счет в их партии становится равным, и тогда им снова надо разыгрывать ещё два очка. Проще говоря, партия не закончится, пока разница в счете не составит два очка.
Известно, что при подаче Васи вероятность его победы в розыгрыше составляет 0,7. При подаче Пети шансы подающего на выигрыш очка равны 0,6. Каковы шансы Васи и Пети на победу в партии?
Решение. По условию начальный счет равен 10:10. Будем считать, что первое число в счете – это очки Васи,а второе – очки Пети. Игра закончится победой одного из игроков, когда его преимущество в счете достигнет 2 очков. Тогда возможные варианты развития событий можно изобразить с помощью схемы:
Обратим внимание, что в игре возможно бесконечное количество вариантов развития событий. Так, окончательный счет может быть равен даже 102:100 или 100002:100000 (хотя это и крайне маловероятно). Пусть вероятность, что игра закончится, например, со счетом 15:13, будет обозначаться как Р15:13. Тогда, чтобы найти вероятность победы Васи, надо сложить бесконечное число вероятностей:
Первую подачу при счете «ровно» Вася выиграет с вероятностью 0,7, поэтому шансы Пети забрать 1-ое очко себе равны 1 – 0,7 = 0,3.
На второй подаче Петя выиграет с вероятностью 0,6, а шансы Васи составят 1 – 0,6 = 0,4.
Тогда вероятность, что Вася выиграет оба очка, составит
Для Пети вероятность забрать себе оба очка равна
Есть и третий вариант развития событий – после двух розыгрышей счет останется равным (каждый выиграет один мяч), и снова возникает «баланс». Вероятность такого исхода равна
Следовательно, можно записать:
Счета 13:11, 12:12 и 11:13 могут наступить только в том случае, если сначала был достигнут счет 11:11. «Переход» из счета 11:11 к счету 13:11 произойдет, если Вася выиграет два очка подряд, а вероятность такого исхода мы уже считали: Рв = 0,7•0,4 = 0,28. Поэтому можно записать
Аналогично для счетов 12:12 и 11:13 запишем:
Следующие три счета, 14:12, 13:13 и 12:14, возможны только после счета 12:12. Их вероятности записываются так:
По аналогии для счетов 15:13, 14:14 и 13:15 можно записать:
Такие записи можно продолжать бесконечно. Однако легко увидеть, что вероятности счетов, победных для Васи, образуют геом. прог-сию:
Её первый член равен 0,28, а знаменатель составляет 0,54. Тогда сумма всех этих вероятностей, а значит и общая вероятность победы Васи, составит
Аналогично и счета, выигрышные для Пети, образуют геом. прог-сию:
Здесь z1 = 0,18; q = 0,54. Найдем сумму геометрической прогрессии:
Проверим себя. Ясно, что партию выиграет либо Вася, либо Петя. То есть сумма вероятностей их побед должна равняться единице. И действительно:
Значит, наши расчеты верны.
Ответ: Вася выиграет с вероятностью 14/23, а шансы Пети равны 9/23.
- Что такое геометрическая прогрессия?
- Формулы и свойства геометрической прогрессии
- Калькуляторы геометрической прогрессии
- Примеры решения заданий с геометрической прогрессией
-
Вычислим знаменатель геометрической прогрессии, если b1=5,5; b2=11.
-
Вычислим знаменатель геометрической прогрессии, если b1=0,3; b2= -30.
Ученикам может показаться, что изучение геометрической прогрессии – это нечто абстрактное и оторванное от жизни. На самом деле множество экономических процессов построены именно на основе геометрической прогрессии.
Например, если вы положите деньги на банковский депозит и захотите посчитать сколько процентов заработаете за три года, самым удобным способом провести вычисления будет именно через формулу геометрической прогрессии. Этот инструмент также применяется в проектировании, архитектуре и строительстве.
В этом тексте вы сможете узнать базовую информацию о формулах и свойства геометрической прогрессии, а также понять принцип, по которому она действует.
Что такое геометрическая прогрессия?
3, 12, 48, 192, 768, 3072 – это пример геометрической прогрессии. Все эти объединенные единым общим множителем. В теории геометрической прогрессии он называется знаменателем и обозначается как q. В этом случае q = 4. Чтобы создать геометрическую прогрессию, нам нужно сначала три умножить на четыре, затем 12 – снова на 4, потом 48 на 4 и так далее.
Читайте также: Плюсы и минусы образования за рубежом
Определение геометрической прогрессии
Геометрическая прогрессия – это прежде всего последовательность чисел. Каждый пункт этой последовательности, начиная со второго, равен предыдущему числу, умноженному на одинаковый множитель.
Устойчивое число множитель, которое собственно и образует последовательность под названием геометрическая прогрессия, называется знаменателем прогрессии и обозначается, как мы уже отметили выше, буквой q.
Члены прогрессии обозначаются как , где под индикатором n имеется в виду порядковый номер члена в прогрессии. Соответственно, первый член прогрессии (в нашем первом примере равен 3 – это b1, а второй (12) – это b2.
Предполагается, что ни первый член, ни знаменатель прогрессии не равен нулю.
Свойства геометрической прогрессии
Геометрическая прогрессия становится удобным инструментом вычислений, когда вы понимаете, что с помощью ее свойств и связанных с ней формул можно легко вычислить, чему равно
И действительно – если попробуем вручную умножать каждое число ряда на 4, в конце концов восьмым числом этой геометрической прогрессии станет 49152.
После усвоения главного принципа, лежащего в основе геометрической прогрессии, можем закрепить знания, проверив на практике первый пример с банковским депозитом.
Допустим, вы кладете на свой счет $ 100 под 6% годовых, и хотите узнать, какую сумму получите за 3 года. В таком случае вы будете использовать в своих расчетах геометрическую прогрессию, ведь ежегодно вы будете умножать все большую сумму на один и тот же множитель (в данном примере он равен 6%, то есть – 1,06)
Чтобы вычислить сумму вклада в момент завершения действия депозита, используем уже знакомую формулу для нахождения значения любого члена прогрессии:
В чем разница между геометрической и арифметической прогрессией?
В геометрической прогрессии члены прогрессии умножаются на постоянное число, тогда как арифметическая прогрессия воплощает последовательность чисел, в которой к каждому предыдущему члена добавляется одно и то же постоянное число.
Представим это на примерах.
Предположим, что знаменатель (q) в случае геометрической прогрессии составит 3 и так же в арифметической прогрессии устойчивое слагаемое будет равно 3. И стартовый член прогрессии в обоих случаях также составит одно и то же число – 4.
Арифметическая прогрессия тогда будет выглядеть как последовательность 4, 7 (= 4 + 3), 10 (= 7 + 3) .., 13 .., 16 .., 19 …
А геометрическая прогрессия – как последовательность 4, 12 (= 4 * 3), 36 (= 12 * 3), 108 .., 324 …
Читайте также: Учимся играя. Что такое геймификация
Формулы и свойства геометрической прогрессии
Свойства членов геометрической прогрессии – это формулы, упрощающие расчеты. Вот некоторые из них:
Чтобы найти знаменатель геометрической прогрессии, следует использовать следующую формулу:
Произведение членов, равноудаленных от краев геометрической прогрессии, то есть, соседних, всегда является постоянной величиной, то есть:
С формулой расчета любого члена геометрической прогрессии мы уже знакомы. Она выглядит так:
А формула нахождения суммы п первых членов геометрической прогрессии выглядит так:
Любой член геометрической прогрессии, начиная со второго, будет равняться среднему арифметическому соседних с ним членов, то есть при ,
Калькуляторы геометрической прогрессии
В сети есть множество калькуляторов как арифметической, так и геометрической прогрессии. Некоторые из них могут не только посчитать сумму прогрессии или найти знаменатель, но и отразить пошаговое решение того или иного примера. Пользуясь ими вы не только найдете ответ, но и сможете понять принцип действий и запомнить некоторые из формул.
Однако если вы переживаете сложности с пониманием геометрической прогрессии, эффективным решением может быть работа с репетитором по алгебре. На сайте БУКИ вы можете найти репетитора по любому предмету.
Что касается онлайн-калькуляторов прогрессии, то в Keisan Online Calculator вы можете вычислить или сумму геометрической прогрессии, а также значение любого ее члена с пошаговым решением вашего примера. А в Geometric Sequence Calculator вы сможете вычислить любой составляющая прогрессии: и знаменатель геометрической прогрессии (q), и сумму бесконечный прогрессии (Sn), и сумму первых членов (Sn).
Примеры решения заданий с геометрической прогрессией
Решение:
Вычислим знаменатель прогрессии, поделив друг на друга соседние члены:
q = b2/b1 = 11/5,5 = 2.
Ответ:
Знаменатель прогрессии (q) равен 2.
Решение:
Вычислим знаментель прогрессии, поделив друг на друга соседние члены:
q = b2/b1= -30/0,3= -100.
Ответ:
Знаменатель прогрессии (q) равен -100.