Гидромуфта где находится в автомобиле

Что такое гидромуфта и для чего она нужна

1544571672 smallСтатья про гидромуфту: для чего она нужна, комплектующие, особенности работы, возможные неисправности. В конце статьи — видео анимации гидромуфты КамАЗа. Статья про гидромуфту: для чего она нужна, комплектующие, особенности работы, возможные неисправности. В конце статьи — видео анимации гидромуфты КамАЗа.

1544571715 1

Гидравлическая муфта является частью закрытой системы автоматической и полуавтоматической коробки передач. Отдельный узел гидромуфты (в современных моделях авто — гидротрансформатор) предназначен для плавной передачи крутящего момента от коленвала к коробке-автомат.

Принцип работы

1544571753 2

Гидромуфта обеспечивает плавные переходы с одной передачи на другую, сдерживая вращательное колебание, позволяет начать плавный старт автомобиля и быстрый плавный разгон.

Главные комплектующие гидромуфты — два лопастных колеса, которые расположены на одной оси. Первая лопасть соединяется гибкой связкой с ведущим валом авто. Вторая лопасть имеет сцепление с ведомым валом. Внутренняя часть гидромуфты заполнена маслом.

Ведущий вал муфты получает вращение от двигателя машины. Под действием вращательных движений рабочей жидкости происходит передача усилий на лопасти ведомого вала, который начинает плавно вращаться, перебирая на себя ускорение от ведущего вала. Связующим звеном между валами является рабочая жидкость.

Гидротрансформатор как более модернизированная система имеет дополнительную силовую деталь – статор, третье колесо с лопастями определенной формы. Устанавливается на ведущий (насосный) вал, образуя с колесом единый узел.

Гидротрансформатор увеличивает крутящий момент передачи от двигателя на АКПП в несколько раз, в то время как муфта передает количество колебаний от ведущего вала с потерями на 2-5%.

Главные комплектующие гидромуфты:

Признаки износа и поломки гидромуфты и гидротрансформатора

1544571720 3

Гидравлическая муфта рассчитана на весь срок эксплуатации автоматической коробки передач, но, как и любая другая деталь, может выходить из строя намного раньше.

Признаки неисправности гидромуфты, которые потребуют обращения в автосервис:

Главной особенностью и достоинством гидромуфты является предохранение АКПП от большого крутящего момента при передаче усилия от двигателя. Муфта и гидротрансформатор позволяют сглаживать рывки подачи и передавать крутящий момент плавно, с постепенным увеличением и снижением оборотов.

Видео анимации гидромуфты КамАЗа:

Источник

Гидромуфта и гидротрансформатор

ae654e8s 100

8bab3ccs 960

Гидравлическая муфта (она же гидромуфта), а также впоследствии вытеснивший ее гидротрансформатор представляют собой закрытые механизмы полуавтоматических и автоматических коробок передач.

Оба устройства используются для передачи крутящего момента от ведущего вала двигателя к АКПП. В обоих механизмах между ведущим и ведомым валами нет жесткой связи, поэтому они передают вращение от одной оси к другой плавно и равномерно, без каких-либо рывков и толчков.

Своим рождением гидротрансформатор и гидромуфта обязаны развитию судостроения в конце XIX века. С появлением на кораблях морского флота паровых машин возникла острая необходимость в новом дополнительном механизме, который позволял бы плавно передавать крутящий момент от паровых двигателей к большим и тяжелым гребным винтам, погруженным в воду. Такими устройствами стали гидромуфта и гидротрансформатор, которые запатентовал в 1905 году немецкий инженер и изобретатель Герман Феттингер. Позже эти механизмы адаптировали для установки на лондонские автобусы, а затем на автомобили и первые дизельные локомотивы для более плавного начала движения.

Устройство и принцип работы гидромуфты

Внутри гидромуфты очень близко друг к другу соосно размещены два вращающихся колеса с лопастями. Одно соединено с ведущим валом (насосное), а второе с ведомым (турбинное). Все пространство вокруг них в гидромуфте заполнено рабочей жидкостью (масло).

Принцип работы гидромуфты очень прост. Её ведущий вал вращается двигателем. Вместе с валом в корпусе гидромуфты циркулирует и масло. За счет своей вязкости оно постепенно все больше и больше вовлекает за собой в это вращение ведомый вал. Таким образом, крутящий момент от двигателя плавно нарастая постепенно через жидкость передается на ведомый вал.

Устройство и принцип работы гидротрансформатора

По сути, гидротрансформатор это та же гидромуфта в которой между вращающимися колёсами добавлено третье лопастное колесо – реактор (статор). Посредством муфты свободного хода оно может вращаться на ведущем валу, образуя единое целое с насосным колесом. Это происходит до тех пор, пока обороты вращения насоса и турбины различаются. Как только они уравниваются, реактор начинает вращаться независимо от насоса, превращая гидротрансформатор в гидромуфту.

Главным достоинством гидромуфты и гидротрансформатора является возможность плавного изменения крутящего момента, передаваемого на трансмиссию от двигателя. Еще одним важным плюсом этих устройств является ограничение максимального передаваемого крутящего момента. Иными словами, эти механизмы никогда не смогут передать слишком большое вращение, способное повредить трансмиссию. Они предохранят от перегрузок приводной двигатель (особенно в момент пуска).

Самый большой недостаток гидротрансформатора и гидромуфты, в свою очередь, является низкий КПД в сравнении с механическими муфтами, имеющими жесткую связь ведущего и ведомого вала. Часть крутящего момента в них попросту тратится на перемешивание масла. Вместо того чтобы превратиться в полезный крутящий момент на выходном валу энергия вращения трансформируется в тепло, нагревая корпус муфты. Соответственно, это приводит к увеличению расхода топлива. Чтобы избежать этого, у современных автомобилей с АКПП для гидротрансформаторов предусмотрен механизм блокировки, который жестко связывает насос и турбину при достижении определенной скорости.

Источник

Гидромуфта — принцип работы

Свойства

Отметим основные свойства, которыми обладают гидромуфты:

Недостатки

Одним из явных изъянов использования гидромуфты стал небольшой коэффициент полезного действия если сравнивать их с механическими муфтами. Это связано с потерей крутящего момента, который используется на раскрутку масла, а не превращается в полезный крутящий момент. Для снижения износа в автомобилях с АКПП предусмотрен механизм блокирования, который срабатывает если автомобиль достиг предусмотренного значения скорости.

Сегодня на смену гидравлическим системам приходят современные пневматические и электрические системы. По статистике, именно на них направляется большинство инвестиций. Но на данный момент гидравлические системы являются самыми проверенными и надежными.

История

Своим рождением гидротрансформатор и гидромуфта обязаны развитию судостроения в конце XIX века. С появлением на кораблях морского флота паровых машин возникла острая необходимость в новом дополнительном механизме, который позволял бы плавно передавать крутящий момент от паровых двигателей к большим и тяжелым гребным винтам, погруженным в воду. Такими устройствами стали гидромуфта и гидротрансформатор, которые запатентовал в 1905 году немецкий инженер и изобретатель Герман Феттингер. Позже эти механизмы адаптировали для установки на лондонские автобусы, а затем на автомобили и первые дизельные локомотивы для более плавного начала движения.

lazy placeholder

Три режима функционирования гидромуфты

lazy placeholder
Гидромуфта Westcar Rotofluid K

Перед началом работы

Рабочая жидкость в муфте неподвижна.

lazy placeholder
Гидромуфта Westcar Rotofluid K

При пуске двигателя

Рабочая жидкость гидромуфты начинает приводиться в движение насосным колесом. Циркуляция жидкости приводит в движение турбинное колесо гидромуфты.

lazy placeholder
Гидромуфта Westcar Rotofluid K

В рабочем режиме

Номинальный рабочий режим (номинальное скольжение) гидромуфты создается заданной разницей скоростей вращения насосного и турбинного колес гидромуфты. В этом режима муфта просто передает крутящий момент от двигателя к рабочему органу.

Замена гидромуфты

Своевременная замена отслужившей свой срок гидромуфты позволит избежать долгосрочного простоя оборудования.
Читать подробнее

Гидромуфта – области применения

Защита при пусках двигателя и редуктора от чрезмерных нагрузок, обеспечение плавного пуска и другие достоинства гидромуфт делают их очень востребованными в различных видах промышленного оборудования.
Читать подробнее

Устройство и принцип работы гидромуфты

Внутри гидромуфты очень близко друг к другу соосно размещены два вращающихся колеса с лопастями. Одно соединено с ведущим валом (насосное), а второе с ведомым (турбинное). Все пространство вокруг них в гидромуфте заполнено рабочей жидкостью (масло).

Принцип работы гидромуфты очень прост. Её ведущий вал вращается двигателем. Вместе с валом в корпусе гидромуфты циркулирует и масло. За счет своей вязкости оно постепенно все больше и больше вовлекает за собой в это вращение ведомый вал. Таким образом, крутящий момент от двигателя плавно нарастая постепенно через жидкость передается на ведомый вал.

Как работает гидромуфта

Работа механизма, ставшего темой нашего разговора, базируется на простейших принципах. Крутящий момент поступает от ротора благодаря тому, что рабочая жидкость вязкая. Функцию этой жидкости выполняет масло гидромуфты.

Управление деталью осуществляется благодаря двум деталям – спиральной биметаллической пружине и пластине. В соответствии со сменой температуры пружина скручивается либо раскручивается, она поворачивает закрепленную на штифте биметаллическую пластину.

Пластина, также подверженная воздействию температурных изменений, либо изгибается, либо выпрямляется, обеспечивая открытие или закрытие каналов соответственно.

Если мотор транспортного средства холодный (а это обычно бывает сразу после его запуска), гидромуфта тоже холодная, ее пружина коротка, а пластина находится вплотную к разделительной пластине, соответственно, каналы закрыты.

Когда двигатель нагревается, нагревается и муфта, ее пружина под воздействием тепла раскручивается, провоцируя поворот пластины – она смещается, открывает канал, что способствует попаданию рабочей жидкости внутрь камеры. Благодаря вязкости этой жидкости начинается вращение вентилятора.

Достоинства и недостатки гидромуфты

В настоящее время гидромуфты устанавливаются на автомобили с полуавтоматическими коробками передач (грузовые, автобусы, реже легковые), на тракторы, в авиационные турбины, применяются в металлообрабатывающих станках. К достоинствам гидромуфты можно отнести простоту конструкции, обеспечение плавности изменения крутящего момента, передаваемого от двигателя на механизмы трансмиссии, снижение ударных нагрузок на шестеренчатые пары коробок передач. Недостатком гидромуфты является меньший по сравнению с гидротрансформатором коэффициент полезного действия из-за больших потерь при высоких оборотах ведущего вала двигателя. По этой причине на современные легковые автомобили гидромуфты практически не устанавливаются.

Принцип работы

Колеса, из которых состоит устройство, разделяются по назначению. Наносное соединяется с коленвалом двигателя, а турбинное имеет прямую связь с трансмиссией. Турбинное колесо раскручивается потоками масла, которые образуются при вращении наносного колеса. Такая конструкция позволяет передавать крутящий момент в соотношении один к одному. Но этого недостаточно, чтобы автомобиль мог работать с максимальной мощностью. Для усиления эффекта в конструкцию добавили реакторное колесо.

Гидромуфты подразделяются на регулируемые и замкнутые.

Устройство и принцип работы современного гидротрансформатора

lazy placeholder

Первый гидротрансформатор появился большее ста лет назад. Претерпев множество модификаций и доработок, этот эффективный способ плавной передачи крутящего момента сегодня применяется во многих сферах машиностроения, и автомобильная промышленность не стала исключением. Управлять автомобилем стало намного легче и комфортнее, так как теперь нет необходимости пользоваться педалью сцепления. Устройство и принцип работы гидротрансформатора, как и все гениальное, очень просты.

История появления

Первый в мире серийный легковой автомобиль без педали сцепления

Впервые принцип передачи крутящего момента посредством рециркуляции жидкости между двумя лопастными колесами без жесткой связи был запатентован немецким инженером Германом Феттингером в 1905 году.

Устройства, работающие на основе данного принципа, получили название гидромуфта. В то время развитие судостроения требовало от конструкторов найти способ постепенной передачи крутящего момента от парового двигателя к огромным судовым винтам, находящимся в воде.

Основные типы и характеристики замкнутых гидромуфт.

Замкнутые гидромуфты постоянного наполнения условно могут быть подразделены на предохранительные и пускопредохранительные.

Предохранительные гидромуфты ограничивают крутящий момент значением, меньшим на 15-20% максимального (опрокидного) момента приводного электродвигателя (двигатель). Значение пускового(стопового) момента в отдельных моделях таких гидромуфт может иметь значение 1,3-1,4 от величины номинального момента. В этом случае предохранительная гидромуфта выполняет функцию муфты предельного момента. Пускопредохранительная гидромуфта предназначена для поддержания вращающего момента привода в течение всего периода разгона машины в пределах 1,3-1,5 от номинального момента.

Характерным примером применения предохранительной гидромуфты как муфты предельного момента является роторный экскаватор, а пускопредохранительной гидромуфты — ленточный конвейер большой длинны.

При работе гидромуфты на установившемся режиме вся РЖ находится в рабочей полости 3 и, как было указано выше, циркулирует по каналам насоса и турбины.

В указанном режиме в камере 9 РЖ отсутствует, т.к. оба колеса (насос 1 и турбина 2) вращаются с большой частотой вращения при минимальном их скольжении. В случае возрастания нагрузочного момента скорость турбины 2 начинает уменьшаться.

При определенной величине внешней нагрузки РЖ опускается по лопаткам турбины 2 к центру гидромуфты и достигает границ камеры 9. С дальнейшим ростом нагрузки и скольжения вс? большее количество РЖ устремляется в камеру 9, в то время как количество ее в рабочей полости 3 уменьшается. Так как расход РЖ по каналам насоса и турбины в этом переходном режиме падает, то крутящий момент, передаваемой гидромуфтой, не возрастает и ограничивается вполне определeнной величиной. Остановка турбины 1 (скольжение 100%) соответствует практически полному заполнению камеры 9 РЖ, находящейся в ней в состоянии динамического равновесия. Последнее обусловлено тем, что насос 1 постоянно всасывает ту порцию жидкости, которая в данный момент поступает из турбины 2 в указанную камеру. При снятии внешней нагрузки первоначальная картина восстанавливается, поскольку вся РЖ перетекает вновь из камеры 9 в рабочую полость 3. Пуск гидромуфты сопровождается аналогичным гидравлическим процессом, но с той лишь разницей, что он протекает в обратном порядке по сравнению с режимом торможения ведомого вала.

Вал 5 турбины 2 имеет два подшипника качения 10 и 11, позволяющие этому колесу свободно вращаться по отношению к насосу 1. Полость гидромуфты во избежание вытекания РЖ уплотнена на валу 5 манжетами 12 и 13.

На рис. 3 представлены графики внешних моментных характеристик асинхронного короткозамкнутого двигателя (а) и предохранительной гидромуфты (б). В качестве допущения принято, что при изменении момента частота вращения насоса (мин-1) n1 =const.

Момент гидромуфты Мг подчиняется зависимости

-безразмерный коэффициент момента, являющийся параметром гидромуфты данного типа при заданном значении i,
ρ
— плотность РЖ,
Da
— активный диаметр, равный наибольшему диаметру рабочей полости гидромуфты.

Из приведенной зависимости следует, что изменение М

г с изменением n1 следует закону квадратичной параболы.

lazy placeholder

График 1 на рис.3 относится к «чисто» предохранительной гидромуфте, а график 2- к предохранительной гидромуфте, выполняющей функции муфты предельного момента с пониженным пусковым (стоповым ) моментом при i=0. Из сопоставления характеристик видно, что момент гидромуфты при любом передаточном отношении i не превышает максимальный момент (М макс.) двигателя, работающего в установившихся режимах на устойчивом участке своей моментной характеристики независимо от величины нагрузки.

Работе привода с номинальной нагрузкой М

В случае отсутствия гидромуфты включение двигателя в электросеть вызывает ударное приложение усилий к элементам передачи, эквивалентное среднему значению М

г) плавно нарастает от нуля по параболам 0
-с1
и 0-
с2
соответственно при характеристиках 1 и
2.
В точках
с1
и
с2
работа двигателя с частотой вращения, близкой к рабочей, устойчива, поскольку момент гидромуфты 0
-С1
и 0
-С2
при ее скольжении, равном 100%, меньше
М
макс.

Пуск привода при номинальной нагрузке М

н и характеристике гидромуфты, например,
2
(Рис.3) можно условно разделить на три фазы. В первой фазе при неподвижной турбине двигатель быстро разгоняется по параболе 0
-с2
до точки
к
пересечения этой кривой с линией
М
н=const. При частоте вращения двигателя
n
1к турбина совместно с ведомой частью привода страгивается с места и ускоряется, что соответствует второй фазе пуского процесса. В течение этой фазы двигатель разгоняется, преодолевая момент сопротивления гидромуфты, изменяющийся так же по параболе
0-с2
. Завершению этой фазы соответствует точка
с2
пересечения кривой
0-с2
с рабочим участком характеристики двигателя и точка
В
на графике 2 характеристики гидромуфты. Третья завершающая фаза определяется участком
a-c2
характеристики двигателя и соответственно участком
A-B
характеристики гидромуфты. В этой фазе момент гидромуфты изменяется от
М
кр до
М
н.

На рис.4 приведена конструкция пускопредохранительной гидромуфты ГПП530 с тормозным шкивом, которая устанавливается на входной вал коническо-цилиндрического редуктора приводного блока ленточного конвейера.

Выход РЖ из камеры 5 в рабочую полость 8 при работе гидромуфты осуществляется через ряд отверстий 9 небольшого сечения, выполненных в цилиндрической стенке указанной камеры. При неподвижном состоянии гидромуфты РЖ свободно заполняет большую часть объема камеры 5. В процессе быстрого пуска двигателя камера 5 под напором насоса полностью заполняется РЖ и остается максимально заполненной практически до полного разгона машины.

Расход РЖ, перетекающей постоянно в рабочую полость 8 из камеры 5, сполна компенсируется большим расходом РЖ, поступающей в нее из каналов турбины 2.

Объем РЖ в камере 5 начинает уменьшаться лишь после разгона ведомого вала привода до скорости, близкой к номинальной. При этой скорости центробежные силы, воздействующие на РЖ в каналах турбины, будут препятствовать ее проникновению к кольцевому входу 7. В связи с этим рабочая полость будет постепенно пополняться через отверстия 9 РЖ, поступающей из камеры 5. Последняя полностью опорожнится лишь после окончания разгона машины.

Способность пускопредохранительной гидромуфты удерживать в пусковом процессе значительную часть РЖ в полости пусковой камеры обеспечивает снижение пускового момента привода до значения (1,3-1,6) М

н и тем самым растянутый во времени плавный разгон машины.

Ограничение пускового момента в указанных пределах необходимо для большинства ленточных конвейеров, поскольку при этом устраняются опасные динамические колебания натяжения ленты и ее пробуксовка по барабанам.

Экспериментально полученные графики изменения частот вращения насоса и турбины, а также крутящего момента гидромуфты ГПП530 в процессах пуска механической системы, имитирующей разгон ленточного конвейера, приведены на рис.5.

lazy placeholder

Рассмотрение графических зависимостей n

1,
n
2 и
М
г от времени процесса t указывает на то, что двигатель легко разгоняется за 1,8-2,0 с, в то время как ведомый вал, нагруженный моментом сопротивления, равным
М
н, и инерционной нагрузкой (момент инерции 28 кгм2), ускоряется до номинальной частоты вращения за 34с.

При пускопредохранительной гидромуфте привод приобретает в известном смысле признаки адаптивной системы, т.к. при сниженном моменте сопротивления движению уменьшается и вращающий момент М

г, в связи с чем плавность пуска сохраняется.

Как предохранительные, так и пускопредохранительные гидромуфты могут иметь конструктивное исполнение «гидромуфта-шкив». В таких гидромуфтах шкив (например шкив клиноременной передачи) прикрепляется к корпусу или к соединенной с ним турбине. Внутреннее лопастное колесо выполняет при таком исполнении функцию насоса.

На рис.6 показана предохранительная гидромуфта ГМШ500 исполнения «гидромуфта-шкив», в которой болтами к турбине 1 присоединен шкив 2. Насос 3 установлен на валу 4, с помощью которого гидромуфта может быть консольно смонтирована на валу двигателя.

Принцип работы гидромуфты

В роли рабочей жидкости гидромуфты обычно выступает минеральное масло. В некоторых случаях, когда требуется обеспечение более высоких показателей характеристик гидромуфты, по специальному заказу, изготавливаются гидромуфты, где вместо масла используется вода (трение, создаваемое водой меньше).

Крутящий момент от двигателя преобразуется в гидромуфте в кинетическую энергию движения рабочей жидкости, которая затем переходит в механическую энергию.

Источник

гидромуфта и гидротрансформатор

TWAAAgA beA 100

Гидромуфта и гидротрансформатор.

Гидравлическая муфта (она же гидромуфта), а также впоследствии вытеснивший ее гидротрансформатор представляют собой закрытые механизмы полуавтоматических и автоматических коробок передач.

Оба устройства используются для передачи крутящего момента от ведущего вала двигателя к АКПП. В обоих механизмах между ведущим и ведомым валами нет жесткой связи, поэтому они передают вращение от одной оси к другой плавно и равномерно, без каких-либо рывков и толчков.

Своим рождением гидротрансформатор и гидромуфта обязаны развитию судостроения в конце XIX века. С появлением на кораблях морского флота паровых машин возникла острая необходимость в новом дополнительном механизме, который позволял бы плавно передавать крутящий момент от паровых двигателей к большим и тяжелым гребным винтам, погруженным в воду. vk.com/cars.best Такими устройствами стали гидромуфта и гидротрансформатор, которые запатентовал в 1905 году немецкий инженер и изобретатель Герман Феттингер. Позже эти механизмы адаптировали для установки на лондонские автобусы, а затем на автомобили и первые дизельные локомотивы для более плавного начала движения.

Устройство и принцип работы гидромуфты

Внутри гидромуфты очень близко друг к другу соосно размещены два вращающихся колеса с лопастями. Одно соединено с ведущим валом (насосное), а второе с ведомым (турбинное). Все пространство вокруг них в гидромуфте заполнено рабочей жидкостью (масло).

Принцип работы гидромуфты очень прост. Её ведущий вал вращается двигателем. Вместе с валом в корпусе гидромуфты циркулирует и масло. За счет своей вязкости оно постепенно все больше и больше вовлекает за собой в это вращение ведомый вал. Таким образом, крутящий момент от двигателя плавно нарастая постепенно через жидкость передается на ведомый вал.

Устройство и принцип работы гидротрансформатора

По сути, гидротрансформатор это та же гидромуфта в которой между вращающимися колёсами добавлено третье лопастное колесо – реактор (статор). Посредством муфты свободного хода оно может вращаться на ведущем валу, образуя единое целое с насосным колесом. Это происходит до тех пор, пока обороты вращения насоса и турбины различаются. Как только они уравниваются, реактор начинает вращаться независимо от насоса, превращая гидротрансформатор в гидромуфту.

Главным достоинством гидромуфты и гидротрансформатора является возможность плавного изменения крутящего момента, передаваемого на трансмиссию от двигателя. Еще одним важным плюсом этих устройств является ограничение максимального передаваемого крутящего момента. Иными словами, эти механизмы никогда не смогут передать слишком большое вращение, способное повредить трансмиссию. Они предохранят от перегрузок приводной двигатель (особенно в момент пуска).

Самый большой недостаток гидротрансформатора и гидромуфты, в свою очередь, является низкий КПД в сравнении с механическими муфтами, имеющими жесткую связь ведущего и ведомого вала. Часть крутящего момента в них попросту тратится на перемешивание масла. Вместо того чтобы превратиться в полезный крутящий момент на выходном валу энергия вращения трансформируется в тепло, нагревая корпус муфты. Соответственно, это приводит к увеличению расхода топлива. Чтобы избежать этого, у современных автомобилей с АКПП для гидротрансформаторов предусмотрен механизм блокировки, который жестко связывает насос и турбину при достижении определенной скорости.

Источник

Оцените статью
Avtoshod.ru - все самое важное о вашем авто