Драйвер для светодиодов 12в своими руками в авто на lm317

Перегорают светодиоды? Делаем простейший драйвер своими руками.

a55b748s 100

…оооооочень много раз мне пришлось столкнуться с проблемой перегоревших светодиодов, установленных где-либо в машине…началось всё это с лампочек в габаритах, потом постоянно горела подсветка приборки, потом подсветка блока отопителя, багажника и т.д…

Львиной долей нубов используется линейный стабилизатор напряжения L7812CV и его аналоги КРЕН, что, естественно, никакого толка не даёт и светики горят, как ни в чем не бывало 🙂

Вот он, виновник торжества.

e1a15dcs 960

…хотя…его вины тут нет. Виноваты тут далекие от электроники люди, которые слишком мало копали, прежде, чем что-то сделать…

Начнем с того, что светодиоды сгорают от скачков тока, а не напряжения.

«Светодиод питается ТОКОМ. Нет у него параметра НАПРЯЖЕНИЕ. Есть параметр — падение напряжения! То есть сколько на нем теряется.
Если написано на светодиоде 20мА 3.4В, то это значить что ему надо не больше 20 миллиампер. И при этом на нем потеряется 3.4 вольта.
Не для питания нужно 3.4 вольта, а просто на нем «потеряется»!
То есть вы можете питать его хоть от 1000 вольт, только если подадите ему не больше 20мА. Он не сгорит, не перегреется и будет светить как надо, но после него останется уже на 3.4 вольта меньше. Вот и вся наука.
Ограничьте ему ток — и он будет сыт и будет светить долго и счастливо.»

Теперь понятно, почему со стабами типа L7812CV постоянно все перегорает?
Да, стабилизация нужна по току, а не по напряжению и делается это токоограничивающими резисторами или линейными/импульсными стабилизаторами ТОКА!

Ладно, поехали дальше.
В связи с тем, что сейчас у меня висит 4 проекта по фарам, которые будут делаться на очень дорогостоящих COB кольцах (которые ещё дороже стали с учетом долбанного курса валют) стабилизация таковых просто жизненно необходима…

Вот как оно выглядит

b6815dcs 960

Вы спросите сейчас, а нафига драйвер, если вон он, уже висит и все стабилизирует.
Ну да, я тоже так думал, а на деле оказалось, что там те же самые стабилизаторы напряжения стоят (у одного из клиентов одно кольцо уже начало моросить). Ну кто ж знал, что Китайцы в плане драйверов решили сэкономить.

Итак, делаем простейший драйвер.

Берем идеальную автомобильную сеть 12 Вольт и считаем какой нам нужен резистор на примере COB кольца, мощностью 5 Вт.

Мы можем узнать силу тока, потребляемую электроприбором зная его мощность и напряжение питания.
Потребляемый ток равен мощности деленной на напряжение в сети.
COB кольцо потребляет 5 Вт. Напряжение в идеальном автомобиле 12 Вольт.
Если считать не умеете, то можно посчитать тут
ydoma.info/electricity-zakon-oma.html
Получаем 420 милиампер потребляемого тока таким колечком.
дальше идем сюда
ledcalc.ru/lm317
вводим требуемый ток 420 милиампер и получаем:
Расчетное сопротивление: 2.98 Ом
Ближайшее стандартное: 3.30 Ом
Ток при стандартном резисторе: 379 мА
Мощность резистора: 0.582 Вт.

ЭТО РАСЧЕТ РАБОТАЕТ, КОГДА ВЫ ТОЧНО УВЕРЕНЫ В ХАРАКТЕРИСТИКАХ СВЕТОДИОДА, ЕСЛИ НЕТ, ТО ДЕЛАЕМ ЗАМЕР ПОТРЕБЛЕНИЯ ТОКА МУЛЬТИМЕТРОМ!
КАК ЭТО ДЕЛАТЬ, СМОТРИМ ТУТ!
К слову, выше расчет, где я взял спецификацию диода от китайца, является неверным, ибо при замере фактическое потребление тока оказалось не 420 мА, а 300мА. Потому сразу можно сделать вывод, что пятью ваттами там и не пахнет 🙂

Дальше идем в магазин и покупаем:
-LM317. Внешне как и LM7812. Корпус один, смысл несколько разный.

Источник

Стабилизатор тока на LM317 для светодиодов

lm317 driver

Рассмотрим самый простой вариант изготовления светодиодного драйвера своими руками с минимальными затратами времени. Для расчёта стабилизатора тока на LM317 для светодиодов используем калькулятор, которому необходимо указать требуемую силу тока для LED диодов. Предварительно составьте схему включения светодиодов, учитывая максимальную мощность микросхемы и блока питания для светодиодов. Заранее поищите систему охлаждения для всей конструкции.

Калькулятор

Схема подключения

shema podkljuchenija svetodiodov 20

О различных способах питания светодиодов от 12 и 220 вольт прочитайте в статье «Как подключить светодиод«.

Для изготовления стабилизатора тока на LM317 с возможностью регулирования, вместо постоянного резистора поставить мощное переменное сопротивление. Номинал переменного сопротивления можно вычислить, указав калькулятору границы регулирования. Сопротивление может быть от 1 до 110Ом, это соответствует максимальному и минимальному. Но рекомендую отказаться от регулировки Ампер в нагрузке переменным сопротивлением. Правильно реализовать будет сложно и лишком большой будет нагрев.

Мощность постоянного резистора для стабилизатора тока по рассеиванию тепла должна быть с запасом, вычисляется по формуле:

В качестве блока питания можно использовать трансформаторный или импульсный источник напряжения с полярным напряжением. В качестве выпрямителя лучше использовать классический диодный мост, после которого установлен конденсатор большой емкости.

Регулятор тока на LM317 LM317T работает по линейному принципу, поэтому может достаточно сильно нагреваться из-за невысокого КПД. Наличие приличного радиатора обязательно. Если контроль нагрева показал низкую температуру нагрева, то его можно уменьшить.

stabilizatory toka 15

Если количество Ампер требуется более 1,5А, то в стандартную схему надо добавить пару элементов. Можно получить до 10А, установив мощный транзистор KT825A и резистор на 10ом.

Этот вариант подходит для тех, у кого под рукой нет LM338 или LM350.

lm317 3a

Вариант стабилизатора тока на 3А сделан на транзисторе КТ818, Амперы в нагрузке регулируются и рассчитывается во всех схемах одинаково на калькуляторе.

Пример расчётов и сборки

lm317 01

Если собрать очень хочется а подходящего блока питания нет, то есть несколько вариантов это решить. Выменять у соседа или подключить схему к батарее на 9V типа Крона. На фото видно всю схему в сборе со светодиодом.

Если для светодиодов необходим 1А, то указываем это в калькуляторе и получаем результат 1,25ом. Резистора точно такого номинала нет, поэтому устанавливаем подходящий с номиналом в сторону увеличения Ом. Второй вариант, это использовать параллельное и последовательное подключение резисторов. Правильно подключив несколько сопротивлений получим необходимое количество Ом.

lm317 02

Ваши стабилизаторы тока на LM317 будут похожи на ниже представленные изделия.

lm317 03

lm317 04

А если вы страдаете полным светодиодным фанатизмом, то будет выглядеть так.

lm317 05

Основные электрические характеристики

lm317

Настоятельно рекомендую не эксплуатировать LM317 на предельных режимах, китайские микросхемы не имеют запаса прочности. Конечно есть встроенная защита от короткого замыкания и перегрева, но не надейтесь что она будет срабатывать каждый раз.

В результате перегрузки может выгореть не только ЛМ317 но и то что к ней подключено, а это уже совсем другой ущерб.

Основные параметры LM317:

Если нагрузки в 1А вам будет недостаточно, то можно применить более мощные модели стабилизаторов LM338 и LM350, 5А и 3А соответственно.

Для улучшения теплоотдачи увеличен корпус TO-3, такой часто встречается у советских транзисторов. Но выпускается и в малом корпусе TO-220, рассчитанном на меньшие нагрузки.

Параметры LM338:

lm338 01 Расположение контактов на LM338

Импульсные драйверы

stabilizatory toka 18

Благодаря китайскому трудолюбию блоки питания, стабилизаторы тока и напряжения можно купить в зарубежных интернет-магазинах по 50-150руб. Регулировка приводится небольшим переменным сопротивлением, при 2-3 Амперах они не требуют радиатора для охлаждения контроллера драйвера. Заказать можно например на популярном базаре Aliexpress.com Основной недостаток, это ждать 2-4 недели, но цена самая низкая, можно брать сразу полкило.

Часто ищу на Авито в своём городе, способ быстрый и недорогой. Я и многие другие заказывают стабилизаторы с запасом, вдруг будут неисправные. Затем лишнее продают по объявлениям, и всегда можно поторговаться.

Здравствуйте! мне понравилась схема токового стабилизатора в паре с транзистором кт818. а можно ли Вас попросить нарисовать схему с транзистором кт 808 или 2n3055, у меня просто 10 штук дома лежит. Спасибо.

Нарисовать мало, схему надо опробовать и настроить. Лучше купить обычный KT818.

Здавствуйте, спасибо вам за ценные статьи и советы, узнал много нового. Подскажите пожалуйста, хочу подключить 3 светодиодные матрицы по 10 Вт., полный спектр от ноутбучного блока 40вт. Правильно ли я понял, потребуется три стабилизатора тока и три резистора, подключать все три матрицы(с установленными в каждой стабилизатором и резистором) параллельно? Какого сечения провод выбрать, и нет ли подводных камней с «полным спектром»?

Читайте раздел «Питание» на моём сайте.

Испытывал я ЛМ317Т в качестве регулятора напряжения (две штуки). Хочу сказать, что защиты от КЗ методом ограничения тока у нее НЕ ОБНАРУЖЕНО. Валит 1,6 А, 1,8 А, если плавно повышать проводимость микросхемы. Может, мне попались две подделки?

Наверное подделка, у меня отключается она при замыкании.

Прочитайте статью про подключение светодиодной ленты в авто

Источник

Простые линейные стабилизаторы тока для светодиодов своими руками

Известно, что яркость светодиода очень сильно зависит от протекающего через него тока. В то же время ток светодиода очень круто зависит от питающего напряжения. Отсюда возникают заметные пульсации яркости даже при незначительной нестабильности питания.

Стабилизаторы тока на транзисторах

Для стабилизации тока через светодиоды можно применить хорошо известные решения:stabilizatory na

На рисунке 1 представлена схема, работа которой основана на т.н. эмиттерном повторителе. Транзистор, включенный таким образом, стремится поддерживать напряжение на эмиттере в точности таким же, как и на базе (разница будет только в падении напряжения на переходе база-эмиттер). Таким образом, зафиксировав напряжение базы с помощью стабилитрона, мы получаем фиксированное напряжение на R1.

Далее, используя закон Ома, получаем ток эмиттера: Iэ = Uэ/R1. Ток эмиттера практически совпадает с током коллектора, а значит и с током через светодиоды.

Обычные диоды имеют очень слабую зависимость прямого напряжения от тока, поэтому возможно их применение вместо труднодоступных низковольтных стабилитронов. Вот два варианта схем для транзисторов разной проводимости, в которых стабилитроны заменены двумя обычными диодами VD1, VD2:stabilizatory toka na tranzistore w60

Ток через светодиоды задается подбором резистора R2. Резистор R1 выбирают таким образом, чтобы выйти на линейный участок ВАХ диодов (с учетом тока базы транзистора). Напряжение питания всей схемы должно быть не меньше, чем суммарное напряжение всех светодиодов плюс около 2-2.5 вольт сверху для устойчивой работы транзистора.

Сопротивление R1 будет зависеть от коэфф. усиления транзистора hfe и ВАХ диодов. Для S9014 и диодов 1N4148 достаточно будет 10 кОм.

Применим описанный стабилизатор для совершенствования одного из светодиодных светильников, описанного в этой статье. Улучшенная схема будет выглядеть так:led svetilnik so stabilizatorom toka w60

Данная доработка позволяет значительно снизить пульсации тока и, следовательно, яркости светодиодов. Но главный плюс схемы заключается в нормализации режима работы светодиодов и защита их от бросков напряжения во время включения. Это приводит к существенному продлению срока службы светодиодной лампы.

Из осциллограмм видно, что добавив в схему стабилизатор тока для светодиода на транзисторе и стабилитроне, мы тут же уменьшили амплитуду пульсаций в несколько раз:snizili pulsacii w60

При указанных на схеме номиналах, на транзисторе рассеивается мощность чуть больше 0.5 Вт, что позволяет обойтись без радиатора. Если емкость балластного конденсатора увеличить до 1.2 мкФ, то на транзисторе будет падать

23 Вольт, а мощность составит около 1 Вт. В этом случае без радиатора не обойтись, но зато пульсации понизятся чуть ли не до нуля.

Вместо указанного на схеме транзистора 2CS4544, можно взять 2SC2482 или аналогичный с током коллектора больше 100 мА и допустимым напряжением Uкэ не менее 300 В (подойдут, например, старые советские КТ940, КТ969).

Желаемый ток, как обычно, задается резистором R*. Стабилитрон рассчитан на напряжение 5.1 В и мощность 0.5 Вт. В качестве светодиодов применены распространенные smd-светодиоды из китайской лампочки (а еще лучше взять готовую лампу и добавить в нее недостающие компоненты).

Теперь рассмотрим схему, представленную на рисунке 2. Вот она отдельно:stabilizatory toka na 2x

Токовым датчиком здесь является резистор, сопротивление которого рассчитывается по формуле 0.6/Iнагр. При увеличении тока через светодиоды, транзистор VT2 начинает открываться сильнее, что приводит к более сильному запиранию транзистора VT1. Ток уменьшается. Таким образом происходит стабилизация выходного тока.

Также, вместо биполярного транзистора, можно применить p-канальный MOSFET. Схема, приведенная ниже, представляет собой мощный светильник на двух 10-ваттных светодиодах и 40-ваттном IRF9510 в корпусе ТО-220 (см. характеристики):stabilizator toka na mosfet w60

Транзистор VT2 и светодиоды необходимо разместить на общем радиаторе, площадью не менее 900 см 2 (это если без принудительного охлаждения). Использование термопасты обязательно. Ребра радиатора должен быть толстым и массивным, чтобы максимально быстро отводить тепло. Оцинкованные профили для гипсокартона, консервные банки из-под селедки и крышки от кастрюль категорически не подходят.

Если такая мощность не нужна, можно сократить количество светодиодов до одного. Но при этом придется понизить напряжение питания на 3-3.5 вольта. Иначе потребляемая мощность останется прежней, транзистор будет греться в два раза сильнее, а светить будет в два раза хуже.

Вместо IRF9510 можно взять, например, IRF9Z34N (19А, 55В) или NDP6020P (24А, 20В). Смотрите сами, какие есть в вашем распоряжении. Если совсем ничего нет, самое время закупиться по дешевке:

наименование характеристики цена
IRF9510 P-channel, 100V, 4A 209 руб. / 10 шт.
IRF9Z34N P-channel, 55V, 19A 124 руб. / 10 шт.
NDP6020P P-channel, 20V, 24A 120 руб. / 10 шт.
Cree XM-L T6 10W, 3A 135 руб. / шт.

Ну а самая простейшая схема стабилизатора тока для светодиодов на полевом транзисторе состоит всего лишь из одного транзистора с закороченным накоротко затвором и истоком:generator toka kp303 w60

Вместо КП303Е подойдет, например, BF245C или аналогичный со встроенным каналом. Принцип действия схож со схемой на рисунке 1, только в качестве эталонного напряжения используется потенциал «земли». Величина выходного тока определяется исключительно начальным током стока (берется из даташита) и практически не зависит от напряжения сток-исток Uси. Это хорошо видно из графика выходной характеристики:nachalnyi tok stoka w60

На схеме на рисунке 3 в цепь истока добавлен резистор R1, задающий некоторое обратное смещение затвора и позволяющий таким образом изменить ток стока (а значит и ток нагрузки).

Пример самого простого драйвера тока для светодиода представлен ниже:generator toka w mosfet w60

Здесь применен полевой транзистор с изолированным затвором и встроенным каналом n-типа BSS229. Точное значение выходного тока будет зависеть от характеристик конкретного экземпляра и сопротивления R1.

Это, в общем-то, все способы превратить транзистор в стабилизатор тока. Есть еще так называемое токовое зеркало, но применительно к светодиодным светильникам оно не подходит. Поэтому перейдем к микросхемам.

Стабилизаторы тока на микросхемах

Микросхемы позволяют добиться гораздо более высоких характеристик, чем транзисторы. Чаще всего для сборки стабилизатор тока для светодиодов своими руками используют прецизионные термостабильные источники опорного напряжения (TL431, LM317 и другие).

TL431

Типовая схема стабилизатора тока для светодиодов на TL431 выглядит так:stabilizator toka na tl431 w60

Так как микросхема ведет себя так, чтобы поддерживать на резисторе R2 фиксированное напряжение 2.5 В, то ток через этот резистор всегда будет равен 2.5/R2. А если пренебречь током базы, то можно считать, что I = IR2. И чем выше будет коэффициент усиления транзистора hfe, тем больше эти токи будут совпадать.

А вот пример практического применения TL431 в светодиодной лампе:led lamp tl431 w60

На транзисторе падает около 20-30 В, рассеиваемая мощность составляет менее 1.5 Вт. Кроме указанного на схеме 2SC4544 можно применить более мощный BD711 или старый советский КТ940А. Транзисторы в корпусе TO-220 не требуют установки на радиатор до мощностей 1.5-2 Вт включительно.

Резистор R3 служит для ограничения импульса зарядки конденсатора при включении питания. Ток через нагрузку задается резистором R2.

Хотя я бы рекомендовал найти светодиоды в точно таком же форм-факторе (2.8х3.5мм), но мощностью 0.5 Вт. Они и греться будут меньше и прослужат дольше.

Найти такие светодиоды, а также все необходимое для сборки схемы можно по этим ссылкам:

наименование характеристики цена
SMD 2835 LED, 3.3V, 0.15A, 0.5W 67 руб. / 100 шт.
2SC4544 NPN, 300V, 0.1A 10 руб. / шт.
BD711 NPN, 100V, 12A 120 руб. / 10 шт.
1N4007 1000V, 1A 51 руб. / 100 шт.
TL431A 36V, 100mA 87 руб. / 100 шт.

Разумеется, приведенную схему стабилизатора тока для светодиодов на 220 В можно пересчитать под любой необходимый ток и/или другое количество имеющихся в распоряжении светодиодов.

С учетом допустимого разброса напряжения 220 Вольт (см. ГОСТ 29322-2014), выпрямленное напряжение на конденсаторе C1 будет находиться в диапазоне от 293 до 358 В, поэтому он должен быть рассчитан на напряжение не менее 400 В.

Исходя из диапазона питающих напряжений, рассчитываются параметры остальных элементов схемы.

Например, резистор, задающий рабочий режим микросхемы DA1 должен обеспечивать ток не менее 0.5 мА при напряжении на С1 = 293 В. Максимальное количество светодиодов не должно превышать NLED = 100 мА). Отлично подойдут упомянутые выше 1N4007.

Как видите, схемка простейшая и не содержит каких-либо доростоящих компонентов. Вот текущие цены (и они, скорее всего, будут и дальше снижаться):

название характеристики стоимость
SMD 5630 LED, 3.3V, 0.15A, 0.5W 240руб. / 1000шт.
LM317 1.25-37V, >1.5A 112руб. / 10шт.
MB6S 600V, 0.5A 67руб. / 20шт.
120μF, 400V 18х30mm 560руб. / 10шт.

Таким образом, потратив в общей сложности 1000 руб., можно собрать десяток 30-ваттных (. ) не мерцающих (. ) лампочек. А так как светодиоды работают не на полную мощность, а единственный электролит не перегревается, то эти лампы будут практически вечными.

Вместо заключения

К недостаткам приведенных в статье схем следует отнести низкий КПД за счет бесполезной траты мощности на регулирующих элементах. Впрочем, это свойственно всем линейным стабилизаторам тока.

Низкий коэффициент полезного действия неприемлем для устройств, питающихся от автономных источников тока (светильники, фонарики и т.п.). Существенного повышения КПД (90% и более) можно добиться применением импульсных стабилизаторов тока.

Источник

LM317: Характеристики, виды и схемы

LM317 – это регулируемый стабилизатор напряжения. Он может служить для создания различных блоков питания. Он способен быть основой для стабилизатора тока, зарядного устройства, лабораторного блока питания и даже звукового усилителя. Для того, чтобы им воспользоваться, достаточно подключить его к одной их схем обвязки, обозначенных ниже.

Эта микросхема является одной из самых популярных в мире – все из-за простоты ее устройства и работы с ней, ее дешевизны и надежности. Последнее обеспечивается наличием защит короткого замыкания выводов и перегрева микросхемы. LM317 не требует множества компонентов в качестве обвязки. Наибольшую популярность микросхема приобрела в среде радиолюбителей.

lm317 1

LM317 регулирует напряжение линейно, что является ее преимуществом относительно импульсных преобразователей. Микросхема продается в нескольких вариантах корпуса, наибольшей популярностью пользуется версия LM317T в корпусе TO-220. Она была разработана Бобом Добкиным в 1976 году, когда он работал в National Semiconductor, и с тех пор является бессменным хитом в кругах радиолюбителей.

Схема LM317

Все внутреннее устройство стабилизатора можно видеть на его схеме, взятой в datasheet. На ней изображены три вывода схемы: вход (на этот вход подается питание), регулировка и выход. На пине регулировки вольтаж сигнала сначала понижается на одностороннем ограничителе до стабильных 1.25В и служит опорным источником, а ток, вместе с током питания идут на компаратор, основанный на операционном усилителе.

Также на схеме можно видеть выходной каскад на базе биполярного транзистора, который усиливает ток, и блок защиты от перегрева и превышения по току.

Справа от блока защиты находится датчик тока, падение на котором и отслеживается защитой с целью предупреждения повреждений от КЗ.

lm317 2

Характеристики LM317

Виды LM317

Микросхема продается в нескольких варианта корпуса, в зависимости от потребности в размерах, нагрузки и подключении, а также типу монтажа схемы — каждый может выбрать наиболее подходящий ему вариант.lm317 3

Наиболее популярна LM317T в корпусе TO-220 на 1.5 Ампер. Это считается универсальным вариантом, так как может использоваться в навесном монтаже, а также поверхностном. Радиатор в таком корпусе позволяет отводить излишнее тепло и испытывать более серьезные нагрузки, чем его собратья, а при необходимости его можно прикрепить к большему радиатору.

Подключение LM317

LM317 имеет следующую конфигурацию выводов в разных корпусах:

lm317 4

Минимальная схема подключения представляет собой два резистора сопротивления и три конденсатора, подключенных согласно схеме. В соответствии с характеристиками сопротивления и будет определяться напряжение на выходе.

lm317 5

У LM317 два главных параметра: это его опорное напряжение, а также ток, истекающий на выводе подстройки. Опорное напряжение (Vref) — напряжение, которое стабилизатор поддерживает на сопротивлении R1. Оно нестабильно и разнится от партии к партии в среднем на 0.1В, поэтому для расчетов лучше держать в уме усредненное значение – 1.25В. Для серьезных же проектов стоит измерить его для каждого используемого экземпляра. Соответственно, следуя схеме, если замкнуть резистор R2, то на выходе мы получим опорное напряжение – 1.25В, а с увеличением вольтажа на R2 будет увеличиваться и выходное напряжение. Таким образом, LM317 постоянно сравнивает напряжение на выходе через резистивный делитель с опорным, поэтому, меняя сопротивление, мы меняем выходное напряжение.

Ток, утекающий на подстройке (Iadj) – паразитный. По заявлению производителей он составляет от 50 до 100 мкА, но на деле же может достигать и 500 мкА. Из-за этого для стабильности выходного напряжения сопротивление R1 не должно быть выше 240 Ом, чтобы через делитель не проходил ток менее 5 мА.

Все, что вам нужно – это подставить ваше значение R1 в это формулу R2=R1*((Uo/Uref)-1).

warning

Типовые схемы LM317

Как было указано, в LM317 используется при создании регулируемых и нерегулируемых блоков питания, однако, также может быть использован в качестве основы стабилизатора тока при создании светодиодных драйверов, которые поддерживают ток в цепи вне зависимости от входного напряжения. Только описанных в datasheet применений хватит на отдельную книгу, поэтому разберем несколько самых популярных схем на этом стабилизаторе.

Регулируемый блок питания (1.2-37В)

Все, что понадобится для его создания, это заменить R2 на переменный резистор, а также добавить трансформатор с диодным мостом на вход. При использовании стоит учитывать, что микросхема обладает опорным напряжением в 1.25В, поэтому оно и будет минимальным для данной схемы.

lm317 6

Регулируемый блок питания (0-37В)

Если вам необходима полная регулировка с 0В, то производители схем предлагают подключить к схеме источник отрицательного напряжения на 10В.

lm317 7

Вы можете намотать дополнительную катушку на трансформатор блока питания и подключить его выводы после диодного моста следующим образом:

lm317 8

Либо вы можете использовать источник отрицательного напряжения, который будет питаться от основной обмотки.

Таким образом, вы получите простейший лабораторный блок питания.

Светодиодный драйвер (Стабилизатор тока)

С помощью этой схемы вы можете запитывать достаточно мощные светодиоды и светодиодные ленты. Все, что нужно — это знать потребляемый ток и, исходя из него, подобрать сопротивление по формуле.

lm317 9

В нем используется тот же принцип, что и в самой простой схеме, но вместо резистивного делителя установлен датчик тока. Чем больший ток потребляет нагрузка на выходе, тем большее падение напряжения будет наблюдаться на датчике. Оно отслеживается микросхемой, и она увеличивает или уменьшает напряжение для поддержания стабильного тока. Даже при коротком замыкании ток будет держаться на стабильном уровне, который был выставлен.

Зарядное устройство

Схема данного зарядного устройства взята из datasheet и имеет напряжение на выходе 6В с ограничением 0.6А. С помощью изменения сопротивления резисторов R1 и R2 возможно регулировать напряжение под ваши нужды, а при помощи резистора R3 – ток. Оно подойдет для питания аккумуляторов телефонов, инструментов и бытовой техники.

lm317 10

Регулирование переменного напряжение

Так как два LM317 могут регулировать не только положительные, но и отрицательные колебания синусоиды, то с помощью них можно создать AC регулятор. Можно видеть, что схема довольно не сложная и не требует множества компонентов:

lm317 11

Как проверить LM317?

В отличие от транзисторов, данную микросхему невозможно проверить мультиметром. Такой способ никак не гарантирует правильную работу из-за большого количества внутренних элементов, не соединенных с выводами. Поэтому, если какой-то из них выйдет из строя, то проверить это мультиметром будет проблематично. Самый простой способ проверки работы LM317 — это создать простейший стенд на макетной плате, а запитать его можно будет всего лишь от батарейки.

lm317 12

Таким образом, вы сможете быстро убедиться в полностью рабочем состоянии элемента, даже если необходимо проверить несколько штук.

Применение LM317

Схемы, приведенные выше – лишь малая часть, основа, по сравнению с тем, что возможно сделать на этом стабилизаторе. Он может использоваться почти во всех схемах, которые требуют постоянного питания до 40 В. Вот некоторые сферы применения, описанные в официальном техническом документе данной микросхемы:

Как можно видеть, даже сам производитель рассчитывает на максимально широкое использования данного элемента, что уж говорить о самодельщиках, готовых представить самые необычные схемы с использованием LM317.

Повышение максимального выходного тока

Существует два способа повышения максимального выходного тока. Если вам необходимо получить больше 1.5А, то вы можете либо подключить несколько микросхем параллельно, либо подключить силовой транзистор.

В первом случае достаточно подключить на выход стабилизаторов резисторы с низким сопротивлением. Они нужны для выравнивания токов.

lm317 13

Однако не всегда рационально использовать несколько микросхем. Поэтому нам на помощь приходит транзистор. В таком случае будет достаточно добавить его и резистор в качестве обвязки к нему.

lm317 14

Если нагрузка потребляет небольшой ток, то он будет проходить через микросхему, не затрагивая транзистор. А при повышении, почти весь ток будет проходить через транзистор, оставляя малую его часть стабилизатору. Но при использовании этой схемы внутренняя защита внутри LM317 от КЗ.

Аналоги LM317

Что делать, если нет возможности использовать LM317? Можно воспользоваться ее аналогами. Братьями-близнецами данного компонента являются UPC317, GL317, ECG1900 и SG317. Отечественный же аналог — это KP142EH12A, а также существует KP142ЕН12 с фиксированным напряжением.

Если LM317 не хватает мощности для вашего проекта, то можно воспользоваться более мощными вариантами:

Все эти микросхемы имеют одинаковые выводы, поэтому схемы не придется никак менять.

Безопасная эксплуатация LM317

Не стоит использовать элемент при максимальных и минимальных обозначенных значениях. При такой эксплуатации уровень стабильности и надежности значительно упадет. А также крайне желательно использовать радиатор для отвода тепла, так как иначе заявленные характеристики могут не совпадать с реальными.

Datasheet, даташит

Datasheet на данный стабилизатор проще всего найти на сайте производителя Texas Instruments. Или по ссылке.

В даташите вы сможете найти наиболее точные характеристики и спецификации, а также графики, отражающие работу микросхемы. Помимо этого, там описаны некоторые из типовых схем, использования и подробное описание их настройки под различные нужды. А также рекомендации по использованию.

Производители LM317

Так как LM317 является самым популярным стабилизатором напряжения, то ее выпускают крупнейшие предприятия по производству микросхем:

Где купить LM317?

Источник

Оцените статью
Avtoshod.ru - все самое важное о вашем авто