К каким принципам можно свести сущность фоннеймановской концепции вычислительной машины

Модель вычислительной машины Дж. фон-Неймана

Дата добавления: 2014-03-21 ; просмотров: 1458 ; Нарушение авторских прав

План

Машины с хранимой в памяти программой

1. Модель вычислительной машины Дж. фон-Неймана.

2. Подход В.М.Глушкова.

Вычислительная машина, где определенным образом закодированные команды программы хранятся в памяти, называется вычислительной машиной с хранимой в памяти программой.

Сущность фон-неймановской концепции вычислительной машины можно свести к четырем принципам:

Принцип двоичного кодирования

Вся информация, как данные, так и команды, кодируются двоичными цифрами 0 и 1. В числовой информации обычно выделяют поле знака и поле значащих разрядов. В формате команды выделяют два поля: поле кода операции (КОп) и поле адресов (адресную часть — АЧ).

Код операции представляет собой указание, какая операция должна быть выполнена. Вид адресной части и число составляющих ее адресов зависят от типа команды.

Принцип программного управления

Принцип однородности памяти

Команды и данные хранятся в одной и той же памяти и внешне в памяти неразличимы. Распознать их можно только по способу использования. Это позволяет производить над командами те же операции, что и над числами.

Структурно основная память состоит из пронумерованных ячеек произвольного доступа. Двоичные коды команд и данных разделяются на единицы информации, называемые словами, и хранятся в ячейках памяти, а для доступа к ним используются номера соответствующих ячеек – адреса.

Большинство современных ВМ по своей структуре отвечают принципу программного управления. Типичная фон-неймановская ВМ (рис. 3.2) содержит:

Рис. 3.2. Структура фон-неймановской вычислительной машины

Устройство управления (УУ) организует автоматическое выполнение программ (путем реализации функций управления) и обеспечивает функционирование ВМ как единой системы. Пересылка информации между любыми элементами ВМ инициируется своим сигналом управления (СУ).

Арифметико-логическое устройство (АЛУ) обеспечивает арифметическую и логическую обработку двух входных переменных, в результате которой формируется выходная переменная. Функции АЛУ обычно сводятся к простым арифметическим и логическим операциям, а также операциям сдвига. Помимо результата операции АЛУ формирует ряд признаков результата (флагов). Флаги могут анализироваться в УУ с целью принятия решения о дальнейшей последовательности выполнения команд программы.

УУ и АЛУ тесно взаимосвязаны и их обычно рассматривают как единое устройство, известное как центральный процессор (ЦП) или просто процессор. Помимо УУ и АЛУ в процессор входит также набор регистров общего назначения (РОН), служащих для промежуточного хранения информации в процессе ее обработки.

В любой ВМ имеются средства для ввода программ и данных к ним. Информация поступает из подсоединенных к ЭВМ периферийных устройств (ПУ) ввода. Результаты вычислений выводятся на периферийные устройства вывода. Связь и взаимодействие ВМ и ПУ обеспечивают порты ввода и порты вывода.

Введенная информация сначала запоминается в основной памяти, а затем переносится во вторичную память, для длительного хранения. Чтобы программа могла выполняться, команды и данные должны располагаться в основной памяти (ОП), организованной таким образом, что каждое двоичное слово хранится в отдельной ячейке, идентифицируемой адресом, причем соседние ячейки памяти имеют следующие по порядку адреса. Доступ к любым ячейкам запоминающего устройства (ЗУ) основной памяти может производиться в произвольной последовательности. Такой вид памяти называется – память с произвольным доступом.

Размер ячейки основной памяти обычно принимается равным 8 двоичным разрядам – байту. Для хранения больших чисел используются 2,4 или 8 байтов, размещаемых в ячейках с последовательными адресами.

Адресация по младшему байту характерна для микропроцессоров фирмы Intel и мини-ЭВМ фирмы DEC, а по старшему байту – для микропроцессоров фирмы Motorola и универсальных ЭВМ фирмы IBM. В принципе выбор порядка записи байтов существенен лишь при пересылке данных между ВМ с различными формами их адресации или при манипуляциях с отдельными байтами числа. В большинстве ВМ предусмотрены специальные инструкции для перехода от одного способа к другому.

Для долговременного хранения больших программ и массивов данных в ВМ обычно имеется дополнительная память, известная как вторичная. Вторичная память энергонезависима и чаще всего реализуется на базе магнитных дисков.

Источник

Принципы фон Неймана

2236390 134442837.pdf 4

Фон Нейман сформулировал 5 основных принципов:

Не нашли что искали?

Просто напиши и мы поможем

Архитектура фон Неймана

Архитектура ЭВМ фон Неймана включает:

К каждому ЭВМ прилагается список операций, которые могут проводиться с его помощью. Команда имеет следующую структуру:

Сложно разобраться самому?

Попробуй обратиться за помощью к преподавателям

Принципы фон Неймана на практике

В компьютерах последних поколений все так же применяется двоичная система, принципы автоматической работы и сохранности. Оставшиеся 2 принципа применяются в отдельных случаях.

Есть модели, способные устанавливать отличия между данными и программами. В таких компьютерах ячейки не просто хранят информацию, но и имеют метку, указывающую на характер ее содержимого. Чтобы сэкономить память, метки устанавливаются не на каждую ячейку, а на их последовательность, что дает возможность различать команды и данные.

Во многих современных компьютерах нарушаются принципы однородности и линейности. К примеру, память состоит из 2 частей с независимыми адресами ячеек, или ячейки в принципе без адресов (ассоциативная память).

Все модели новых поколений, у которых больше 1 процессора, не выполняют команды последовательно. У таких компьютеров есть возможность выполнять сразу несколько команд, при этом они могут относиться к одной программе, или к разным.

Источник

К каким принципам можно свести сущность фоннеймановской концепции вычислительной машины

Компьютер должен иметь:

297037 html m67b13c12

Память компьютера представляет собой некоторое количество пронумерованных ячеек, в каждой из которых могут находиться или обрабатываемые данные, или инструкции программ. Все ячейки памяти должны быть одинаково легко доступны для других устройств компьютера.

Как всякая техника, компьютеры развивались в сторону увеличения функциональности, целесообразности и красоты. Есть вообще утверждение, претендующее на закон: совершенный прибор не может быть безобразным по внешнему виду и наоборот, красивая техника не бывает плохой. Компьютер становится не только полезным, но и украшающим помещение прибором. Внешний вид современного компьютера, конечно, соотносится со схемой фон Неймана, но в то же время и разнится с ней.

В настоящее время обычный персональный компьютер представляет собой комплекс, состоящий из:

Компьютеры, построенные на принципах фон Неймана

В середине 1940-х проект компьютера, хранящего свои программы в общей памяти был разработан в Школе электрических разработок Мура (англ. Moore School of Electrical Engineering ) в Университете штата Пенсильвания. Подход, описанный в этом документе, стал известен как архитектура фон Неймана, по имени единственного из названных авторов проекта Джона фон Неймана, хотя на самом деле авторство проекта было коллективным. Архитектура фон Неймана решала проблемы, свойственные компьютеру ENIAC, который создавался в то время, за счёт хранения программы компьютера в его собственной памяти. Информация о проекте стала доступна другим исследователям вскоре после того, как в 1946 году было объявлено о создании ENIAC. По плану предполагалось осуществить проект силами Муровской школы в машине EDVAC, однако до 1951 года EDVAC не был запущен из-за технических трудностей в создании надёжной компьютерной памяти и разногласий в группе разработчиков. Другие научно-исследовательские институты, получившие копии проекта, сумели решить эти проблемы гораздо раньше группы разработчиков из Муровской школы и реализовали их в собственных компьютерных системах. Первыми пятью компьютерами, в которых были реализованы основные особенности архитектуры фон Неймана, были:

Источник

Реферат: Принципы фон Неймана

Государственное образовательное учреждение

высшего профессионального образования Тюменской области

ТЮМЕНСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ

МИРОВОЙ ЭКОНОМИКИ, УПРАВЛЕНИЯ И ПРАВА

Кафедра математики и информатики

«ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ, СЕТИ И ТЕЛЕКОМУНИКАЦИИ»

«ПРИНЦИПЫ ФОН НЕЙМАНА»

2. Основные принципы архитектуры Джона фон Неймана…………….3

4. Как работает машина Джона фон Неймана…………………………. 4

С середины 60-х годов очень сильно изменился подход к созданию вычислительных машин. Вместо разработки аппаратуры и средств математического обеспечения стала проектироваться система, состоящая из синтеза аппаратных (hardware) и программных (software) средств. При этом на главный план выдвинулась концепция взаимодействия. Так возникло новое понятие — архитектура ЭВМ.

Под архитектурой ЭВМ принято понимать совокупность общих принципов организации аппаратно-программных средств и их основных характеристик, определяющая функциональные возможности вычислительной машины при решении соответствующих типов задач.

Архитектура ЭВМ охватывает значительный круг проблем, связанных с созданием комплекса аппаратных и программных средств и учитывающих большое количество определяющих факторов. Среди этих факторов основными являются: стоимость, сфера применения, функциональные возможности, удобство в эксплуатации, а одним из основных компонентов архитектуры считаются аппаратные средства.

Архитектуру вычислительного средства необходимо отличать от структуры, так как структура вычислительного средства определяет его текущий состав на определенном уровне детализации и описывает связи внутри средства. Архитектура же определяет основные правила взаимодействия составных элементов вычислительного средства, описание которых выполняется в той мере, в какой необходимо для формирования правил взаимодействия. Она устанавливает не все связи, а только наиболее необходимые, которые должны быть известны для более грамотного использования применяемого средства.

Так, пользователю ЭВМ не важно, на каких элементах выполнены электронные схемы, схемно или программно исполняются команды и тому подобное. Архитектура ЭВМ действительно отражает круг проблем, которые относятся к общему проектированию и построению вычислительных машин и их программного обеспечения.

Основы учения об архитектуре вычислительных машин были заложены Джон фон Нейманом. Совокупность этих принципов породила классическую (фон-неймановскую) архитектуру ЭВМ.

Основные принципы архитектуры Джона фон Неймана

Джон фон Нейман (1903 – 1957) – американский математик, внесший большой вклад в создание первых ЭВМ и разработку методов их применения. Именно он заложил основы учения об архитектуре вычислительных машин, подключившись к созданию первой в мире ламповой ЭВМ ENIAC в 1944 году, когда ее конструкция была уже выбрана. В процессе работы, во время многочисленных дискуссий со своими коллегами Г.Голдстайном и А.Берксом, Джон фон Нейман высказал идею принципиально новой ЭВМ. В 1946 году ученые изложили свои принципы построения вычислительных машин в ставшей классической статье «Предварительное рассмотрение логической конструкции электронно-вычислительного устройства». С тех пор прошло более полувека, но выдвинутые в ней положения сохраняют свою актуальность и сегодня.

В статье убедительно обосновывается использование двоичной системы для представления чисел, в ведь ранее все вычислительные машины хранили обрабатываемые числа в десятичном виде. Авторы продемонстрировали преимущества двоичной системы для технической реализации, удобство и простоту выполнения в ней арифметических и логических операций. В дальнейшем ЭВМ стали обрабатывать и нечисловые виды информации – текстовую, графическую, звуковую и другие, но двоичное кодирование данных по-прежнему составляет информационную основу любого современного компьютера.

Еще одной революционной идеей, значение которой трудно переоценить, является предложенный Нейманом принцип «хранимой программы». Первоначально программа задавалась путем установки перемычек на специальной коммутационной панели. Это было весьма трудоемким занятием: например, для изменения программы машины ENIAC требовалось несколько дней, в то время как собственно расчет не мог продолжаться более нескольких минут – выходили из строя лампы, которых было огромное количество. Нейман первым догадался, что программа может также храниться в виде набора нулей и единиц, причем в той же самой памяти, что и обрабатываемые ею числа. Отсутствие принципиальной разницы между программой и данными дало возможность ЭВМ самой формировать для себя программу в соответствии с результатами вычислений.

Джон фон Нейман не только выдвинул основополагающие принципы логического устройства ЭВМ, но и предложил ее структуру, которая воспроизводилась в течение первых двух поколений ЭВМ. Основными блоками по Нейману являются устройство управления (УУ) и арифметико-логическое устройство (АЛУ), обычно объединяемые в центральный процессор, в который также входит набор регистров общего назначения (РОН) – для промежуточного хранения информации в процессе ее обработки; память, внешняя память, устройства ввода и вывода. Следует отметить, что внешняя память отличается от устройств ввода и вывода тем, что данные в нее заносятся в виде, удобном компьютеру, но недоступном для непосредственного восприятия человеком.

9226645

Архитектура ЭВМ, построенная на принципах Джон фон Неймана.

Сплошные линии со стрелками указывают направление потоков информации, пунктирные – управляющих сигналов.

Как работает машина Джона фон Неймана

Теперь более подробно поговорим о том, как же работает машина построенная на данной архитектуре. Машина фон Неймана состоит из запоминающего устройства (памяти) – ЗУ, арифметико-логического устройства – АЛУ, устройства управления – УУ, а также устройств ввода и вывода, что видно их схемы и о чем говорилось ранее.

Программы и данные вводятся в память из устройства ввода через арифметико-логическое устройство. Все команды программы записываются в соседние ячейки памяти, а данные для обработки могут содержаться в произвольных ячейках. У любой программы последняя команда должна быть командой завершения работы.

Команда состоит из указания, какую операцию следует выполнить и адресов ячеек памяти, где хранятся данные, над которыми следует выполнить указанную операцию, а также адреса ячейки, куда следует записать результат, если его требуется сохранить в ЗУ.

Арифметико-логическое устройство выполняет указанные командами операции над указанными данными. Из него результаты выводятся в память или устройство вывода.

Управляющее устройство (УУ) управляет всеми частями компьютера. От него на другие устройства поступают сигналы «что делать», а от других устройств УУ получает информацию об их состоянии. Оно содержит специальный регистр (ячейку), который называется «счетчик команд». После загрузки программы и данных в память в счетчик команд записывается адрес первой команды программы, а УУ считывает из памяти содержимое ячейки памяти, адрес которой находится в счетчике команд, и помещает его в специальное устройство — «Регистр команд». УУ определяет операцию команды, «отмечает» в памяти данные, адреса которых указаны в команде, и контролирует выполнение команды.

АЛУ – обеспечивает арифметическую и логическую обработку двух переменных, в результате которых формируется выходная переменная. Функции АЛУ обычно сводятся к простым арифметическим и логическим операциям и операциям сдвига. Также формирует ряд признаков результата (флагов), характеризующих полученный результат и события, произошедшие в результате его получения (равенство нулю, знак, четность, переполнение). Флаги могут анализироваться УУ с целью принятия решения о дальнейшей последовательности выполнения команд.

В результате выполнения любой команды счетчик команд изменяется на единицу и, следовательно, указывает на следующую команду программы. Когда требуется выполнить команду, не следующую по порядку за текущей, а отстоящую от данной на какое-то количество адресов, то специальная команда перехода содержит адрес ячейки, куда требуется передать управление.

Итак, выделим ещё раз основные принципы, предложенные фон Нейманом:

· Принцип двоичного кодирования. Для представления данных и команд используется двоичная система счисления.

· Принцип однородности памяти. Как программы (команды), так и данные хранятся в одной и той же памяти (и кодируются в одной и той же системе счисления — чаще всего двоичной). Над командами можно выполнять такие же действия, как и над данными.

· Принцип адресуемости памяти. Структурно основная память состоит из пронумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка.

· Принцип последовательного программного управления. Все команды располагаются в памяти и выполняются последовательно, одна после завершения другой.

· Принцип условного перехода. Команды из программы не всегда выполняются одна за другой. Возможно присутствие в программе команд условного перехода, которые изменяют последовательность выполнения команд в зависимости от значений данных. (Сам принцип был сформулирован задолго до Джона фон Неймана Адой Лавлейс и Чарльзом Бэббиджем, однако он логически включен в фон-неймановский набор как дополняющий предыдущий принцип.)

Джон фон Нейман внес огромный вклад в развитие первых ЭВМ и разработку методов их применения. Разработанные фон Нейманом основы архитектуры вычислительных устройств оказались настолько фундаментальными, что получили в литературе название «фон-неймановской архитектуры». Принципы этой архитектуры широко используются и сегодня. Подавляющее большинство вычислительных машин на сегодняшний день – фон-неймановские машины. Исключение составляют лишь отдельные разновидности систем для параллельных вычислений, в которых отсутствует счетчик команд, не реализована классическая концепция переменной и имеются другие существенные принципиальные отличия от классической модели (примерами могут служить потоковая и редукционная вычислительные машины).

Устройство управления и арифметико-логическое устройство в современных компьютерах объединены в один блок – процессор, являющийся преобразователем информации, поступающей из памяти и внешних устройств (сюда относятся выборка команд из памяти, кодирование и декодирование, выполнение различных, в том числе и арифметических, операций, согласование работы узлов компьютера).

У современных компьютеров запоминающее устройство, хранящее информацию и программы, «многоярусно». Оно включает в себя оперативное запоминающее устройство (ОЗУ), хранящее ту информацию, с которой компьютер работает непосредственно в данное время (исполняемая программа, часть необходимых для нее данных, некоторые управляющие программы), и внешние запоминающие устройства (ВЗУ) гораздо большей емкости, чем ОЗУ, но с существенно более медленным доступом. На ОЗУ и ВЗУ классификация устройств памяти не заканчивается – определенные функции выполняют и СОЗУ (сверхоперативное запоминающее устройство), и ПЗУ (постоянное запоминающее устройство), и другие подвиды компьютерной памяти.

По-видимому, значительное отклонение от фон-неймановской архитектуры произойдет только в результате развития идеи машин пятого поколения, в основе обработки информации в которых лежат не вычисления, а логические выводы.

1. Х.Крейгон. Архитектура компьютера и её реализация. Учебное пособие. – С-Пб., Мир, 2004.

2. Э.Таненбауэм. Архитектура компьютера. Научная литература. – С-Пб., Питер, 2003.

Источник

Архитектура ЭВМ и принципы фон Неймана

1439023442ljanc

Архитектура ЭВМ и принципы фон Неймана

Термин «архитектура» используется для описания принципа действия, конфигурации и взаимного соединения основных логических узлов ЭВМ. Архитектура – это многоуровневая иерархия аппаратно-программных средств, из которых строится ЭВМ.

Основы учения об архитектуре ЭВМ заложил выдающийся американский математик Джон фон Нейман. Первая ЭВМ «Эниак» была создана в США в 1946 г. В группу создателей входил фон Нейман, который и предложил основные принципы построения ЭВМ: переход к двоичной системе счисления для представления информации и принцип хранимой программы.

Программу вычислений предлагалось помещать в запоминающем устройстве ЭВМ, что обеспечивало бы автоматический режим выполнения команд и, как следствие, увеличение быстродействия ЭВМ. (Напомним, что ранее все вычислительные машины хранили обрабатываемые числа в десятичном виде, а программы задавались путём установки перемычек на специальной коммутационной панели.) Нейман первым догадался, что программа может также храниться в виде набора нулей и единиц, причём в той же памяти, что и обрабатываемые ею числа.

Основные принципы построения ЭВМ:

1. Любую ЭВМ образуют три основных компонента: процессор, память и устр. ввода-вывода (УВВ).

2. Информация, с которой работает ЭВМ, делится на два типа:

    набор команд по обработке (программы); данные подлежащие обработке.

3. И команды, и данные вводятся в память (ОЗУ) – принцип хранимой программы.

4. Руководит обработкой процессор, устройство управления (УУ) которого выбирает команды из ОЗУ и организует их выполнение, а арифметико-логическое устройство (АЛУ) проводит арифметические и логические операции над данными.

5. С процессором и ОЗУ связаны устройства ввода-вывода (УВВ).

Фон Нейман не только выдвинул основополагающие принципы логического устройства ЭВМ, но и предложил структуру, которая воспроизводилась в течение первых двух поколений ЭВМ.

Внешнее запоминающее устройство (ВЗУ)

Название: Принципы фон Неймана
Раздел: Рефераты по информатике
Тип: реферат Добавлен 23:36:34 19 июня 2011 Похожие работы
Просмотров: 8186 Комментариев: 21 Оценило: 15 человек Средний балл: 4.3 Оценка: 4 Скачать
image001 227

Рис. 1. Архитектура ЭВМ Конец формы,

Оперативное запоминающее устройство (ОЗУ)

построенной на принципах

Разработанные фон Нейманом основы архитектуры вычислительных устройств оказались настолько фундаментальными, что получили в литературе название «фон Неймановской архитектуры». Подавляющее большинство ВМ на сегодняшний день – фон-неймановские машины.

Появление третьего поколения ЭВМ было обусловлено переходом от транзисторов к интегральным микросхемам, что привело к росту быстродействия процессора. Теперь процессор был вынужден простаивать, ожидая информации от более медленных устройств ввода-вывода, и это снижало эффективность работы всей ЭВМ в целом. Для решения этой проблемы были созданы специальные схемы управления работой внешних устройств, или просто контроллеры.

Как работает системная шина? Мы уже говорили, что единичные и нулевые биты существуют только в головах программистов. Для процессора реальны только напряжения на его контактах. Каждый контакт соответствует одному биту, и процессору нужно различать только две градации напряжения: есть-нет, высокое-низкое. Поэтому адрес для процессора – это последовательность напряжений на специальных контактах, называемых шиной адреса. Можно представить себе, то после того, как на контактах шины адреса выставляются напряжения, на контактах шины данных появляются напряжения, кодирующие хранящееся по указанному адресу число. Эта картина очень грубая, потому что для извлечения данных из памяти необходимо время. Чтобы не запутаться, работой процессора управляет специальный тактовый генератор. Он вырабатывает импульсы, которые делят работу процессора на отдельные шажки. Единицей времени процессора служит один такт, т. е. промежуток между двумя импульсами тактового генератора.

Напряжения, появляющиеся на шине адреса процессора, называются физическим адресом. В реальном режиме процессор работает только с физическими адресами. Наоборот, защищённый режим процессора интересен тем, что программа работает с логическими адресами, а процессор незримо преобразует их в физические. Система Windows использует защищённый режим работы процессора. Современные ОС и программы требуют столько памяти, что защищённый режим работы процессора стал гораздо «реальнее» его реального режима.

Системная шина характеризуется тактовой частотой и разрядностью. Количество одновременно передаваемых по шине бит называется разрядностью шины. Тактовая частота характеризует число элементарных операций по передаче данных в 1 секунду. Разрядность шины измеряется в битах, тактовая частота – в мегагерцах.

Всякая информация, передаваемая от процессора к другим устройствам по шине данных, сопровождается адресом, передаваемым по адресной шине. Это может быть адрес ячейки памяти или адрес периферийного устройства. Необходимо, чтобы разрядность шины позволила передать адрес ячейки памяти. Таким образом, словами разрядность шины ограничивает объем оперативной памяти ЭВМ, он не может быть больше чем image004 112, где n – разрядность шины. Важно, чтобы производительности всех подсоединённых к шине устройств были согласованы. Неразумно иметь быстрый процессор и медленную память или быстрый процессор и память, но медленный винчестер.

image005 89

Рис. 2. Схема устройства компьютера, построенного по магистральному принципу

В современных ЭВМ реализован принцип открытой архитектуры, позволяющий пользователю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости её модернизацию.

Конфигурацией компьютера называют фактический набор компонентов ЭВМ, которые составляют компьютер. Принцип открытой архитектуры позволяет менять состав устройств ЭВМ. К информационной магистрали могут подключаться дополнительные периферийные устройства, одни модели устройств могут заменяться другими.

Источник

Оцените статью
Avtoshod.ru - все самое важное о вашем авто