Для проведения испытаний выбрано 5 различных моделей автомобилей

Для проведения испытаний выбрано 5 различных моделей автомобилей

Тогда все действие согласно комбинаторному принципу умножения можно выполнить image015 числом способов:

SHAPE \* MERGEFORMAT

Если элементы в выборке не повторяются, то выборка называется бесповторной, иначе – выборкой с повторениями

При бесповторной выборке все равно, каким образом осуществляется выбор: берутся все элементы сразу, или же поочередно (по одному).

Рассмотрим бесповторную выборку

Расположение image010 различных элементов в определенном порядке называется перестановкой без повторений из image010 элементов.

image035

image043

Таким образом, бригаду дежурных из трех человек в группе из 30 человек можно выбрать 4060 различными способами.

Число размещений без повторений из image010 элементов по image002 равно:

Свойства сочетаний без повторений :

1) image056 image058

2) image064 (без доказательства).

Значения image041 могут быть найдены не расчетом по формуле количества сочетаний, а с помощью так называемого треугольника Паскаля. (Блез Паскаль (1623 – 1662) – французский математик).

Этот треугольник имеет вид:

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

Рассмотрим выборку с повторениями

1. Число различных перестановок на элементах такой выборки равно:

Решение. Другими словами, требуется найти число перестановок с повторениями на 4 элементах выборки, в которой два элемента одинаковы:

image088

image090

Решение. Требуется найти число перестановок на множестве из 6 элементов, среди которых три элемента одинаковы:

Верно обобщение рассматриваемой формулы: число различных перестановок на множестве из image010 элементов, среди которых имеется

image095 элементов первого вида,

image097 элементов второго вида,

image103

Пример. Сколько перестановок можно получить из букв слова КОЛОКОЛА?

Решение. Требуется найти число перестановок с повторениями на множестве из 8 букв, среди которых:

буква К повторяется 2 раза;

буква О повторяется 3 раза;

буква Л повторяется 2 раза

буква А повторяется 1 раз.

Пример. Сколькими способами можно составить набор из 5 шоколадок, если имеются шоколадки трех сортов в количестве по 10 штук каждого вида?

Решение. Поскольку при составлении шоколадного набора порядок расположения шоколадок не важен, то используем для подсчета формулу сочетаний с повторениями:

image107

Пример. Сколькими способами можно рассадить 7 человек по 9 вагонам?

Решение. Поскольку по условию задачи в один вагон могут сесть несколько человек, и поскольку рассадка зависит от того кто в каком вагоне находится, то используем формулу размещения с повторениями:

image109

Эту же задачу можно решить, применяя комбинаторный принцип умножения: действие – рассадить 7 человек распадается на 7 этапов: разместить первого пассажира, разместить второго пассажира, …, разместить седьмого пассажира. Первый этап – размещение первого пассажира можно выполнить 9 способами, второго пассажира тоже можно разместить 9 способами, и т.д. :

SHAPE \* MERGEFORMAT

Пример. Сколькими способами можно рассадить 7 человек по 9 вагонам по одному в вагон?

Решение. Поскольку по условию задачи в один вагон могут сесть только один человек, и поскольку рассадка зависит от того кто в каком вагоне находится, то используем формулу размещений без повторений:

image114

Эту же задачу можно решить, применяя комбинаторный принцип умножения: действие – рассадить 7 человек распадается на 7 этапов: разместить первого пассажира, разместить второго пассажира, …, разместить седьмого пассажира. Первый этап – размещение первого пассажира можно выполнить 9 способами, второго пассажира тоже можно разместить 9 способами, и т.д. :

SHAPE \* MERGEFORMAT

Пример. Сколько различных сигналов можно составить из четырех флажков различных цветов, если каждый сигнал должен состоять не менее чем из двух флажков?

Решение. Составить сигнал можно из двух флажков, из трех или из четырех. Перечисленные ситуации взаимно исключают друг друга (два флажка – это не три и не четыре), поэтому вычислим, сколькими способами можно составить сигнал в каждой из перечисленных ситуаций, и сложим полученные результаты.

Составляем сигналы из двух флажков: выбрать два флажка из четырех можно image118 различными способами, и расположить выбранные два флажка в определенном порядке можно image120 числом способов. Таким образом, согласно комбинаторному принципу умножения, можно составить image122 различных сигналов из двух флажков.

Составляем сигналы из трех флажков: выбрать три флажка из четырех можно image124 различными способами, и расположить выбранные три флажка в определенном порядке можно image126 числом способов. Таким образом, согласно комбинаторному принципу умножения, можно составить image128 различных сигналов из трех флажков.

Пример. Номер автомобиля состоит из трех букв и трех цифр. Сколько различных номеров можно составить, используя 10 цифр и алфавит в 30 букв.

Очевидно, что количество всех возможных комбинаций из 10 цифр по 4 равно 10.000.

Если учесть возможность того, что буквы могут повторяться, то число повторяющихся комбинаций равно 30 (одна возможность повтора для каждой буквы). Итого, полное количество комбинаций по две буквы равно 900.

Если к номеру добавляется еще одна буква из алфавита в 30 букв, то количество комбинаций увеличивается в 30 раз, т.е. достигает 27.000 комбинаций.

Окончательно, т.к. каждой буквенной комбинации можно поставить в соответствие числовую комбинацию, то полное количество автомобильных номеров равно 270.000.000.

Источник

Элементы комбинаторики: перестановки, сочетания и размещения.

Элементы комбинаторики: перестановки, сочетания и размещения.

Определение: Комбинаторика – это раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить из заданных объектов .

Слово «комбинаторика» происходит от латинского слова «combinare», что в переводе на русский означает – «сочетать», «соединять». Комбинаторные задачи возникли и в связи с такими играми, как шашки, шахматы, домино, карты, кости и т.д.

Комбинаторные задачи делятся на: задачи на перестановки , задачи на размещение, задачи на сочетание

Определение: Факториал – это произведение всех натуральных чисел от 1 до n.

Пример: 4! = 1 · 2 · 3 · 4 = 24.

Задачи на перестановки

Сколькими способами можно расставить 3 различные книги на книжной полке?

Это задача на перестановки.

Решение: Выбираем одну из 3-х книг и ставим на первое место. Это можно сделать 3-мя способами.

Вторую книгу мы можем выбрать из 2-х оставшихся двумя способами, получаем 3·2 способов.

Третью книгу мы можем выбрать 1 способом.

Получится 3·2·1=6 способов.

Определение: Перестановками из n элементов называются комбинации из n элементов, отличающиеся друг от друга только порядком расположения в них элементов.

Типичная смысловая нагрузка: «Сколькими способами можно переставить n объектов?»

Пример 1. Сколькими способами можно расставить 8 участников финального забега на восьми беговых дорожках?

Решение: P 8 = 8!=1 ∙ 2 ∙ 3 ∙ 4 ∙ 5 ∙ 6 ∙ 7 ∙ 8 = 40320.

Пример 2. Сколькими способами можно составить расписание на один день, если в этот день предусмотрено 6 уроков по 6 разным предметам?

Решение: P 6 = 6!=1 ∙2 ∙ 3 ∙ 4 ∙ 5 ∙ 6 = 720.

Пример 3. Сколькими различными способами можно разместить на скамейке 10 человек?

Решение: P 8 = 8!=1 ∙ 2 ∙ 3 ∙ 4 ∙ 5 ∙ 6 ∙ 7 ∙ 8 ∙ 9 ∙ 10 = 3628800.

Пример 4. Сколько слов можно получить, переставляя буквы в слове Гора?

Решение: P 4 = 4!=1 ∙2 ∙ 3 ∙ 4 = 24.

Пример 5. Сколько различных шестизначных чисел, кратных 5, можно составить из цифр 1, 2, 3, 4, 5, 6 при условии, что цифры в числе не повторяются?

Решение: Чтобы число было кратным 5, цифра 5 должна стоять на последнем месте. Остальные цифры могут стоять на оставшихся пяти местах в любом порядке. Следовательно, искомое количество шестизначных чисел, кратных 5, равно числу перестановок из 5 элементов, т.е.

P 5 = 5!=1 ∙ 2 ∙ 3 ∙ 4 ∙ 5 = 120.

Задачи на размещения

Имеется 5 книг и одна полка, такая что на ней вмещается лишь 3 книги.

Сколькими способами можно расставить на полке 3 книги?

Это задача на размещение.

Решение: Выбираем одну из 5-ти книг и ставим на первое место на полке. Это можно сделать 5-ю способами.

Вторую книгу мы можем выбрать 4-мя способами и поставить рядом с одной из 5-ти возможных первых.

Таких пар может быть 5·4.

Третью книгу мы можем выбрать 3-мя способами.

Получится 5·4·3 разнообразных троек. Значит всего способов разместить 3 книги из 5-ти 5·4·3 = 60.

Определение: Размещением из n элементов по k ( k ≤ n ) называется любое множество, состоящее из k элементов, взятых в определённом порядке из данных n элементов.

Типичная смысловая нагрузка: «Сколькими способами можно выбрать k объектов и в каждой выборке переставить их местами?»

Пример 1. Учащиеся второго класса изучают 9 предметов. Сколькими способами можно составить расписание на один день, чтобы в нём было 4 различных предмета?

Пример 2. Сколько трехзначных чисел можно составить из цифр 2, 4, 6, 7, 9?

Пример 3. В соревнованиях высшей лиги по футболу участвуют 18 команд. Борьба идет за золотые, серебряные и бронзовые медали. Сколькими способами могут быть распределены медали между командами?

Пример 4. Сколькими способами можно опустить 5 писем в 11 почтовых ящиков, если в каждый ящик опускают не более одного письма?

Пример 5. Боря, Дима и Володя сели играть в карты. Сколькими способами им можно сдать по одной карте? (колода содержит 36 карт)

– способами можно раздать 3 карты игрокам.

Пример 6. В пассажирском поезде 9 вагонов. Сколькими способами можно рассадить в поезде 4 человека, при условии, что все они должны ехать в различных вагонах?

– способами можно рассадить в поезде 4 человека.

Задачи на сочетания

Сколькими способами можно расставить 3 тома на книжной полке, если выбирать их из имеющихся в наличии внешне неразличимых 5 книг?

Это задача на сочетания.

Решение: Книги внешне неразличимы. Но они различаются, и существенно! Эти книги разные по содержанию. Возникает ситуация, когда важен состав элементов выборки, но несущественен порядок их расположения.

123 124 125 134 135 145

Определение: Сочетанием из n элементов по k ( k n ) называется любое множество, составленное из k элементов, выбранных из данных n элементов (не имеет значения, в каком порядке указаны элементы).

Типичная смысловая нагрузка: «Сколькими способами можно выбрать k объектов из n

Пример 1. В классе 7 человек успешно занимаются математикой. Сколькими способами можно выбрать из них двоих для участия в математической олимпиаде?

Пример 2. На тренировках занимаются 12 баскетболистов. Сколько может быть организовано тренером разных стартовых пятерок?

Пример 3. В ящике находится 15 деталей. Сколькими способами можно взять 4 детали?

Пример 4. Сколькими способами из колоды в 36 карт можно выбрать 3 карты?

Пример 5. Для участия в команде тренер отбирает 5 мальчиков из 10. Сколькими способами он может сформировать команду, если 2 определенных мальчика должны войти в команду?

Решение: Т.к. двое мальчиков войдут в команду, то остается отобрать 3 из 8. Для выборки важен только состав (по условию все члены команды не различаются по ролям).

Пример 6. В шахматном турнире принимали участие 15 шахматистов, причем каждый из них сыграл только одну партию с каждым из остальных. Сколько всего партий было сыграно в этом турнире?

Решение: В одной игре участвуют 2 человека, следовательно, нужно вычислить, сколькими способами можно отобрать 2-х человек из 15, причем порядок в таких парах не важен.

Пример 7. Сколько различных дробей можно составить из чисел 3, 5, 7, 11, 13, 17 так, чтобы в каждую дробь входили 2 различных числа? Сколько среди них будет правильных дробей?

Решение: Различных дробей из 6 чисел: 3, 5, 7, 11, 13, 17 можно составить

штук ( способами выбираем два числа из 6, и двумя способами составляем из них дробь, сначала одно число – числитель, другое – знаменатель и наоборот).

Из этих 30 дробей 15 будут правильные.

Пример 8. Боря, Дима и Володя сели играть в карты. Сколькими способами им можно сдать по одной карте? (колода содержит 36 карт)

Правило сложения комбинаций

Знак «плюс» следует понимать и читать как союз ИЛИ.

Задача. Студенческая группа состоит из 23 человек, среди которых 10 юношей и 13 девушек. Сколькими способами можно выбрать 2-х человек одного пола?

Решение: Условие «выбрать 2-х человек одного пола» подразумевает, что необходимо выбрать двух юношей или двух девушек:

– способами можно выбрать 2-х юношей;

– способами можно выбрать 2-х девушек;

Таким образом, двух человек одного пола (без разницы – юношей или девушек) можно выбрать: способами.

Пример 1. В группе 9 человек. Сколько можно образовать разных подгрупп при условии, что в подгруппу входит не менее 2 человек?

Решение: Не менее 2-х человек, т.е. 2+7 или 3+6 или 4+5 человек (5+4, 6+3, 7+2 – те же самые комбинации).

В каждой выборке важен только состав, т.е. члены подгруппы не различаются по ролям, т.е. выборки – сочетания из n различных элементов по m элементов.

Число выборов из 2-х человек:

Число выборов из 3-х человек:

Число выборов из 4-х человек:

Применяем правило сложения: способов.

Правило умножения комбинаций

Знак «умножить» следует понимать и читать как союз И.

Задача. Студенческая группа состоит из 23 человек, среди которых 10 юношей и 13 девушек. Сколькими способами можно составить пару из юноши и девушки?

– способами можно выбрать 1 юношу;

– способами можно выбрать 1 девушку.

Таким образом, 1-го юношу и 1 девушку можно выбрать: способами.

Пример 1. Предприятие может предоставить работу по одной специальности 4 женщинами, по другой – 6 мужчинам, по третьей – 3 работникам независимо от пола. Сколькими способами можно заполнить вакантные места, если имеются 14 претендентов: 6 женщин и 8 мужчин?

Решение: Имеем 14 претендентов и 13 рабочих мест. Сначала выберем работников на первую специальность, то есть 4 женщин из 6:

Далее выберем мужчин на вторую специальность:

Осталось 2 женщины, 2 мужчин и 3 вакантных места, которые, по условию, могут занять любые из четырех оставшихся человек.

Это может быть сделано 2 вариантами:

1 женщина и 2 мужчин (выбираем женщину способами)

1 мужчина и 2 женщины (выбираем мужчину способами).

В итоге получаем 15 · 28 · (2+2)=1680.

Пример 2. Группу из 20 студентов нужно разделить на 3 бригады, причем в первую бригаду должны входить 3 человека, во вторую – 5 и в третью – 12. Сколькими способами это можно сделать.

Решение: Создавая первую бригаду, отбирают 3 человека из 20, создавая вторую – 5 из оставшихся 17, создавая третью – 12 из оставшихся 12. Для выборок важен только состав (роли членов бригады не различаются).

Создавая сложную выборку (из 3-х бригад), воспользуемся правилом умножения:

Пример 3. Сколькими способами может быть сдана выигрышная комбинация из 2-х карт при игре в «очко»?

Для тех, кто не знает: выигрывает комбинация 10 + ТУЗ (11 очков) = 21 очко и будем считать выигрышной комбинацию из 2-х тузов.

способами может быть сдана десятка и туз («каждая десятка с каждым тузом»);

способами может быть сдана пара тузов.

Итого: выигрышные комбинации.

Пример 4. Сколько существует трёхзначных чисел, которые делятся на 5?

В разряде сотен можно записать любую из цифр.

В разряде десятков можно выбрать любую из 10 цифр:

По условию, число должно делиться на 5. Число делится на 5, если оно заканчивается на 5 либо на 0. Таким образом, в младшем разряде нас устраивают 2 цифры.

Итого, существует: трёхзначных чисел, которые делятся на 5.

Перестановки с повторениями

У мамы 2 яблока и 3 груши. Каждый день в течение 5 дней подряд она выдает по одному фрукту. Сколькими способами это может быть сделано?

Решение:Имеем набор <я, я, г, г, г>. Всего перестановок пятиэлементного множества 5!, но мы не должны учитывать перестановки, в которых объекты одного типа меняются местами несколько раз, поэтому нужно поделить на возможное число таких перестановок: 2! · 3!.

Пример 1: Сколько различных буквосочетаний можно получить перестанов-кой карточек со следующими буквами: К, О, Л, О, К, О, Л, Ь, Ч, И, К?

Решение: Всего: 11 карточек, среди которых буква:

К – повторяется 3 раза;

О – повторяется 3 раза;

Л – повторяется 2 раза;

Ь – повторяется 1 раз;

Ч – повторяется 1 раз;

И – повторяется 1 раз.

По формуле количества перестановок с повторениями:

Пример 2: Сколько слов можно получить, переставляя буквы в слове Институт?

Решение: В слове «институт» 8 букв, из них две буквы «и», три буквы «т» и по одной букве «н», «с» и «у». Поэтому всего можно получить перестановками букв различных слов.

Пример 3: Алексей занимается спортом, причём 4 дня в неделю – лёгкой атлетикой, 2 дня – силовыми упражнениями и 1 день отдыхает. Сколькими способами он может составить себе расписание занятий на неделю?

Решение: По формуле количества перестановок с повторениями:

способами можно составить расписание занятий на неделю.

Пример 4: Сколько чисел, больших 3000000, можно составить из цифр 3, 2, 2, 1, 1, 1, 0.

Решение: На первом месте обязательно должна стоять тройка. Оставшиеся 6 цифр образуют перестановку с повторениями:.

Сочетания с повторениями

В студенческой столовой продают сосиски в тесте, ватрушки и пончики. Сколькими способами можно приобрести пять пирожков?

Решение ( I способ.) :Обратите внимание на критерий сочетаний с повторениями – по условию на выбор предложено не множество объектов как таковое, а различные виды объектов; при этом предполагается, что в продаже есть не менее пяти хот-догов, 5 ватрушек и 5 пончиков.

Что может быть в выборке?

Варианты: 5 хот-догов, 5 ватрушек, 5 пончиков, 3 хот-дога + 2 ватрушки, 1 хот-дог + 2 ватрушки + 2 пончика и т.д. Всего 21 способ.

Типичная смысловая нагрузка: «Для выбора предложено n множеств, каждое из которых состоит из одинаковых объектов. Сколькими способами можно выбрать m объектов?»

Используя формулу количества сочетаний с повторениями, получаем

способом можно приобрести 5 пирожков.

Пример 1: В кошельке находится достаточно большое количество рублей, 2-х, 5-ти и десятирублёвых монет. Сколькими способами можно извлечь три монеты из кошелька?

Решение: Используя формулу количества сочетаний с повторениями, получаем

способами можно выбрать 3 монеты из кошелька.

Пример 2: В почтовом отделении продаются открытки 10 видов. Сколькими способами можно купить 12 открыток для поздравлений?

Размещения с повторениями

Сколько существует четырёхзначных пин-кодов?

Решение:Для решения задачи достаточно знаний правил комбинаторики:

способами можно выбрать первую цифру пин-кода и способами – вторую цифру пин кода и столькими же способами – третью и столькими же – четвёртую. Таким образом, по правилу умножения комбинаций, четырёхзначный пин-код можно составить: способами.

Типичная смысловая нагрузка: «Дано множество, состоящее из n объектов, при этом любой объект можно выбирать неоднократно. Сколькими способами можно выбрать m объектов, если важен порядок их расположения в выборке?

В частности, возможен случай, когда из n имеющихся объектов m раз будет выбран какой-то один объект».

Пример 1: Согласно государственному стандарту, автомобильный номерной знак состоит из 3 цифр и 3 букв. При этом недопустим номер с тремя нулями, а буквы выбираются из набора А, В, Е, К, М, Н, О, Р, С, Т, У, Х (используются только те буквы кириллицы, написание которых совпадает с латинскими буквами).

Сколько различных номерных знаков можно составить для региона?

– способами можно составить цифровую комбинацию автомобильного номера, при этом одну из них (000) следует исключить

– способами можно составить буквенную комбинацию автомобильного номера.

По правилу умножения комбинаций, всего можно составить

Пример 2: Человек, пришедший в гости, забыл код, открывающий дверь подъезда, но помнил, что он составлен из нулей и единиц и всего имеет четыре цифры. Сколько вариантов кода в худшем случае ему придётся перебрать, чтобы открыть дверь?

Пример 3: Каких чисел от 1 до 1 000 000 больше: тех, в записи которых встречается единица, или тех, в которых она не встречается?

Решение: Подсчитаем количество чисел от 1 до 999999 в записи которых нет единиц. Каждую цифру можно выбрать 9 способами (любая цифра кроме 1), поэтому все 6 цифр можно выбрать 9 6 способами. При этом один вариант (000000) нужно убрать, так как число 0 не рассматривается. Получаем всего 9 6 −1=531440 чисел. Так как всего чисел 1 000 000, то видно, что чисел без единицы среди чисел от 1 до 1 000 000 больше, чем тех, в записи которых единица есть.

Ответ: чисел без единицы больше.

(разработка + презентация) на тему «Комбинаторика для школьников любого возраста»

Источник

Оцените статью
Avtoshod.ru - все самое важное о вашем авто