Если допустимая степень искрения в паспорте электрической машины не указана

12. Как определить допустимую степень искрения на коллекторе в электродвигателе постоянного тока?

Как определить допустимую степень искрения на коллекторе в электродвигателе постоянного тока?

Повышенное искрение может происходить из-за неправильной установки щеток (не по заводским меткам), плохого прилегания щеток к коллектору, загрязнения или частичного выгорания коллектора, повышенной вибрации щеточного устройства и др.

Полностью устранить искрение практически не удается, поэтому необходимо уметь правильно определить допустимую степень искрения.

В соответствии с нормами искрение на коллекторе оценивается по степени искрения под сбегающим краем щетки и по шкале (классам коммутации), приведенной в таблице 9.

Допустимую степень искрения можно определить и по цвету образующихся искр. Небольшое искрение голубовато-белого цвета, почти всегда имеющееся на сбегающем крае щетки, не представляет собой никакой опасности. Удлиненные искры желтоватого оттенка свидетельствуют о неправильной коммутации. Зеленая окраска искр и присутствие частичек меди на рабочей части щеток указывают на механические повреждения коллектора.

Таблица 9. Степень и характеристика искрения

Степень искрения (класс коммутации)

Характеристика степени искрения

Состояние коллектора и щеток

Отсутствие искрения (темная коммутация)

Отсутствие почернения на коллекторе и нагара на щетках

Слабое точечное искрение под небольшой частью щетки

Слабое искрение под большей частью щетки

Появление следов почернения на коллекторе, легко устраняемых протиранием поверхности коллектора бензином, а также следов нагара на щетках

Искрение под всем краем щетки. Допускается только при кратковременных толчках нагрузки и перегрузки

Появление следов почернения на коллекторе, не устраняемых протиранием поверхности бензином, а также следов нагара на щетках

Значительное искрение под всем краем щетки с наличием крупных и вылетающих искр. Допускается только для моментов прямого (без реостатных ступеней) включения или реверсирования машин, если при этом коллектор и щетки остаются в состоянии, пригодном для дальнейших работ

Значительное почернение на коллекторе, не устраняемое протиранием поверхности коллектора бензином, а также подгар и разрушение щеток

Kак определить положение геометрической нейтрали машины постоянного тока?

Для правильной установки щеток машин постоянного тока необходимо определить положение геометрической нейтрали.

Определение геометрической нейтрали может быть произведено методом наибольшего напряжения, индуктивным методом и методом двигателя.

При определении нейтрали методом наибольшего напряжения генератор с независимым возбуждением вращают вхолостую с постоянной частотой вращения и током возбуждения. Щетки передвигают по коллектору до тех пор, пока вольтметр, присоединенный к зажимам якоря, не даст максимального отклонения. Такое положение щеток соответствует геометрической нейтрали.

При индуктивном методе машина остается неподвижной и возбуждение подается от постороннего источника постоянного тока. К зажимам якоря подключают чувствительный вольтметр. Щетки передвигают до тех пор, пока внезапное замыкание или размыкание цепи возбуждения не перестает вызывать отклонения стрелки вольтметра. Это положение щеток будет соответствовать положению геометрической нейтрали.

При размыкании обмотки возбуждения в ней могут возникнуть большие перенапряжения. Поэтому ток в обмотке возбуждения необходимо устанавливать небольшим или зашунтировать обмотку возбуждения сопротивлением.

При определении нейтрали методом двигателя находят такое положение щеток, при котором частота вращения двигателя в обе стороны будет одинаковой. Опыт проводят под нагрузкой, при которой ток якоря равен половине номинального. Изменение направления вращения производят изменением полярности зажимов обмотки якоря.

Какие бывают электрические нагреватели?

Косвенный электронагрев сопротивлением применяют для нагрева и термообработки проводящих, непроводящих, твердых, жидких материалов в области температур до 1500°С. Основным элементом электротермической установки сопротивления служит электрический нагреватель — тепловыделяющий источник, преобразующий электрическую энергию в тепловую. Нагреватель представляет собой высокоомное сопротивление — нагревательный элемент, оборудованный вспомогательными устройствами для подвода тока, электроизоляции, защиты от механических повреждений, крепления. Нагревательные элементы выполняют из металлических и неметаллических материалов в виде проволочных спиралей, ленточных зигзагов, стержней, трубок, пленок на изолирующих подложках.

Электронагреватели сопротивления классифицируются по исполнению (открытые, закрытые, герметические); материалу нагревательных элементов (металлические, полупроводниковые, неметаллические); конструктивному исполнению (проволочные, ленточные, стержневые, пленочные);

рабочей температуре (низкотемпературные, средне температурные, высокотемпературные) и другим признакам.

Открытые нагреватели (рис. 8, а, б) просты по устройству, имеют хорошие условия для теплопередачи, ремонтоспособны. Их недостаток — повышенная электрическая опасность, низкий срок службы. Они применяются главным образом в высокотемпературных установках с теплоотдачей преимущественно излучением (термоизлучатели, электрические печи).

Закрытые нагреватели (рис. 8, в) размещают в корпусе, предохраняющем их от механических воздействий и нагреваемой среды. Герметические нагреватели защищены от внешних воздействий, в том числе от доступа воздуха.

2 121

Рис. 8. Электрические нагреватели:

а — спираль; б — лента; в — нагреватель в корпусе; 1 — металлический кожух; 2 — нагревательный провод; 3 — изолятор; d — диаметр провода; h — шаг спирали; D — диаметр спирали; а — толщина ленты, bширина ленты

Kак устроены трубчатые электрические нагреватели? Kак их выбрать?

Трубчатые электронагреватели (ТЭНы) по исполнению являются герметическими. Это наиболее распространенные электротермические устройства установок низко- и среднетемпературного нагрева.

2 122

Рис. 9. Трубчатый электронагреватель (ТЭН): 1 — оболочка (трубка); 2 — спираль; 3 — контактный стержень; 4 — изолятор (периклаз или кварцевый песок); 5мастика; 6фарфоровая втулка; 7 — контактная гайка. L — общая длина ТЭНа; Lакт — активная (рабочая) длина t; tкдлина контактного стержня; hшаг спирали; d — диаметр провода; dcn — диаметр спирали; dcn.наp — диаметр спирали наружный;

dmp. вн — диаметр трубки внутренний; dmp.нар— диаметр трубки наружный

Устройство типового ТЭНа показано на рис.9,а. Он состоит из тонкостенной (0,8—1,2 мм) металлической трубки (оболочки) 7, в которой размещена спираль 2 из проволоки высокого удельного электрического сопротивления. Концы спирали соединены с контактным стержнем 3, наружные выводы 7 которого служат для подключения нагревателя к питающей сети. Материалом трубки может быть углеродистая сталь марок 10 или 20, если температура поверхности ТЭНа в рабочем режиме не превышает 450°С, и нержавеющая сталь 12Х18Н10Т при более высоких температурах или при работе в агрессивных средах (табл.10). Спираль изолируют от трубки наполнителем 4, имеющим высокие электроизолирующие свойства и хорошо проводящим теплоту. В качестве наполнителя используют периклаз (кристаллическая окись магния). После заполнения наполнителя трубку опрессовывают. Под большим давлением периклаз превращается в монолит, надежно фиксирующий спираль по оси трубки. Спрессованный нагреватель может быть изогнут для придания необходимой формы. Контактные стержни 3 изолируют от трубки изолятором 6, торцы герметизируют влагозащищающим кремнийорганическим лаком (герметиком) 5.

Преимущество ТЭНов — универсальность, надежность и безопасность обслуживания. Их можно использовать при контакте с газообразными и жидкими средами при давлении до 9, 8 • 105 Па. Они не боятся ударов и вибраций, но не являются взрывобезопасными. Рабочая температура поверхности ТЭНов может достигать 800°С, что удовлетворяет большинству бытовых и сельскохозяйственных тепловых процессов и позволяет использовать их в качестве тепловыделяющих источников не только в установках кондуктивного и конвективного нагрева, но и в качестве излучателей в установках лучистого (инфракрасного) нагрева. Вследствие герметизации спиралей срок службы ТЭНов достигает 10 тыс. ч. ТЭНы изготовляют по ГОСТ 13268. Единичная мощность их (15—12)*103 Вт, а в блоке (из двух или трех нагревателей) достигает 24-103 Вт, развернутая длина 185—5280 мм, наружный диаметр трубки 6, 5—8, 0—10—12, 5—16 мм, номинальное напряжение 12, 36, 48, 55, 127, 220 и 380 В, климатическое исполнение УХЛ4 или УХЛЗ по ГОСТ 15150.

•ТЭНы выпускают разнообразной конструкции, что позволяет встраивать их в самые разные установки, начиная от промышленных печей и до бытовых электронагревательных приборов. Помимо обычного исполнения выпускают одноконцевые ТЭНы патронного типа диаметром от 6,5 до 20 мм, отличающиеся высокой удельной поверхностной мощностью (до 38 • 10^4 Вт/м^2), а также плоские ТЭНы (сечением 5х11 и 6х17 мм) с развитой теплоотдающей поверхностью. К недостаткам ТЭНов следует отнести высокую металлоемкость и стоимость из-за использования дорогостоящих материалов (нихром, нержавеющая сталь), невысокий срок службы, невозможность ремонта при перегорании спирали.

Таблица 10. Нагреваемые среды, характер нагрева, предельная (удельная) поверхностная мощность, материал оболочки ТЭНа и ее температура

Источник

Причины, вызывающие искрение на коллекторе. 1 страница

При работе машины постоянного тока щетки и кол­лектор образуют скользящий контакт. Площадь кон­такта щетки выбирают по значению рабочего тока машины, приходящегося на одну щетку, в соответст­вии с допустимой плотностью тока для выбранной марки щеток. Если по какой-то причине щетка приле­гает к коллектору не всей поверхностью, то возникают чрезмерные местные плотности тока, приводящие к искрению на коллекторе.

Причины, вызывающие искрение на коллекторе, разделяют на механические, потенциальные и ком­мутационные.

Механические причины искрения — слабое давление щеток на коллектор, биение коллектора, его эллиптичность или негладкая поверхность, загрязнение поверхности коллектора, выступание миканитовой изоляции над медными пластинами, неплотное закрепление траверсы, пальцев или щетко­держателей, а также другие причины, вызываю­щие нарушение электрического контакта между щеткой и коллектором.

Потенциальные причины искрения появ­ляются при возникновении напряжения между смеж­ными коллекторными пластинами, превышающего допустимое значение. В этом случае искрение наиболее опасно, так как оно обычно сопро­вождается появлением на коллекторе электрических дуг.

Коммутационные причины искрения соз­даются физическими процессами, происходящими в машине при переходе секций обмотки якоря из одной параллельной ветви в другую.

Иногда искрение вызывается целым комплексом причин. Выяснение причин искрения следует начи­нать с механических, так как их обнаруживают осмотром коллектора и щеточного устройства. Труд­нее обнаружить и устранить коммутационные при­чины искрения.

При выпуске готовой машины с завода в ней настраиваю темную коммутацию, исключающую какое-либо искрение на коллекторе в процессе эксплуатации машины, по мере износа кол­лектора и теток, возможно появление искрения. В некоторых случаях оно может быть значительным и опасным, тогда машину необходимо остановить для выяснения и устранения причин иск­рения. Однако небольшое искрение в машинах общего назначе­ния обычно допустимо.

Согласно ГОСТу, искрение на коллекторе оценивается сте­пенью искрения (классом коммутации) под сбегающим краем щетки.

Если допустимая степень искрения в паспорте электриче­ской машины не указана, то при номинальной нагрузке она не должна превышать 1/2.

При вращении якоря машины постоянного тока коллекторные пластины поочередно вступают в соприкосновение со щетками. При этом переход щетки с одной пластины (сбегающей) на другую (набегающую) сопровождается переключением секции обмотки из одной параллельной ветви в другую и изменением как значения, так и направления тока в этой секции. Процесс переключения секции из одной параллельной ветви в другую и сопровождающие его явления называются коммутацией.

Сложность процессов коммутации не позволяет рассмотреть коммутацию в общем виде. Поэтому для получения аналитиче­ских и графических зависимостей, поясняющих коммутацию, допускают, что ширина щетки равна коллекторному делению; щетки расположены на геометрической нейтрали; электрическое сопротивление коммутирующей секции и мест ее присоединения к коллектору по срав­нению с сопротивлени­ем переходного контак­та «щетка — коллектор» пренебрежимо мало (обычно такое соотно­шение указанных со­противлений соответст­вует действительности).

В начальный момент коммутации (рисунок 20, а) контактная поверх­ность щетки касается только пластины 1, а коммутирующая секция относится к левой па­раллельной ветви об­мотки и ток в ней равен ia. Затем пластина 1 постепенно сбегает со щетки и на смену ей набегает пластина 2. В результате коммутирующая секция оказывается замкнутой щеткой и ток в ней постепенно уменьшается. В середине процесса коммутации (t = 0,5T к) контактная поверхность щетки равномерно перекрывает обе коллекторные пластины (рисунок 20,б). В конце коммутации (t = Tк) щетка полностью переходит на пластину 2 и теряет контакте пластиной 1 (рисунок 20,в), а ток в коммутирую­щей секции становится равным — iа, т. е. по значению таким же, что и в начале коммутации, а по направлению — противополож­ным. При этом коммутирующая секция оказалась в правой параллельной ветви обмотки.

image058

image060

Тема: Генератор независимого возбуждения

Схема включения генератора независимого возбуждения показана на рисунке 21,а.

image062

Регулировочный реостат, включенный в цепь возбуждения, дает возможность регулировать ток возбуждения, а следовательно, и основной магнитный поток машины. Обмотка возбуждения питается от источника энергии постоянного тока: аккумулятора, выпрямителя или же другого генератора постоянного тока.

Характеристика холостого хода. При снятии данной характеристики (рисунок 21,б) генератор работает в режиме х.х. Установив номинальную частоту вращения и поддерживая ее неизменной, постепенно увеличивают ток в обмотке возбуждения от нулевого значения до значения А, при котором Uх.х равно 1,15 от номинального, тем самым получая данные для построения кривой 1. Начальная ордината кривой 1 не равна 0, что объясняется действием небольшого магнитного потока остаточного магнетизма, сохранившегося от предыдущего намагничивания машины. Уменьшив ток возбуждения до 0 и изменив его направление, постепенно увеличивают ток в цепи возбуждения. Полученная таким образом кривая 2 называется нисходящей ветвью характеристики. В первом квадранте кривая 2 располагается выше кривой 1. Объясняется это тем, что в процессе снятия кривой 1 произошло увеличение магнитного потока остаточного намагничивания. Далее опыт проводят в обратном направлении. В результате получают кривую 3, называемую восходящей ветвью характеристики. Нисходящая и восходящая ветви образуют петлю намагничивания. Проведя между кривыми 2 и 3 среднюю линию 4, получим расчетную характеристику х.х.

Прямолинейная часть характеристики х.х. соответствует ненасыщенной магнитной системе машины. При дальнейшем увеличении тока сталь машины насыщается и характеристика приобретает криволинейный характер.

Внешняя характеристика. Эта характеристика представляет собой зависимость напряжения на выводах генератора от тока нагрузки. При снятии данных для построения внешней характеристики генератор приводят во вращение с номинальной скоростью и нагружают его до номинального тока при номинальном напряжении. Затем, постепенно уменьшая нагрузку вплоть до х.х, снимают показания приборов. Сопротивление цепи возбуждения и частоту вращения в течении опыта поддерживают неизменными. На рисунке 22,а представлена внешняя характеристика генератора независимого возбуждения, из которой видно, что при увеличении тока нагрузки напряжение на выводах генератора понижается; это объясняется размагничивающим влиянием реакции якоря и падением напряжения в цепи якоря.

image064

Регулировочная характеристика. Данная характеристика (рисунок 22,б) показывает, как следует менять ток в цепи возбуждения, чтобы при изменении тока нагрузки генератора напряжение на его выводах оставалось неизменным. При работе генератора без нагрузки в цепи возбуждения устанавливают ток, при котором напряжение на выводах генератора становится равным номинальному. Затем постепенно увеличивают нагрузку генератора, одновременно повышают ток возбуждения таким образом, чтобы напряжение генератора во всем диапазоне нагрузок оставалось равным номинальному. Так получают восходящую ветвь характеристики (кривая 1). Затем проводя опыт в обратном направлении получают кривую 2. Кривые не совпадают из-за остаточного магнетизма машины. Средняя кривая 3 проводится между двумя кривыми, полученными опытным путем и называется практической регулировочной характеристикой генератора.

Недостаток генератора – требуется дополнительный источник питания. Достоинство – возможность регулирования напряжения в широких пределах, а также сравнительно жесткая внешняя характеристика.

Тема: Генератор смешанного и параллельного возбуждения

Принцип самовозбуждения генератора постоянного тока осно­ван на том, что магнитная система машины, будучи намагничен­ной, сохраняет длительное время небольшой магнитный поток остаточного магнетизма сердечников полюсов и станины Фост(порядка 2—3 % от полного, потока). При вращении якоря поток Фост индуцирует в якорной обмотке ЭДС Еост, под действием кото­рой в обмотке возбуждения возникает небольшой ток Iв.ост. Если МДС обмотки возбуждения Iв.остwв имеет такое же направление, как и поток, то она увеличивает поток главных полюсов. Это, в свою очередь, вызывает увеличение ЭДС генератора, отчего ток возбуждения вновь увеличится. Так будет продолжаться до тех пор, пока напряжение генератора не будет уравновешено падением напряжения в цепи возбуждения, т.е. image066.

На рисунке 23, а показана схема включения генератора парал­лельного возбуждения, на рисунке 23, б — характеристика х.х. генератора (кривая 1) и зависимость падения напряжения от тока возбуждения image068(прямая 2). Точка пересечения А соответствует окончанию процесса самовозбуждения, так как именно в ней image070.

image072

Угол наклона прямой ОА к оси абсцисс определяется из треугольника ОАВ:

image074, (10)

где mi – масштаб тока (по оси абсцисс), А/мм;

mu – масштаб напряжения (по оси ординат), В/мм.

Из формулы следует, что угол наклона прямой image068к оси абсцисс прямо пропорционален сопротивлению цепи возбужде­ния. Однако при некотором значении сопротивления реостата rрг сопротивление rв достигает значения, при котором зависи­мость image068становится касательной к прямолинейной части характеристики х.х. (прямая 3). В этих условиях генератор не самовозбуждается. Сопротивление цепи возбуждения, при кото­рой прекращается самовозбуждение генератора, называют кри­тическим сопротивлением (rв.крит).

Следует отметить, что самовозбуждение генератора возможно лишь при частоте вра­щения, превышающей критическую nкр. Это условие вытекает из характеристики самовоз­буждения генератора (рисунок 24), представ­ляющей собой зависимость напряжения гене­ратора в режиме х. х. от частоты вращения при неизменном сопротивлении цепи возбуж­дения, т.е. image076при image078.

image080

Анализ характеристики самовозбуждения показывает, что при n nкр. В этом случае увеличение частоты вращения сопровождается резким ростом нап­ряжения U0. Однако при частоте вращения, близкой к номиналь­ной, рост напряжения несколько замедляется, что объясняется магнитным насыщением генератора. Критическая частота враще­ния зависит от сопротивления цепи возбуждения и с ростом послед­него увеличивается.

Таким образом, самовозбуждение генераторов постоянного тока возможно при соблюдении следующих условий: а) магнит­ная система машины должна обладать остаточным магнетиз­мом; б) присоединение обмотки возбуждения должно быть таким, чтобы МДС обмотки совпадала по направлению с потоком оста­точного магнетизма Фост; в) сопротивление цепи возбуждения должно быть меньше критического; г) частота вращения якоря должна быть больше критической.

Так как генератор параллельного возбуждения самовозбуждается лишь в одном направлении, то и характеристика х.х. этого генератора может быть снята только для одного квадранта осей координат.

Нагрузочная и регулировочная характеристики генератора параллельного возбуждения практически не отличаются от соот­ветствующих характеристик генератора независимого возбуж­дения.

Внешняя характеристика генератора параллельного возбуж­дения 1 (рисунок 25) менее жесткая, чем у генератора независи­мого возбуждения. Объясняется это тем, что в генераторе парал­лельного возбуждения помимо причин, вызывающих уменьшение напряжения в генераторе независимого возбуждения (реакция якоря и падение напряжения в цепи якоря), действует еще и третья причина — уменьшение тока возбуждения, вызванное снижением напряжения от действия первых двух причин. Этим же объясняется и то, что при постепенном уменьшении сопро­тивления нагрузки rн ток увеличивается лишь до критического значения Iкр, а затем при дальнейшем уменьшении сопротивле­ния нагрузки ток начинает уменьшаться. Наконец, ток на­грузки при коротком замыка­ая Iк 50 %.

При секционировании об­мотки возбуждения (рисунок 29,г) отключение части витков об­мотки сопровождается ростом частоты вращения. При шунти­ровании обмотки якоря реоста­том Rш (см. рисунок 29,в) увели­чивается ток возбуждения, что вызывает умень­шение частоты вращения. Этот способ регулирования, хотя и обеспечивает глубокую регули­ровку, неэкономичен и применяется очень редко.

Дата добавления: 2015-02-28 ; просмотров: 4934 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Причины, вызывающие искрение на коллекторе

Лекция №6

Коммутация в машинах постоянного тока

Причины, вызывающие искрение на коллекторе

При работе машины постоянного тока щетки и коллектор образуют скользящий контакт. Площадь контакта щетки выбирают по значению рабочего тока машины, приходящегося на одну щетку, в соот­ветствии с допустимой плотностью тока для вы­бранной марки щеток. Если по какой-то причине щетка прилегает к коллектору не всей поверхно­стью, то возникают чрезмерные местные плотности тока, приводящие к искрению на коллекторе.

Причины, вызывающие искрение на коллекторе, разделяют на механические, потенциальные и ком­мутационные.

Механические причины искрения – сла­бое давление щеток на коллектор, биение коллекто­ра, его эллиптичность или негладкая поверхность, загрязнение поверхности коллектора, выступание миканитовой изоляции над медными пластинами, неплотное закрепление траверсы, пальцев или щет­кодержателей, а также другие причины, вызываю­щие нарушение электрического контакта между щеткой и коллектором.

Потенциальные причины искрения появ­ляются при возникновении напряжения между смежными коллекторными пластинами, превышаю­щего допустимое значение (см. § 25.5). В этом слу­чае искрение наиболее опасно, так как оно обычно сопровождается появлением на коллекторе электри­ческих дуг.

Коммутационные причины искрения соз­даются физическими процессами, происходящими в машине при переходе секций обмотки якоря из од­ной параллельной ветви в другую.

Иногда искрение вызывается целым комплексом причин. Выяснение причин искрения следует начи­нать с механических, так как их обнаруживают ос­мотром коллектора и щеточного устройства. Труд­нее обнаружить и устранить коммутационные причины искрения.

При выпуске готовой машины с завода в ней настраивают темную коммутацию, исключающую какое-либо искрение. Од­нако в процессе эксплуатации машины, по мере износа коллектора и щеток, возможно появление искрения. В некоторых случаях оно может быть значительным и опасным, тогда машину необходи­мо остановить для выяснения и устранения причин искрения. Однако небольшое искрение в машинах общего назначения обычно допустимо.

Согласно ГОСТу, искрение на коллекторе оценивается степе­нью искрения (классом коммутации) под сбегающим краем щетки.

Степень 1 — искрения нет (темная коммутация).

Степень 1 1/ 4 — слабое искрение под небольшой частью щет­ки, не вызывающее почернения коллектора и появления нагара на щетках.

Степень 1 1/ 2 — слабое искрение под большей частью щет­ки, приводящее к появлению следов почернения на коллекторе, легко устраняемого протиранием поверхности коллектора бензи­ном, и следов нагара на щетках.

Степень 2 — искрение под всем краем щетки. Допускается только при кратковременных толчках нагрузки и при перегрузке. Приводит к появлению следов почернения на коллекторе, не уст­раняемых протиранием поверхности коллектора бензином, а также следов нагара на щетках.

Степень 3 — значительное искрение под всем краем щетки с появлением крупных вылетающих искр, приводящее к значи­тельному почернению коллектора, не устраняемое протиранием поверхности коллектора бензином, а также к подгару и разруше­нию щеток. Допускается только для моментов прямого (безрео­статного) включения или реверсирования машин, если при этом коллектор и щетки остаются в состоянии, пригодном для даль­нейшей работы.

Если допустимая степень искрения в паспорте электрической машины не указана, то при номинальной нагрузке она не должна превышать 1 1/ 2.

При вращении якоря машины постоянного тока коллекторные пластины поочередно вступают в соприкосновение со щетками. При этом переход щетки с одной пластины (сбегающей) на дру­гую (набегающую) сопровождается переключением секции об­мотки из одной параллельной ветви в другую и изменением как значения, так и направления тока в этой секции.

Процесс пере­ключения секции из одной параллельной ветви в другую и сопро­вождающие его явления называются коммутацией.

Секция, в которой происходит коммутация, называется ком­мутирующей, а продолжительность процесса коммутации — пе­риодом коммутации:

image002

Рис. 6.1. Переход коммутирующей секции

из одной параллельной ветви в другую

В начальный момент коммутации (рис. 6.1, а) контактная поверхность щетки касается только пластины 1, а коммутирующая секция относится к левой параллельной ветви обмотки и ток в ней равен ia. Затем пластина 1 постепенно сбегает со щетки и на смену ей набегает пластина 2. В результате комму­тирующая секция оказывается замкнутой щеткой и ток в ней по­степенно уменьшается. В середине процесса коммутации (t = 0,5TК) контактная поверхность щетки равномерно перекрывает обе коллекторные пластины (рис. 27.1, б). В конце коммутации (t = Tк) щетка полностью переходит на пластину 2 и теряет контакт с пла­стиной 1 (рис. 27.1, в), а ток в коммутирующей секции становится равным — ia, т. е. по значению таким же, что и в начале коммута­ции, а по направлению — противоположным. При этом коммути­рующая секция оказалась в правой параллельной ветви обмотки.

Прямолинейная коммутация

Этот вид коммутации имеет место в машине, если в процессе коммутации в коммутирующей секции ЭДС не наводится или, что более реально, сумма ЭДС в коммутирующей секции равна нулю.

Коммутация, при которой ток в комму­тирующей секции i изменяется по прямолинейному закону, назы­вают прямолинейной (идеальной) коммутацией.

image004

Рис. 6.2. График тока прямолинейной коммутации

Этот вид коммутации не сопровождается искрением на кол­лекторе.

Источник

Оцените статью
Avtoshod.ru - все самое важное о вашем авто