Зеленые технологии водород на авто

ВОДОРОДНАЯ установка на дизель

yMAAAgA3fuA 100

Совсем уж давно ничего не писал, надо исправляться. С одной стороны, затишье связано с отсутствием глобальных работ по машине… ну не стану же я писать: «Поменял масло» или «Сгорела лампочка фары».

Так вот, решился я на одну авантюру, на которую меня подтолкнул мой одноклубник и товарищ Артем — тоже владелец w123, который на своем опыте доказал работоспособность сей идеи. Идея не нова, но на частных легковых автомобилях по каким-то причинам используется крайне редко и информации о ее эксплуатации критически мало, потому я решил восполнить этот пробел и постараюсь написать максимально подробную статью. Так что, зашедший на мою страницу, приготовься читать.

Речь пойдет о Водородной установке или Генераторе газа Брауна, если выражаться более научным языком. Принцип ее работы на дизельном двигателе заключается в обогащении воздушно-топливной смеси посредством добавления во впускной коллектор смеси из водорода и кислорода, именуемой газом Брауна, формула которого ННО. Откуда берется этот газ? Вырабатывается генератором, который по сути является простым, но производительным электролизером. Газ из генератора поступает через гидрозатвор непосредственно в воздушный коллектор и оттуда — в камеры сгорания.

Что это дает? По моим наблюдениям следующее:
— Увеличение мощности
— Прирост динамики на всех режимах
— Увеличение «элластичности» двигателя
— Стабилизацию работы на холостом ходу
— Очистку камер сгорания от сажи в следствие более рациональной топливо-воздушной смеси

Итак: установка состоит из трех основных частей: генератора (электролизера), Подпиточного бачка и Гидрозатвора.

B4AAAgEXbeA 960

GEAAAgEXbeA 960

c4AAAgEXbeA 960

Q4AAAgEXbeA 960

В подпиточный бачок заливается щелочной электролит в виде раствора едкого калия КОН в дистилляте. Щелочь позволяет добиться оптимальной электропроводимости для того, чтобы электролизер смог расщепить воду на водород и кислород.

Всю установку я решил максимально компактно разместить за правой фарой таким образом, чтобы она не мешала доступу к фаре, а ее компоненты были установлены согласно нормам. Что же касается норм, то основное, что стоит запомнить. так это то, что каждый агрегат установки в направлении движения газа должен находиться выше предыдущего, а электролизер должен быть в максимально низкой точке.

9YAAAgEXbeA 960

Сам генератор я закрепил к кузову с помощью саморезов. На нем имеется кронштейн, который одновременно выступает массой, а она должна быть хорошей, так как мощность электролизер не мала.

8YAAAgEXbeA 960

Далее следовала проблема установки расширительного бачка, который должен располагаться строго вертикально, при этом не должен быть выше точки, на отметке которой выходной шланг будет подключаться в коллектор, и все это ограничено высотой подкапотного пространства. Путем длительных набросков и примерок было решено сделать кронштейн, который будет крепить его к кузову, сохраняя при этом вертикальное положение и давая возможность легкого демонтажа бачка в любой момент.

Источник

Дай дорогу водороду

Промышленники Москвы готовятся к технологическому прорыву – внедрению водорода на транспорте. Для этого нужно решить множество нетривиальных инженерных задач

TASS 46438615 747 418 crop

На конец августа электробусы в столице занимали примерно 5,5% маршрутов – свидетельствуют данные Росстата. Это практически соответствует среднеевропейскому показателю в 6%. Достичь его удалось благодаря планомерным закупкам такого вида городского транспорта: за три года правительству Москвы удалось довести их число на дорогах города до 700 единиц. В ближайшие четыре года столица закупит еще более 2,3 тыс электробусов, но в более долгосрочной перспективе автобусы на водородном топливе начнут наступать им на пятки.

Несмотря на то, что электрический транспорт сам по себе является гораздо более экологичной альтернативой машинам с двигателями внутреннего сгорания (ДВС), их часто критикуют за три вещи. Во-первых, это электричество, которым заряжают батареи электротранспорта: в подавляющем большинстве случаев оно производится либо угольными, либо газовыми электростанциями. Во-вторых, сами литиевые батареи вызывают много вопросов: от экологичности их производства, до дальнейшей утилизации. Кроме того, возникают вопросы и к конечному КПД такого транспорта: по дороге от источника до электродвигателя теряется много электроэнергии как во время передачи, так и во время трансформации, происходящей во время зарядки – разрядки батареи.

Водородный транспорт в перспективе может решить эти проблемы, но на нынешнем технологическом уровне ключевым остается вопрос производства соответствующего топлива.

Новое топливо

Сегодня водород используется преимущественно в технологических процессах, и по большей части его производят и потребляют на нефтеперерабатывающих и металлургических заводах. Он также пользуется спросах на предприятиях нефтехимии — при производстве аммиака, метанола. Но в качестве транспортного топлива водород сейчас почти не используется за очень редким исключением. При этом мировое потребление водорода составляет порядка 120 млн тонн в год. Из них только 5 млн тонн приходятся на Россию, а если смотреть шире — доля водорода в мировом энергобалансе блика к нулю. При этом само топливо при этом делится на несколько категорий.

«Когда мы говорим про «серый», «голубой», «бирюзовый» или «зеленый» водород — по сути это один и тот же химический элемент. В различные цвета он начал перекрашиваться вместе с переходом к декарбонизации, и экологи осознали, что выделяемый углекислый газ может нанести серьезный ущерб окружающей среде. Из-за этого начали отслеживаться все источники углекислого газа», — объяснил генеральный директор «Газпромнефть — Промышленные инновации» Михаил Никулин на лекции «Водородное топливо как будущее городского транспорта мегаполиса». Лекция прошла на территории центра современного искусства ВИНЗАВОД в рамках мультимедийной выставки «Открой Моспром. Механизмы большого города», рассказывающей о столичной промышленности.

В столице собственное производство водорода есть: его получают на Московском нефтеперерабатывающем заводе (МНПЗ). Сейчас это «серый» водород: при выработке порядка 100 тыс. тонн этого газа, он практически полностью используется предприятием для гидроочистки бензина, дизеля и керосина, позволяя довести их до экологических стандартов Евро-5.

«Сейчас мы заняты проработкой промышленных способов производства «голубого» водорода и проектов по снижению его углеродного следа за счет улавливания и утилизации углекислого газа Следующий шаг – производство «бирюзового» водорода. Новые технологии откроют новые рынки для сбыта водорода, кроме потребления производимого нами же объема внутри предприятия. Среди перспективных направлений можно упомянуть использование его в качестве топлива для водородомобилей и водоробусов. Это зарождающаяся, но быстроразвивающаяся отрасль», — говорит Михаил Никулин.

Опыт уже есть

Как отметила директор по исследованиям VYGON Consulting Мария Белова, у России уже есть опыт использования водородомобилей. Так, еще в период Олимпиады-80 в Олимпийской деревне курсировали гибридные «РАФики», которые в качестве топлива на холостом ходу и малых скоростях использовали водород. Правда, тогда он сжигался внутри того же ДВС, но в наши дни технологии шагнули далеко вперед.

«Столичные предприятия активно внедряют в производство зеленые технологии, а также ведут собственные разработки в этой области, в том числе в области «зеленых» источников топлива. Так, Московский НПЗ может стать площадкой для пилотирования промышленных технологий производства топливного водорода. А государственный научный центр «НАМИ», который также расположен в Москве, ведет разработку модификации автомобиля Aurus, работающего на водороде. В будущем экологичный автомобиль планируется запустить в серийное производство», — рассказывал недавно руководитель Департамента инвестиционной и промышленной политики г. Москвы Александр Прохоров.

В мире водородный транспорт постепенно находит свою рыночную нишу. Так, в японская Toyota уже запустила серийное производство водородомобиля Mirai. Но, по словам Марии Беловой, проблемой для массового распространения аналогов остается как стоимость авто, так и топлива для них — сейчас это слишком маленький рынок.

«Та же Toyota на водороде стоит 66 тыс. евро, будучи сопоставимой с автомобилем на ДВС за 20 тыс., но в Японии государство субсидирует их покупку, возвращая почти половину от уплаченной стоимости. Что касается топлива, исходя из немецкого опыта, в пересчете на километр оно получается почти в два раза дороже дизеля», — объясняет Белова.

Тем не менее, в Германии уже насчитывается порядка 90 заправок для личных водородных авто и еще около 10 — для коммерческого транспорта. Их стоимость за одну станцию при этом достигает до одного млн долларов.

Новый уровень технологий

СО2, улавливаемый при производстве «голубого» водорода, востребован при создании различны химических соединений — поликарбонатов, акриловой кислоты и прочих. С другой стороны, его можно закачивать в старые нефтяные месторождения, чтобы повысить их отдачу. Но с экономической точки зрения это нецелесообразно, ведь такой СО2 придется транспортировать из Москвы в восточные нефтяные регионы страны. Поэтому прорабатываются актуальным становятся технологии переработки в химическую продукцию и даже в строительные материалы.

Решив эту проблему, вполне возможно наладить производство водородного топлива для будущих столичных водоробусов. А в том, что будущее именно за ними — эксперты практически не сомневаются.

«Транспорт — это будущее. Мы все сейчас сталкиваемся с тем, что 60% потребления нефтепродуктов приходится на привычный транспорт. Сейчас ему на пятки наступают электромобили. Но водород тоже является перспективным топливом в этом плане, и если посмотреть на прогнозы уважаемых агентств, то многие из них ожидают, что к 2050-му водород займет до 10% доли в мировом энергобалансе», — говорит Мария Белова.

С точки зрения безопасности водоробусов, важно понимать, что передвигаться на нем не то же самое, что сидеть на «водородной бомбе». Ведь топливо не сжигается внутри ДВС, а используется в качестве топливного элемента, по сути — водородной батарейки для встроенного в автобус электродвигателя.

Поэтому эксперты уверены, что уже в ближайшие годы водоробусы появятся на столичных маршрутах, но только после того, как будут решены все элементы этой комплексной задачи. Для этого необходимо будет построить заправочную инфраструктуру и провести сертификацию такого вида транспорта. С производственной точки зрения, помимо поиска рынков для реализации СО2, останется найти способ безопасной доставки водорода непосредственно до заправочных станций.

Источник

Зелёный элемент. Как мир переходит на водород и чем это грозит России

Экономика будущего должна быть экологичной. Такая риторика подталкивает бизнес и государства переводить на водород всё что только можно: транспорт, промышленность, энергетику. Прогнозы экспертов и планы властей разных стран рисуют картинку, как водород неумолимо замещает «грязные» нефть и газ.

Однако на пути к «зелёному» водородному будущему немало помех. «Секрет фирмы» разобрался, кто и как уже внедряет новые технологии и не останется ли Россия на обочине этого тренда.

Водород везде — от Lada Kalina до самолётов для British Airways

Через 10 лет в Европе должно быть не менее 30 млн автомобилей с нулевым уровнем выбросов, а к 2050 году безвредными для экологии должны стать почти все машины, включая грузовики и автобусы. А также авиация и морской транспорт. Об этом говорится в «стратегии устойчивой и умной мобильности» Евросоюза.

Речь идёт не только про электротранспорт. Предполагается, что заметная часть машин будет работать на водороде. Точнее, на водородных топливных элементах, где вырабатывается электроэнергия, которая и приводит в движение мотор.

Эра такого транспорта началась: в феврале в Мадриде запустили первый автобус на водородном топливе, а власти Лондона уже объявили, что городской транспорт полностью перейдёт на водород в 2037 году.

Многие автоконцерны разрабатывают и даже уже выпускают водородные модели: Toyota (Mirai), Honda (Clarity), Hyundai (Nexo), Mercedes-Benz (GLC F-Cell, по необходимости заряжается от розетки), BMW (X5 i Hydrogen Next).

У отечественного автопрома есть подобные разработки: в 2019 году «АвтоВАЗ» представил прототип водородного автомобиля на базе Lada Kalina. В течение года разработчики должны были создать опытный образец, но с тех пор о проекте информации нет.

Килограмм водорода даёт примерно в три раза больше энергии, чем сопоставимое количество дизельного топлива или бензина.

Тенденция заметна и в грузовом сегменте: в конце 2020 года Hyundai начал поставлять клиентам первые водородные грузовики, а в России фирма «Эвокарго» представила беспилотный электрогрузовик, который можно заправлять водородом.

«Технология водородных топливных элементов открывает потенциал для полётов крупных самолетов на большие расстояния, а это означает, что она может масштабироваться, чтобы предложить эффективную альтернативу реактивному керосину без выбросов. Водород также может обеспечить снижение затрат на топливо и техническое обслуживание», — объяснил «Секрету» вице-президент по Европе ZeroАvia Сергей Киселев.

Пока рынок сдержанно принимает водородные новинки

Это демонстрирует история с автомобилями Toyota Mirai. Их серийно выпускают с 2014 года, основные рынки — США и Япония. В 2020 году вышла модель второго поколения, стоимость начинается с 5 млн рублей. Toyota надеялась продавать по 30 000 автомобилей Mirai, но спрос в 10 раз меньше — из-за плохо развитой инфраструктуры. В США, например, всего около 10 водородных заправок, в Германии – свыше 50.

В России и вовсе одна водородная АЗС. Её открыли в подмосковной Черноголовке летом 2020 года при участии одного из немногих российских владельцев Toyota Mirai Владимира Седова. Правда, на заправке не смогли даже полностью заправить авто — не хватило давления (нужно 700 атмосфер, а на подмосковной АЗС всего 500). Ранее Владимир на свои деньги запускал подобную станцию в родном Красноярске — и потратил на это более 10 млн рублей (при том что автомобиль ему обошёлся в 7 млн).

Проблемы с инфраструктурой, похоже, не останавливают правительство Санкт-Петербурга: осенью 2020 года там задумались, как перевести каршеринг на водородное топливо: компания Hyundai готова предоставить свои автомобили для пилотного проекта. Оператор каршеринга пока неизвестен, как и детали идеи.

Директор по стратегическим проектам каршеринговой компании «Делимобиль» Дарио Пелацо скептически смотрит на такие эксперименты: «На сегодняшний день перевод машин на водородное топливо не представляется возможным в силу ряда причин. Основные — отсутствие инфраструктуры для заправки и обслуживания таких автомобилей. Проблема водородного топлива заключается ещё и в высокой стоимости его производства, которая в разы выше, чем дизельное или бензин», — сказал он «Секрету».

Современный водород не нужен экономике будущего

Есть несколько способов получить водород. Первый — переработать углеводородное сырьё (природный газ или уголь). Это энергоёмкий процесс, при котором выделяется значительное количество углекислого газа — основного парникового газа, вызывающего изменение климата. Полученный таким методом водород нельзя считать экологичным, поэтому его называют «серым».

Есть «зелёный» водород — его получают электролизом воды (разложения вещества на составные части под воздействием тока). Если электричество для этого процесса вырабатывают из возобновляемых источников, такое производство считается безвредным для природы. Когда говорят о водороде как о топливе будущего — имеют в виду именно его. Промежуточный вариант — «голубой», когда при производстве «серого» водорода улавливают углекислый газ.

«Водород, произведённый с минимальными выбросами парниковых газов (“зеленый” или “голубой”), становится несравненно лучшим энергоносителем по сравнению с нефтью или газом — по критерию влияния на глобальные климатические изменения, по “углеродному следу”, — говорит старший аналитик Центра энергетики Московской школы управления Сколково Юрий Мельников. — Природный газ и нефть по своей природе не могут сравниться с водородом по этому показателю — при их добыче, транспортировке и использовании непрерывно выделяются парниковые газы (метан, СО2), и свести все эти выбросы к нулю невозможно».

Однако производство «зелёного» и «голубого» водорода обходится дорого. К тому же установки для производства такого вещества маломощные и их немного. Поэтому в мире пока больше всего «серого» водорода — около 99%.

Из 70 млн тонн производимого сегодня в мире водорода половину потребляет химическая промышленность. Остальное распределяется между нефтепереработкой (43%) и производством стали, полупроводников и термополированного стекла.

Если ли место для России в водородном будущем

«Основные водородные технологии находятся в начале кривой обучения (это линия, которая показывает рост совершенства технологии и уменьшение её стоимости по мере распространения и масштабирования. — Прим. «Секрета»), — говорит Юрий Мельников. — Применяются они в ограниченных масштабах, и потому дороги. Ключом к их удешевлению является глобальное масштабирование технологий — в сотни, тысячи раз — и здесь важна роль мер поддержки со стороны государств».

Многие страны разработали национальные водородные стратегии — в частности, они появились в Германии, Нидерландах, Франции, Норвегии, Португалии, Испании. Осенью 2020 года такой документ появился и в России.

Согласно ему, экспорт водорода из России к 2024 году должен достичь 200 000 тонн, а к 2035 году вырасти уже до 2 млн тонн. Сейчас в стране производят 5 млн тонн водорода в год, но весь используют во внутреннем промышленном секторе. По планам властей, Россия через 15 лет должна получить весомое место на глобальном рынке — не менее 16%.

Вообще водород можно производить почти везде. Надежды на экспорт связаны с ожиданиями, что производимый в стране «безуглеродный» водород будет настолько дёшев, что его будет выгодно продавать в другой стране за сотни и тысячи километров от места производства, объяснил Юрий Мельников.

«Добиться такой конкурентоспособности будет непросто: ресурсы для производства водорода действительно распределены по планете равномерно, а логистические решения пока находятся на очень ранней стадии развития», — добавил эксперт «Сколково».

PetrolValves S.p.A. / Wolfram Scheible nord-stream2.com

Лидерами в развитии водородных технологий сейчас считаются Япония и Германия. «При этом РФ находится в переговорном процессе с Германией по вопросам использования водорода. У России есть развитая сеть трубопроводов, у Германии — технологии. Объединив эти возможности, можно получить совместные перспективы, — говорит доцент кафедры национальной экономики экономфака РУДН Максим Черняев. — А в перспективе — и новые пакеты санкций, которые неизбежно прилетят из-за океана. РФ своими действиями даёт понять, что готова к подобному развитию событий. Готовы ли партнёры? Германия изучает этот вопрос».

«Неоспоримое преимущество России, которое позволит сразу вырваться в лидеры мирового рынка водородной энергетики, — газовая инфраструктура “Северный поток” и “Северный поток — 2”, через которую можно гнать газ, можно — водород, а можно — смесь, и это пока самый перспективный вариант. Вместе с тем существует опасность стать сырьевым придатком, только на более высокотехнологичном уровне. Риск в том, что начнут отправлять весь произведённый водород в Европу без дальнейшего использования в производстве или для энергетических нужд граждан», — считает руководитель направления «Промышленность» Института технологий нефти и газа Ольга Орлова.

Первыми крупными производителями «зелёного» водорода, вероятнее всего, станут «Росатом» и «Газпром». Пилотные установки компании запустят к 2024 году на базе атомных электростанций, объектах добычи газа и перерабатывающих предприятиях. Кроме того, к этому году «Росатом» должен построить опытный полигон для испытаний железнодорожного транспорта на водородных двигателях.

Рост спроса на «зелёную» энергетику угрожает бюджетным доходам страны. Будучи одним из крупнейших поставщиков угля, нефти и газа, Россия оказывается в уязвимой ситуации при падении спроса на топливо. Что и показала коронавирусная весна 2020 года. Вероятно, поэтому правительство решило начать формировать репутацию России как поставщика водорода — альтернативного энергоносителя. Ведь то, что сейчас выглядит, скорее, хайпом, через несколько десятилетий может стать реальностью.

Источник

Как работает водородный двигатель и какие у него перспективы

756153887935299

С 2018 года в ЕС действует запрет на дизельные автомобили новейшего поколения в населенных пунктах [1]. Это стало поворотным моментом в развитии рынка электрокаров, а также — гибридных и водородных двигателей.

Великобритания еще в 2017-м высказывалась за полный запрет бензиновых авто к 2040 году. Тогда же, если верить исследованию Bloomberg New Energy Finance [2], на электрокары будет приходиться 35% от всех продаж автомобилей. Уже к 2030 году Jaguar и Land Rover планируют довести число электрокаров в своих линейках до 100% [3]. Часть из них тоже работает на водороде.

История развития рынка водородных двигателей

Первый двигатель, работающий на водороде, придумал в 1806 году французский изобретатель Франсуа Исаак де Риваз [4]. Он получал водород при помощи электролиза воды.

Первый патент на водородный двигатель выдали в Великобритании в 1841 году [5]. В 1852 году в Германии построили двигатель внутреннего сгорания (ДВС), который работал на воздушно-водородной смеси. Еще через 11 лет французский изобретатель Этьен Ленуар сконструировал гиппомобиль [6], первые версии которого работали на водороде.

В 1933 году норвежская нефтегазовая и металлургическая компания Norsk Hydro Power переоборудовала [7] один из своих небольших грузовиков для работы на водороде. Химический элемент выделялся за счет риформинга аммиака и поступал в ДВС.

В Ленинграде в период блокады на воздушно-водородной смеси работали около 600 аэростатов. Такое решение предложил военный техник Борис Шепелиц, чтобы решить проблему нехватки бензина. Он же переоборудовал 200 грузовиков ГАЗ-АА для работы на водороде.

Первый транспорт на водороде выпустила в 1959 году американская компания Allis-Chalmers Manufacturing Company — это был трактор [8].

Первым автомобилем на водородных топливных элементах стал Electrovan от General Motors 1966 года. Он был оборудован резервуарами для хранения водорода и мог проехать до 193 км на одном заряде. Однако это был единичный демонстрационный экземпляр, который передвигался только по территории завода.

В 1979-м появился первый автомобиль BMW с водородным двигателем. Толчком к его созданию послужили нефтяные кризисы 1970-х, и по их окончании об идее альтернативных двигателей забыли вплоть до 2000-х годов.

В 2007 году та же BMW выпустила ограниченную серию автомобилей Hydrogen 7, которые могли работать как на бензине, так и на водороде. Но машина была недешевой, при этом 8-килограммового баллона с газом хватало всего на 200-250 км.

Первой серийной моделью автомобиля с водородным двигателем стала Toyota Mirai, выпущенная в 2014 году. Сегодня такие модели есть в линейках многих крупных автопроизводителей: Honda, Hyundai, Audi, BMW, Ford и других.

Как работает водородный двигатель?

На специальных заправках топливный бак заправляют сжатым водородом. Он поступает в топливный элемент, где есть мембрана, которая разделяет собой камеры с анодом и катодом. В первую поступает водород, а во вторую — кислород из воздухозаборника.

Каждый из электродов мембраны покрывают слоем катализатора (чаще всего — платиной), в результате чего водород начинает терять электроны — отрицательно заряженные частицы. В это время через мембрану к катоду проходят протоны — положительно заряженные частицы. Они соединяются с электронами и на выходе образуют водяной пар и электричество.

756153892484652

По сути, это — тот же электромобиль, только с другим аккумулятором. Емкость водородного аккумулятора в десять раз больше емкости литий-ионного. Баллон с 5 кг водорода заправляется около 3 минут, его хватает до 500 км.

Где применяют водородное топливо?

755912684548819

Плюсы водородного двигателя

Минусы водородного двигателя

Водород для топлива можно получать разными способами. В зависимости от того, насколько они безвредны, итоговый продукт называют [13] «желтым» или «зеленым». Желтый водород — тот, для которого нужна атомная энергия. Зеленый — тот, для которого используют возобновляемые ресурсы. Именно на этот водород делают ставку международные организации.

Самый безвредный способ — электролиз, то есть, извлечение водорода из воды при помощи электрического тока. Пока что он не такой выгодный, как остальные (например, паровая конверсия метана и природного газа). Но проблему можно решить, если сделать цепочку замкнутой — пускать электричество, которое выделяется в водородных топливных элементах для получения нового водорода.

Водородный транспорт в России

В России в 2014 году появился свой производитель водородных топливных ячеек — AT Energy. Компания специализируется на аккумуляторных системах для дронов, в том числе военных. Именно ее топливные ячейки использовали для беспилотников, которые снимали Олимпиаду-2014 в Сочи.

В 2019 году Россия подписала Парижское соглашение по климату, которое подразумевает постепенный переход стран на экологичные виды топлива.

Чуть позже «Газпром» и «Росатом» подготовили совместную программу развития водородной технологии на десять лет.

Главный фактор, который может обеспечить России преимущество на рынке водорода — это богатые запасы пресной воды [14] за счет внутренних водоемов, тающих ледников Арктики и снегов Сибири. Вблизи последних уже есть добывающая инфраструктура от «Роснефти», «Газпрома» и «Новатэка».

В конце 2020 года власти Санкт-Петербурга анонсировали [15] запуск каршеринга на водородном топливе совместно с Hyundai. В случае успеха проект расширят и на другие крупные города России.

Перспективы технологии

Вокруг водородных двигателей немало противоречивых заявлений. Одни безоговорочно верят в их будущее — например, Арнольд Шварценеггер еще в 2004 году, будучи губернатором Калифорнии, обещал [16], что к 2010 году весь его штат будет покрыт «водородными шоссе». Но этого так и не произошло. В этом отчасти виноват глобальный экономический кризис: автопроизводителям пришлось выживать в тяжелейших финансовых условиях, а подобные технологии требуют больших и долгосрочных вложений.

755930773206226

Другие, напротив, критикуют технологию за ее очевидные недостатки. Так, основатель Tesla Илон Маск назвал водородные двигатели «ошеломляюще тупой технологией» [17], которая по эффективности заметно уступает электрическим аккумуляторам. Отчасти он прав: сегодня водородным автомобилям приходится конкурировать с электрокарами, гибридами, транспортом на сжатом воздухе и жидком азоте. И пока что до лидерства им очень далеко.

Но у водородного топлива есть существенное преимущество перед электрическими аккумуляторами — долговечность. Если аккумулятора в электрокаре хватает на три-пять лет, то водородной топливной ячейки — уже на восемь-десять лет. При этом водородные аккумуляторы лучше приспособлены для сурового климата: не теряют заряд на морозе, как это происходит с электрокарами.

Есть еще одна перспективная сфера применения водородного топлива — стационарное резервное питание: ячейки с водородом могут снабжать энергией сотовые вышки и другие небольшие сооружения. Их можно приспособить даже для энергоснабжения небольших автономных пунктов вроде полярных станций. В этом случае можно раз в год наполнять газгольдер, экономя на обслуживании и транспорте.

Основной упрек критиков — дороговизна водородного топлива и логистики. Однако Международное энергетическое агентство прогнозирует, что цена водорода к 2030 году упадет минимум на 30% [20]. Это сделает водородное топливо сопоставимым по цене с другими видами [21].

Если вспомнить, как развивался рынок электрокаров, то его росту способствовали три главных фактора:

Водородные двигатели ждет примерно тот же сценарий. В Toyota видят главные перспективы [26] для водородных двигателей в компактных автомобилях, а также в среднем и премиум-классе. Пока что производство не вышло на тот уровень, чтобы бюджетные модели работали на водороде и оставались рентабельными. Современные водородные машины стоят вдвое дороже обычных [27] и на 20% больше, чем гибридные.

Источник

Оцените статью
Avtoshod.ru - все самое важное о вашем авто