Для чего служит форсунка в автомобиле

Форсунка автомобиля.

d2fb4b2s 100

ff47e62s 960

• Форсунка (другое название — инжектор), являясь конструктивным элементом системы впрыска, предназначена для дозированной подачи топлива, его распыления в камере сгорания (впускном коллекторе) и образования топливно-воздушной смеси.

• Форсунка используется в системах впрыска как бензиновых, так и дизельных двигателей. На современных двигателях устанавливаются форсунки с электронным управлением впрыска.

• В зависимости от способа осуществления впрыска различают следующие виды форсунок: электромагнитная, электрогидравлическая и пьезоэлектрическая.

— Электромагнитная форсунка устанавливается, как правило, на бензиновых двигателях, в т.ч. оборудованных системой непосредственного впрыска. Форсунка имеет достаточно простое устройство, включающее электромагнитный клапан с иглой и сопло.

Характеристика к фото номер 1:

1. сетчатый фильтр
2. электрический разъем
3. пружина
4. обмотка возбуждения
5. якорь электромагнита
6. корпус форсунки
7. игла форсунки
8. уплотнение
9. сопло форсунки

— Работа электромагнитной форсунки осуществляется следующим образом. В соответствии с заложенным алгоритмом электронный блок управления обеспечивает в нужный момент подачу напряжения на обмотку возбуждения клапана. Статья была опубликована в паблике вк Машины. При этом создается электромагнитное поле, которое преодолевая усилие пружины, втягивает якорь с иглой и освобождает сопло. Производится впрыск топлива. С исчезновением напряжения, пружина возвращает иглу форсунки на седло.

Электрогидравлическая форсунка используется на дизельных двигателях, в т.ч. оборудованных системой впрыска Common Rail. Конструкция электрогидравлической форсунки объединяет электромагнитный клапан, камеру управления, впускной и сливной дроссели.

Характеристика к фото номер 2:

1. сопло форсунки
2. пружина
3. камера управления
4. сливной дроссель
5. якорь электромагнита
6. сливной канал
7. электрический разъем
8. обмотка возбуждения
9. штуцер подвода топлива
10. впускной дроссель
11. поршень
12. игла форсунки

— Принцип работы электрогидравлической форсунки основан на использовании давления топлива, как при впрыске, так и при его прекращении. вк.ком/карс.бест В исходном положении электромагнитный клапан обесточен и закрыт, игла форсунки прижата к седлу силой давления топлива на поршень в камере управления. Впрыск топлива не происходит. При этом давление топлива на иглу ввиду разности площадей контакта меньше давления на поршень.

— По команде электронного блока управления срабатывает электромагнитный клапан, открывая сливной дроссель. Топливо из камеры управления вытекает через дроссель в сливную магистраль. При этом впускной дроссель препятствует быстрому выравниванию давлений в камере управления и впускной магистрали. Давление на поршень снижается, а давление топлива на иглу не изменяется, под действием которого игла поднимается и происходит впрыск топлива.

— Самым совершенным устройством, обеспечивающим впрыск топлива, является пьезоэлектрическая форсунка (пьезофорсунка). Форсунка устанавливается на дизельных двигателях, оборудованных системой впрыска Common Rail.

— Преимуществами пьезофорсунки являются быстрота срабатывания (в 4 раза быстрее электромагнитного клапана), и как следствие возможность многократного впрыска топлива в течение одного цикла, а также точная дозировка впрыскиваемого топлива.

Характеристика к фото номер 3:

1. игла форсунки
2. уплотнение
3. пружина иглы
4. блок дросселей
5. переключающий клапан
6. пружина клапана
7. поршень клапана
8. поршень толкателя
9. пьезоэлемент
10. сливной канал
11. сетчатый фильтр
12. электрический разъем
13. нагнетательный канал

— Это стало возможным благодаря использованию пьезоэффекта в управлении форсункой, основанного на изменении длины пьезокристалла под действием напряжения. Конструкция пьезоэлектрической форсунки включает пьезоэлемент, толкатель, переключающий клапан и иглу, помещенные в корпусе.

— В работе пьезофорсунки, также как и электрогидравлической форсунки, используется гидравлический принцип. В исходном положении игла посажена на седло за счет высокого давления топлива. При подаче электрического сигнала на пьезоэлемент, увеличивается его длина, которая передает усилие на поршень толкателя. Открывается переключающий клапан, топливо поступает в сливную магистраль. Давление выше иглы падает. Игла за счет давления в нижней части поднимается и производится впрыск топлива.

🔧Количество впрыскиваемого топлива определяется:

• длительностью воздействия на пьезоэлемент;
• давлением топлива в топливной рампе.

Источник

Форсунки двигателя — виды и принцип работы

1409929803 forsunki vidy i princip raboty Познавательная статья о форсунках автомобиля — какие их типы бывают и как они работают.

1409929803 forsunki vidy i princip raboty

Форсунка (второе название — «инжектор») представляет собой конструктивный элемент системы впрыска двигателя. Подобное устройство предназначено для подачи топлива в дозированном количестве, дальнейшего его распыления во впускном коллекторе (камере сгорания), т.е. создания топливно-воздушной смеси.

Оборудование такого рода используется во всех системах впрыска двигателей — и бензиновых, и дизельных. Сегодня на современных двигателях используют форсунки, которые оснащены электронным управлением впрыска.

Зависимо от того или иного способа выполнения впрыска различают такие виды форсунок, как: электромагнитная, пьезоэлектрическая и электрогидравлическая.

Конструкция и принцип функционирования электромагнитной форсунки

Электромагнитное устройство такого плана, как правило, используют, на бензиновых двигателях, включая и те, которые имеют систему непосредственного впрыска. Данный вид оборудования характеризуется довольно простой конструкцией, которая состоит из сопла и включающего электромагнитного клапана, оснащенного иглой.

Работа электромагнитной форсунки происходит таким образом. Электронный блок управления, в точном соответствии с заложенным ранее алгоритмом, обеспечивает в необходимый момент на обмотку возбуждения клапана подачу напряжения. В процессе этого создается электромагнитное поле, которое преодолевает усилие пружины, затем втягивает якорь с иглой и, таким образом, освобождает сопло. После этого осуществляется впрыск топлива. Когда же напряжение пропадает, пружина иглу форсунки возвращает на седло.

Конструкция и принцип функционирования электрогидравлической форсунки

Электрогидравлическое оборудование такого плана применяют на дизельных двигателях, включая и те, которые оборудованы системой впрыска под названием «Common Rail». Конструкция устройства данного типа объединяет в себе электромагнитный клапан, сливную и впускную дроссели, камеру управления.

Принцип работы данного оборудования основан на применении давления топлива, и при впрыске, и после его прекращения. Электромагнитный клапан в исходном положении обесточен и полностью закрыт, игла устройства прижата к седлу с помощью силы давления на поршень топлива в камере управления. В таком положении впрыск топлива не осуществляется. Следует отметить, что в такой ситуации давление топлива на иглу в связи с разностью площадей контакта менее давления, осуществляемого на поршень.После команды электроблока управления происходит срабатывание электромагнитного клапана и осуществляется открытие сливной дроссели. При этом, топливо, находящееся в камере управления, вытекает в сливную магистраль через дроссель. Впускной дроссель служит препятствием тому, чтобы произошло быстрое выравнивание давлений не только во впускной магистрали, но также и в камере управления. Постепенно давление на поршень уменьшается, но не изменяется давление топлива, осуществляемое на иглу — в результате этого происходит поднятие иглы и, соответственно, впрыск горючего.

Конструкция, преимущества и принцип функционирования пьезоэлектрической форсунки

Наиболее совершенным устройством, с помощью которого обеспечивается впрыск топлива, считается пьезоэлектрическое оборудование такого плана — оно называется «пьезофорсунка». Данный вид устройств устанавливают на тех дизельных двигателях, которые оборудованы системой впрыска, носящей название Common Rail — аккумуляторная топливная система.

Преимущество подобных устройств — это быстрота срабатывания (примерно в четыре раза быстрее, чем электромагнитный клапан), что в результате предоставляет возможность многократно впрыскивать топливо на протяжении течение одного цикла. Кроме этого плюсом пьезофорсунок является максимально точная дозировка топлива, которое впрыскивается.

Создание данного вида оборудования стало возможным в связи с использованием в управлении форсункой пьезоэффекта, который основан на смене длины пьезокристалла в результате воздействия напряжения. Конструкция такого устройства включает в себя пьезоэлемент и толкатель, отвечающий за переключение клапана, а также иглу — всё это помещено в корпус устройства.

В работе данного вида оборудования, также как и в работе электрогидравлических устройств такого плана, используют гидравлический принцип. Игла в исходном положении посажена на седло из-за высокого давления топлива. В процессе подачи на пьезоэлемент электрического сигнала, происходит увеличение его длины, что передает на поршень толкателя усилие. В результате этого происходит открытие переключающего клапана и поступление в сливную магистраль топлива. Падает давление выше иглы. В связи с давлением в нижней части происходит поднятие иглы и, соответственно, впрыск топлива.

Количество топлива, которое впрыскивается, определяется такими факторами, как:

Смотрите видео про принцип работы форсунки:

Источник

Топливная форсунка. Назначение, устройство, принцип работы

Видео: Устройство и принцип действия насос форсунки. Принцип работы форсунки инжекторного двигателя. Изучаем Common Rail. Дизельные форсунки. Разбираем топливную форсунку. Промывка топливной форсунки своими руками. Что убивает форсунки дизельного двигателя. Регулировка дизельных форсунок на стенде в домашних условиях. Работа распылителя и стенда КИ-562

Форсунка — это элемент системы впрыска, предназначенный для дозированной подачи топлива, его распыления в камере сгорания (впускном коллекторе) и образования топливно-воздушной смеси.

Форсунки используются в системах впрыска как бензиновых, так и дизельных двигателей. На современных двигателях устанавливаются форсунки с электронным управлением впрыска.

В зависимости от способа осуществления впрыска различают:

Общий вид форсунки системы «Коммон рейл» фирмы «Бош» показан на рисунке.

Razrez elektrogidravlicheskoi forsunki firmy Bosh

Рис. Разрез электрогидравлической форсунки фирмы Бош:
1 – отводящий дроссель; 2 – игла; 3 – распылитель; 4 – пружина запирания иглы; 5 – поршень управляющего клапана; 6 – втулка поршня; 7 – подводящий дроссель; 8 – шариковый управляющий клапан; 9 – шток; 10 – якорь; 11 – электромагнит; 12 – пружина клапана

Форсунка состоит из:

Шарик клапана прижимается к седлу с усилием пружины и электромагнита. Сила пружины рассчитана на давление до 100 кг/см2, что значительно ниже давления в линии высокого давления (250…1800 кг/см2), поэтому только при приложении усилия электромагнита шариковый клапан не отойдет от седла, отделяя аккумулятор от линии слива. Игла распылителя форсунки в нерабочем состоянии прижимается к седлу пружиной распылителя – это предотвращает попадание воздуха в форсунку при пуске двигателя.

В отличие от бензиновых электромеханических фор­сунок, в форсунках «Коммон Рейл» электромагнит при давлении 1350 … 1800 кгс/см2 не в состоянии поднять за­порную иглу, поэтому используется принцип гидроусиления.

Printsip dyeistviya elektrogidravlicheskoi forsunki

Рис. Принцип действия электрогидравлической форсунки:
а – форсунка в закрытом состоянии; b – форсунка в открытом состоянии; c – фаза закрытия форсунки

При создании давления в аккумуляторе, оно действует как на конусную поверхность иглы, так и на поршень управляющего клапана 5. Поскольку площадь рабочей поверхности поршня на 50% больше площади конусной поверхности иглы, игла распылителя продолжает прижиматься к седлу.

При подаче напряжения от блока управления на электромагнит 11, шток 9 якоря штока поднимается и открывается шариковый управляющий клапан 8. Давление в камере управления 7 падает в результате открытия дроссельного отверстия и топливо пропускается из зоны над поршнем управляющего клапана в зону слива. Давление на поршень управляющего клапана падает, так как подводящее дроссельное отверстие управляющего клапана имеет меньшее сечение чем отводящее. Запорная игла 2 при этом под действием высокого давления в кармане распылителя 3 открывается. Количество подаваемого топлива зависит от времени подачи напряжения в электромагнит 11, а значит от времени открытия шарикового управляющего клапана 8. При прекращении подачи напряжения на электромагнит 11, якорь под действием пружины опускается вниз, при этом шариковый управляющий клапан закрывается, давление в камере управления восстанавливается через специальный жиклер. Под действием давления топлива на поршень управляющего клапана 5, имеющего диаметр больше диаметра иглы, последняя закрывается.

На входе топлива в форсунку установлен аварийный ограничитель подачи топлива. Он предотвращает опорожнение аккумулятора через форсунку с зависшей иглой или клапаном управления, а также повреждение соответствующего цилиндра дизеля. В нем используется принцип возникновения разницы давлений по обе стороны от клапана 1 при прохождении топлива через его жиклеры 2. Сечение жиклеров, за­тяжка пружины 3 и диаметр клапана подобраны по максимальной продолжительности и расходу, т.е. подаче топлива.

Avariinyi ogranichitel podachi topliva cherez forsunku

Рис. Аварийный ограничитель подачи топлива через форсунку

В системах «коммон рейл» первых поколений общее количество горючей смеси, впрыскиваемой в цилиндр, разделялось на предварительное и основное. Однако более гармоничной является такая схема сгорания, когда во время одного рабочего такта горючая смесь будет разделена на возможно большее количество частей. До сих пор добиться этого было невозможно по причине инерционности традиционных форсунок с электромагнитным управлением.

Одним из путей совершенствования системы «коммон рейл» является увеличение быстродействия открытия форсунки. Минимальное время открытия форсунки для электромагнита с подвижным сердечником составляет 0,5 мс, что не позволяет оперативно изменять подачу топлива. Для более быстрого срабатывания форсунки в настоящее время применяется пьезокерамическая форсунка, которая работает вчетверо быстрее.

Известно, что при подаче электрического напряжения на пьезокерамическую пластинку она на несколько микрон изменяет свою толщину.

Пьезоэлемент, являющийся исполнительным элементом форсунки, представляет собой параллелепипед длиной 30…40 мм, состоящий из спеченных между собой 300 керамических пластинок (кристаллов), расширяющийся на 80 мкм всего за 0,1 мс, чего достаточно чтобы воздействовать на иглу форсунки с усилием 6300 Н. При этом для управления пьезоэлементом используют напряжение бортовой сети автомобиля.

Pezoelement

Для усиления пьезоэффекта в керамику добавляют палладиум и цирконий. Пьезоэлемент потребляет энергию только при подаче напряжения и регенерирует ее при выключении напряжения, таким образом, являясь регенератором энергии.

Использование пьезоэлемента, кроме быстроты срабатывания, обеспечивает большую силу открытия клапана сброса давления над иглой форсунки и высокую точность хода для быстрого сброса давления подачи топлива.

Электрогидравлическая форсунка с пьезоэлементом показана на. Основными составляющими форсунки являются модуль исполнительного элемента, состоящего из пьезоэлектрического элемента и его составляющих, модуль плунжера, состоящего из поршней, амортизатора давления и пружины, клапан переключения, игла. Для окончательной очистки топлива применяется специальный стержневой фильтр.

Razrez pezoelektrogidravlicheskoi forsun

Рис. Разрез пьезоэлектрогидравличе­ской форсунки:
1 ­– патрубок рециркуляции; 2 – электрический разъем; 3 – стержневой фильтр; 4 – корпус форсунки; 5 – пьезоэлектричесий элемент; 6 – сопряженный поршень; 7 – поршень клапана; 8 – клапан переключения; 9 – игла форсунки; 10 – амортизатор давления

Увеличение длины модуля исполнительного элемента преобразуется модулем соединителя в гидравлическое давление и перемещение, воздействующие на клапан переключения. Модуль плунжера действует как гидравлический цилиндр. На него постоянно воздействует давление подачи топлива 10 кгс/ см2 через редукционный клапан в обратной магистрали.

Топливо выполняет роль амортизатора давления между плунжером соединителя выпускного дросселя 8 и плунжером клапана 5 в модуле плунжера. Из пустого закрытого инжектора (присутствует воздух) воздух удаляется при стартерном пуске двигателя (с частотой вращения вала стартера). Помимо этого, инжектор наполняется топливом, подаваемым погруженным в топливном баке насосом, проходящим через управляемый обратный клапан против направления потока топлива.

Клапан переключения состоит из пластины клапана, плунжера клапана 5, пружины клапана и пластины дросселя 3. Топливо под давлением протекает через впускной дроссель 4 в пластине дросселя к игле форсунки и в камеру над иглой форсунки. Благодаря этому происходит выравнивание давления над и под иглой форсунки. Игла форсунки удерживается в закрытом положении силой пружины форсунки. При нажиме плунжера клапана 5 открывается канал выпускного дросселя и топливо под давлением вытекает через выпускной дроссель 8 большего размера, расположенный над иглой форсунки. Топливо под давлением поднимает иглу форсунки, в результате чего происходит впрыск. Благодаря быстрым командам на переключение пьезо-электрического элемента за один рабочий такт друг за другом производятся несколько впрысков.

Printsip raboty pezoforsunki

Рис. Принцип работы пьезофорсунки:
1 – игла форсунки; 2 – пружина форсунки; 3 – пластина дросселя; 4 — впускной дроссель; 5 – плунжер клапана; 6 – линия высокого давления; 7 – соединительный элемент; 8 – выпускной дроссель; а – форсунка закрыта; б — форсунка открыта

Из-за особенностей процесса сгорания, присущих дизельным двигателям с турбонаддувом, для уменьшения шума и снижения выброса оксидов азота в цилиндры двигателя перед впрыском основной дозы топлива подается небольшая капля топлива (1…2 мм3) «пилотный впрыск», которая плавно перетекает в распыление остальной части топлива. Предварительный впрыск позволяет топливу воспламеняться быстрее. Давление и температура при этом возрастают медленнее чем при обычном впрыске, что уменьшает «жесткость» работы двигателя и его шум с одновременным снижением выбросов окислов азота. Характер процесса двойного впрыска показан на рисунке:

Grafik protsessa dvoinogo vpryska i kharakter raspyleniya topliva

Рис. График процесса двойного впрыска и характер распыления топлива

При холодном двигателе и в режиме, приближенном к холостому ходу, происходит два предварительных впрыска. При увеличении нагрузки предварительные впрыски один за одним прекращаются, пока при полной нагрузке двигатель не перейдет в режим основного впрыска. Оба дополнительных впрыска необходимы для регенерации сажевого фильтра.

Благодаря тому, что пьезофорсунки имеют намного меньшее время срабатывания, чем традиционные электромагнитные, стало возможным разделение горючей смеси на несколько отдельных микродоз: после многократных предварительных впрыскиваний очень небольших количеств горючей смеси следуют либо основное впрыскивание, либо при необходимости многие так называемые «послевпрыскивания».

Kharakter protekaniya protsessa mnogostupenchatogo vpryska

Рис. Характер протекания процесса многоступенчатого впрыска

Время между предварительным впрыскиванием и основным впрыскиванием составляет 100 мс. Объем топлива, попадающего в цилиндр в момент каждого предварительного впрыскивания, составляет 1,5 мм3. Это делается для равномерного распределения давления в камере сгорания и, соответственно, уменьшения шума, создаваемого в процессе сгорания. После впрыскивания, в свою очередь, служат для снижения токсичности отработавших газов. Если в конце цикла сгорания произвести еще одно впрыскивание в цилиндр, то оставшиеся частицы сгорают лучше. Кроме того, в случае, когда во впускной системе установлен фильтр для улавливания несгоревших частиц, такая технология за счет высокой температуры способствует его очистке. Это особенно актуально для двигателей с большим рабочим объемом.

Более того, сейчас стало возможным использовать до семи тактов впрыска вместо трех за один рабочий процесс. Благодаря этому появляются новые возможности для увеличения номинальной мощности двигателя и еще более точного контроля за составом отработавших газов.

Новое поколение форсунок позволяет регулировать не только количество впрыска по времени и его фазы, но и управлять подъемом иглы, что позволяет более четко управлять процессом впрыска.

В настоящее время производители дизельной топливной аппаратуры, например фирма Бош, разработала системы Common Rail с давлением впрыска до 2500 кгс/см2. В этих системах форсунка отличается от традиционной тем, что максимальное давление создается не гидроаккумуляторе, а в самой форсунке. Она снабжена миниатюрным гидроусилителем давления и двумя электромагнитными клапанами, позволяющими варьировать момент впрыска и количество топлива в пределах одного рабочего цикла. Таким образом, здесь совмещены принципы работы Common Rail и форсунки.

Другим направлением форсунок фирмы Bosch является устройство в форсунках небольшого напорного резервуара, сокращающего обратный ход к циклу низкого давления. Это позволяет увеличить давление впрыска и КПД системы.

Форсунки с повышенным давлением впрыска соответствуют нормам Евро-6.

Источник

Общие сведения о форсунках

Форсунки — исполнительный механизм, предназначенный для распыления топлива во впускном тракте топливной системы или в цилиндрах двигателя внутреннего сгорания. Существует следующие виды этих устройств — механические, электромагнитные, гидравлические, пьезоэлектрические. Форсунки для бензиновых и дизельных двигателей отличаются по принципу работы. Также в разных марках автомобилей форсунки работают с разным напряжением и давлением. Обо всем этом и многом другом мы расскажем вам в данном материале.

Типы форсунок

Охарактеризуем каждый из перечисленных типов в отдельности, и начнем с электромагнитных форсунок. Они устанавливаются в бензиновые двигатели. Форсунки состоят из следующих составных частей — электромагнитного клапана, распылительной иглы и сопла.

Электромагнитная инжекторная форсунка

Дизельная электрогидравлическая форсунка

Принцип их работы достаточно прост. При поступлении команды от ЭБУ автомобиля на электромагнитный клапан подается напряжение, благодаря чему в нем создается магнитное поле, которое втягивает иглу, тем самым освобождая канал в сопле. Соответственно, через него проходит топливо. Как только напряжение на клапане исчезает, игла под воздействием обратной пружины вновь перекрывает сопло и бензин более не подается в цилиндры.

Следующий тип — электрогидравлические форсунки. Они используются в дизельных двигателях, в том числе, созданных по системе Common Rail. Такие форсунки имеют более сложную конструкцию. В частности, в их состав входят впускной и сливной дроссели, электромагнитный клапан и камера управления. Работа форсунки выполняется следующим образом.

Движение основано на использовании давления топлива как во время впрыска, так и по его прекращению. В начальном положении электромагнитный клапан обесточен, и соответственно, закрыт. При этом игла форсунки прижата к своему седлу под естественным давлением топлива на поршень в камере управления. То есть, впрыск топлива не происходит. Поскольку диаметр иглы гораздо меньше диаметра поршня, то давление на нее больше.

Когда на электромагнитный клапан подается сигнал от ЭБУ тот открывает сливной дроссель. Соответственно, топливо начинает вытекать в сливную магистраль. Однако впускной дроссель препятствует быстрому выравниванию давлений между камерой управления и впускной магистралью. Соответственно, давление на поршень снижается медленно, а давление на иглу не меняется. Поэтому игла под разностью давлений поднимается и происходит топливный впрыск.

Третий тип — это пьезоэлектрические форсунки. Они считаются самыми совершенными, и используются на дизельных двигателях, снабженных системой подачи топлива Common Rail. В конструкцию такой форсунки входят пьезоэлемент, толкатель, переключающий клапан, игла.

В момент, когда топливо не поступает через форсунку, ее игла сидит плотно в своем седле, так как на нее давит высокое давление топлива. Когда от ЭБУ поступает сигнал на пьезоэлемент, который является исполнительным механизмом, то в этот момент он увеличивается в размере (в длину), и таким образом выталкивает поршень. Вследствие этого происходит открытие клапана, и через него топливо попадает в сливную магистраль. Давление в верхней части иглы снижается и игла поднимается. При этом происходит впрыск топлива.

Основное преимущество пьезоэлектрических форсунок заключается в высокой скорости их срабатывания (приблизительно в 4 раза быстрее гидравлических). Это дает возможность осуществлять многократный впрыск топлива за один рабочий цикл двигателя. В процессе подачи количество подаваемого топлива можно контролировать двумя путями — временем воздействия на пьезоэлемент, а также давлением топлива в рампе. Однако у пьезоэлектрических форсунок есть один существенный недостаток — их неремонтопригодность.

0

Работа электромагнитной форсунки инжекторного двигателя

0

Работа форсунки в системе Common Rail

Поскольку принцип работы дизельных форсунок несколько сложнее, чем бензиновых, то имеет смысл рассмотреть более детально алгоритм их работы на примере форсунки Common Rail ранних выпусков.

Как работает дизельная форсунка

На основании полученной информации ЭБУ управляет разными элементами двигателя, в том числе и топливными форсунками. В частности, на какой промежуток времени и когда именно их открывать (момент открытия).

Форсунка дизельного двигателя работает в трех фазах:

Далее перейдем к рассмотрению алгоритма, в соответствии с которым работает форсунка дизельного двигателя:

Любая топливная форсунка характеризуется следующими техническими параметрами:

При выходе за допустимые пределы хотя бы одного из перечисленных параметров форсунка будет работать некорректно, и образовывать некачественную топливно-воздушную смесь. А это, в свою очередь, плохо скажется на работе двигателя вашего автомобиля.

Также существуют отдельный вид форсунок для инжекторных двигателей с непосредственным впрыском. Их основное отличие — высокая скорость срабатывания, а также повышенное напряжение, на котором они работают. Рассмотрим их более детально.

Форсунки для двигателя с непосредственным впрыском

Устройство форсунки FSI

Эти форсунки имеют также другое название — GDI (FSI). Оно было придумано в недрах компании Mitsubishi, когда ее инженеры стали производить двигатели с непосредственным впрыском топлива, работающих на сверхобедненных смесях. В основе их работы лежит точный выбор времени срабатывания поднятия и опускания рабочей иглы.

Так, в обычных инжекторных двигателях время открытия форсунки составляет порядка 2. 6 мс. А форсунки в двигателях, работающих на сверхобедненных смесях — около 0,5 мс. Поэтому обычная подача стандартных 12 В на форсунку уже не может обеспечить необходимую скорость срабатывания. Для реализации этой задачи они работают по технологии Peak-n-Hold, что в переводе означает “пиковое напряжение и удержание”.

Суть этого метода заключается в следующем. На форсунку подается высокое напряжение (например, на форсунки упомянутой компании Mitsubishi подается напряжение со значением около 100 В). Благодаря этому катушка очень быстро достигает насыщения. При этом ее обмотка не перегорает по причине имеющейся противоЭДС. А для удержания сердечника в катушке необходимо магнитное поле с меньшим значением. Соответственно, нужен и меньший ток.

График тока и напряжения на форсунке GDI

То есть, рабочий ток в катушке сначала очень быстро нарастает, а потом быстро падает. В этот момент наступает фаза Hold (удержания). То есть, время впрыска горючего составляет от начала подачи импульса до второго индуктивного выброса. Такие методы используют автопроизводители Mitsubishi и General Motors.

Однако производители Mercedes и VW пользуются разработками компании BOSCH. В соответствии с их методом система не уменьшает напряжение, а использует широтно-импульсную модуляцию (ШИМ). Задача по реализации этого алгоритма возложена на специальный блок — Driver Injector. Как правило, он расположен неподалеку от форсунок (например, компании Toyota и Mercedes располагают блок в горизонтальном положении в районе чашки амортизаторов, что является на сегодняшний день оптимальным решением).

ШИМ на форсунке FSI

Все двигатели FSI мощностью более 90 л.с. оснащаются усовершенствованной топливной системой. Ее отличием является:

Что касается эксплуатации двигателей GDI, то стоит отметить, что он очень чувствителен к качеству топлива, своевременной замене топливного фильтра. Необходимо не забывать проводить чистку топливной системы и своевременно менять масло.

Преимущества и недостатки топливных форсунок

Несомненно, топливные форсунки обладают преимуществами перед традиционным карбюратором. В частности, к ним относят:

Однако у форсунок есть и свои недостатки. Среди них:

Однако несмотря на имеющиеся недостатки, на сегодняшний день форсунки используются в большинстве автомобильных бензиновых и дизельных двигателей как более технологичные и экологичные системы впрыска горючего. Что касается дизельных моторов, то там произошла замена старых механических форсунок на более новые с электронным управлением.

Расположение форсунок

В зависимости от типа форсунок и метода впрыска расположение форсунок может быть различным. В частности:

Независимо от того, где установлена форсунка, в процессе своей работы она загрязняется. Поэтому необходимо проводить периодическую проверку их состояния и производительности. В соответствующих статьях на сайте вы можете узнать подробно: как проверить состояние дизельных форсунок коммон рейл, осуществить проверку насос-форсунок или проверить инжекторные форсунки.

Чистка форсунок

Для того чтобы почистить форсунки используют два метода — ультразвуковую и химическую чистку. Каждый из перечисленных методов можно использовать при разных условиях. Так, в процессе загрязнения топливной системы и, в частности форсунки, на стенках образуются твердые и мягкие отложения. Сначала появляются мягкие, которые легко смываются под воздействием химических средств. Когда же мягкие отложения уплотняются, то они превращаются в твердые и избавиться от них можно лишь при помощи ультразвуковой чистки.

Если же форсунка использовалась более 100 тысяч километров пробега, то химическая очистка для нее не только нецелесообразна, но и вредна. В ее процессе могут отколоться крупные частицы твердых отложений, и при выходе их наружу попросту забить иглу. Особенно это актуально для форсунок с непосредственным впрыском топлива.

Сравнение чистой (слева) и загрязненной форсунки (справа)

При использовании ультразвуковой чистке важно знать, на каком нормальном рабочем напряжении работает форсунка. Дело в том, что стандартное напряжение 12 В не обеспечивает высокой скорости открытия и закрытия форсунки. Поэтому в настоящее время многие автопроизводители используют пониженное напряжение. Например, форсунки от компании Toyota работают при напряжении 5 В, а форсунки компании Citroen — при напряжении 3 В. Соответственно, на них нельзя подавать распространенное напряжение 12 В, поскольку они попросту перегорят. О напряжении на форсунках мы поговорим немного ниже.

Самая лучшая очистка будет состоять в последовательном использовании метода ультразвуковой и химической очистки. Так, на первом этапе твердые отложения превращаются в мягкие, а на втором — они удаляются с помощью химических препаратов.

Также существуют специальные присадки для добавления в топливный бак. Их функция заключается в промывке форсунок, когда через них проходит топливо с чистящим средством.

Срок между периодическим использованием таких присадок отличается, и зависит от конкретной марки автомобиля и используемого топлива. Однако нужно понимать, что этот метод менее действенный, чем описанные выше. Его имеет смысл применять при замене топливных фильтров или периодически через несколько тысяч километров пробега. Дополнительную информацию о том, как почистить форсунку своими руками вы можете посмотреть тут.

Напряжение на форсунках

Остановимся подробнее на вопросе, какое напряжение подается на форсунки двигателя. В первую очередь необходимо понимать, что они управляются с помощью электрических импульсов. Причем “+” от аккумулятора подается сразу на форсунку через предохранитель, а вот “-” контролирует ЭБУ. То есть, в разный момент времени напряжение на форсунке постоянно. Однако если произвести замер с помощью осциллографа (мультиметр в данном случае может ничего не показать, поскольку импульсы очень кратковременны), то этот прибор покажет усредненное значение. Оно будет зависеть от того, с какой частотой поступают импульсы на форсунку.

Графики импульсов напряжения на форсунках

Приведенные на рисунке графики помогут нам ответить на вопрос — какое напряжение подается на форсунку. Чем длительнее импульсы напряжения, подаваемого на форсунку, тем усредненное рабочее напряжение будет выше (длительность импульсов у большинства машин находится в пределах 1. 15 мс). А длительные импульсы подаются на высоких рабочих оборотах двигателя. Соответственно, чем выше эти самые обороты — тем выше будет усредненное рабочее напряжение на форсунках. То есть, на форсунки подаются рабочие 12 В (на самом деле немного меньше из-за незначительного падения напряжения на управляющем транзисторе), однако в импульсе.

Некоторые автовладельцы пытаются открыть форсунку простой подачей тока от АКБ с целью почистить ее. Необходимо понимать, что напряжение напрямую от аккумулятора подавать на форсунку нельзя, поскольку существует риск того, что она выйдет из строя (сгорит ее обмотка). Импульс на устройство подается через транзисторный ключ. Действует он кратковременно, так как обмотка в форсунке быстро нагревается и может попросту сгореть. В процессе работы двигателя время открытия контролирует ЭБУ, а ее естественное охлаждение, пусть и незначительное, осуществляет поступающее топливо.

Как указывалось выше, автопроизводители используют форсунки с разным рабочим напряжением. Поэтому идеальным решением будет посмотреть эту информацию в мануале автомобиля или на сайте изготовителя. Если же вы не можете найти эти сведения, то к подбору напряжения для открытия форсунки нужно подойти осторожно.

На практике чтобы открыть форсунку, опытные автомобилисты советуют использовать специальный стенд. Однако можно обойтись и более простыми приспособлениями. Например, купить китайский блок питания с выходным напряжением, регулируемым в пределах 3. 12 В (обычно с шагом в 1,5 В). Схема подключения обязательно должна иметь кнопку без устойчивого положения (например, от квартирного звонка). Для открытия форсунки стоит подавать сначала самое маленькое напряжение, увеличивая его в случае, если форсунка не открылась.

Также можно воспользоваться аккумуляторной батареей от шуруповерта. Разобрав ее, вы увидите так называемые “банки” — маленькие аккумуляторы. Каждая из них выдает напряжение 1,2 В. Соединяя их последовательно, можно добиться нужного напряжения для открытия форсунки.

Управление форсунками

Как упоминалось выше, управление форсунками происходит с помощью электронного блока управления (ЭБУ) автомобиля. На основе информации, поступающей от многочисленных датчиков, его процессор принимает решения о том, какие импульсы подавать на форсунку. От этого зависят обороты двигателя и режим его работы.

Так, входными данными для контроллера являются:

Программа, вшитая в контроллер ЭБУ, позволяет выбрать оптимальный режим работы двигателя с тем, чтобы сэкономить топливо, выбрать номинальный режим работы двигателя и обеспечить комфортную эксплуатацию автомобиля.

Заключение

Несмотря на простоту своего устройства, топливные форсунки при ненадлежащем уходе за ними, могут принести автовладельцу немало хлопот. Так, в случае, если они забились, машина утратит свои динамические характеристики, появится перерасход горючего, в выхлопных газах будет большое количество гари. Поэтому рекомендуем вам следить за состоянием топливных форсунок двигателя вашего автомобиля, и периодически очищать их. Помните, что неисправности с этими, по сути, пустяковыми и дешевыми деталями могут обернуться проблемами с более дорогостоящими узлами вашего автомобиля.

Источник

Оцените статью
Avtoshod.ru - все самое важное о вашем авто