Для чего нужен кшм в автомобиле

Содержание

Кривошипно-шатунный механизм и двигатель наразлучны

Кривошипно-шатунный механизм (КШМ), пожалуй, самая важная система двигателя.
Назначение кривошипно-шатунного механизма – преобразовывать возвратно-поступательное движение во вращательное и обратно.

lazy placeholder

Все детали кривошипно-шатунного механизма делятся на две группы: подвижные и неподвижные. К подвижным относятся:

Устройство кривошипно-шатунного механизма

Поршень похож на перевернутый стакан, в который укладываются кольца. На любом из них присутствуют два вида колец: маслосъемное и компрессионное. Маслосъемных обычно ставят два, а компрессионных – одно. Но бывают и исключения в виде: два таких и два таких — все зависит от типа двигателя.

lazy placeholder

Шатун изготавливается из двутаврового стального профиля. Состоит из верхней головки, которая соединяется с поршнем при помощи пальца, и нижней – соединение с коленчатым валом.

Коленчатый вал изготавливается в основном из чугуна повышенной прочности. Представляет собой несоосный стержень. Все шейки тщательно шлифуются, с соблюдением необходимых параметров. Существуют коренные шейки — для установки коренных подшипников, и шатунные – для установки через подшипники шатунов.

Роль подшипников скольжения выполняют разрезные полукольца, выполненные в виде двух вкладышей, которые обработаны токами высокой частоты для прочности. Все они покрыты антифрикционным слоем. Коренные крепятся к блоку двигателя, а шатунные — к нижней головке шатуна. Чтобы вкладыши хорошо работали, в них делают канавки для доступа масла. Если вкладыши провернуло – значит, имеется недостаточный подвод масла к ним. Это обычно происходит при засорении масляной системы. Вкладыши ремонту не подлежат.

Продольное перемещение вала ограничивают специальные упорные шайбы. С обоих концов обязательно применение различных сальников для предотвращения выхода масла из системы смазки двигателя.

lazy placeholder

К передней части коленвала крепится шкив привода системы охлаждения и звездочка, которая приводит в действие распредвал при помощи цепной передачи. На основных моделях выпускаемых сегодня автомобилей ей на замену пришел ремень. К задней части коленчатого вала крепится маховик. Он предусмотрен для устранения дисбаланса вала.

Также на нем стоит зубчатый венец, предназначенный для пуска двигателя. Чтобы при разборке и дальнейшей сборке не возникало проблем – крепеж маховика выполняется по не симметричной системе. От расположения меток его установки зависит и момент зажигания – следовательно, оптимальная работа двигателя. При изготовлении его балансируют вместе с коленчатым валом.

Картер двигателя изготавливается вместе с блоком цилиндров. Он служит основой для крепления ГРМ и КШМ. Имеется поддон, который служит емкостью для масла, а так же для защиты двигателя от деформации. Снизу предусмотрена специальная пробка для слива моторного масла.

Принцип работы КШМ

На поршень оказывают давление газы, которые вырабатываются при сгорании топливной смеси. При этом он совершает возвратно – поступательные движения, заставляя проворачиваться коленчатый вал двигателя. От него вращательное движение передается на трансмиссию, а оттуда – на колеса автомобиля.

А вот на видео показано как работает КШМ в тюнингованном ВАЗ 2106:

Основные признаки неисправности КШМ:

Кривошипно-шатунный механизм двигателя очень уязвим. Для эффективной работы необходима своевременная замена масла. Лучше всего ее производить на станциях техобслуживания. Даже, если Вы недавно поменяли масло, и приходит пора сезонного ТО – обязательно перейдите на то масло, какое указано в инструкции по эксплуатации машины. Если в работе двигателя возникают какие-то проблемы: шумы, стуки – обращайтесь к специалистам – только в авторизированном центре Вам дадут объективную оценку состояния автомобиля.

Источник

Кривошипно-шатунный механизм — что это?

23cec2s 100

В соответствии с предназначением кривошипно-шатунный механизм (сокращенное название – КШМ) воспринимает давление газов, возникающих при сгорании топливно-воздушной смеси в цилиндрах двигателя, и преобразует его в механическую работу по вращению коленчатого вала.

Кривошипно-шатунный механизм состоит из поршней с шатунами, соединенных с коленчатым валом. Поршни перемещаются в гильзах (втулках) цилиндров.

b3a855cs 960

1. вкладыш шатунного подшипника
2. втулка верхней головки шатуна
3. поршневые кольца
4. поршень
5. поршневой палец
6. стопорное кольцо
7. шатун
8. коленчатый вал
9. крышка шатунного подшипника

Поршень воспринимает давление расширяющихся при высокой температуре газов и передает его на шатун. Поршень изготавливается из алюминиевых сплавов. Возвратно-поступательное движение поршня осуществляется в гильзе цилиндра.

Поршень состоит из единых головки и юбки. Головка поршня может иметь различную форму (плоскую, выпуклую, вогнутую и др.), в ней также может быть выполнена камера сгорания (дизельные двигатели). В головке нарезаны канавки для размещения поршневых колец. На современных двигателях используется два типа колец: маслосъемные и компрессионные. Компрессионные кольца препятствуют прорыву газов в картер двигателя. Маслосъемные кольца удаляют излишки масла на стенках цилиндра. В юбке выполнены две бобышки для размещения поршневого пальца, который соединяет поршень с шатуном.

Шатун передает усилие от поршня к коленчатому валу, для этого он имеет шарнирное соединение и с поршнем и с коленчатым валом. Шатуны изготавливаются, как правило, из стали путем штамповки или ковки. Шатуны двигателей спортивных автомобилей отлиты из сплава титана.

Конструктивно шатун состоит из верхней головки, стержня и нижней головки. В верхней головке размещается поршневой палец. Предусматривается вращение поршневого пальца в головке шатуна и бобышках поршня. Такой палец имеет название «плавающий». Стержень шатуна имеет двутавровое сечение. Нижняя головка выполнена разборной, что позволяет обеспечить соединение с шейкой коленчатого вала. Современной технологией является контролируемое раскалывание цельной нижней головки шатуна. Благодаря неповторимой поверхности излома обеспечивается высокая точность соединения частей нижней головки.

Коленчатый вал воспринимает усилия от шатуна и преобразует их в крутящий момент. Коленчатые валы изготавливаются из высокопрочного чугуна и стали. Коленчатый вал состоит из коренных и шатунных шеек, соединенных щеками. Щеки выполняют функцию уравновешивания всего механизма. Коренные и шатунные шейки вращаются в подшипниках скольжения, выполненных в виде разъемных тонкостенных вкладышей. Внутри шеек и щек коленчатого вала просверлены отверстия для прохода масла, которое к каждой их шеек подается под давлением.

На конце коленчатого вала устанавливается маховик. В настоящее время применяются т.н. двухмассовые маховики, представляющие собой упруго соединенных два диска. Через зубчатый венец маховика производится запуск двигателя стартером.

Для предотвращения крутильных колебаний (чередующееся закручивание и раскручивание коленчатого вала) на другом конце коленчатого вала может устанавливаться гаситель крутильных колебаний. Гаситель колебаний состоит из двух металлических колец, соединенных через упругую среду (эластомер, вязкое масло). На внешнем кольце гасителя крутильных колебаний выполнен ременной шкив (звездочка цепи).

В совокупности поршень, шатун и гильза цилиндров образуют цилиндро-поршневую группу или просто цилиндр. Современный двигатель может иметь от одного до 16 и более цилиндров.

Различают следующие компоновочные схемы расположения цилиндров в двигателе:

• рядная (оси цилиндров расположены в одной плоскости);
• V–образная (оси цилиндров расположены в двух плоскостях);
• оппозитная (оси цилиндров расположены в двух плоскостях под углом 180°);
• VR (оси цилиндров расположены в двух плоскостях под малым углом);
• W–образная (две VR схемы, расположенных V-образно со смещением на одном коленчатом валу).

Компоновочная схема определяет уровень балансировки двигателя. Наилучшую балансировку имеет двигатель с оппозитным расположением цилиндров. Достаточно сбалансирован рядный четырехцилиндровый двигатель. V-образный двигатель имеет наилучшую балансировку при значении угла между цилиндрами 60° и 120°.

Для уменьшения вибрации в рядных двигателях применяются балансирные валы, расположенные под коленчатым валом в масляном поддоне.

Источник

Устройство и принцип работы кривошипно-шатунного механизма двигателя

Кривошипно-шатунный механизм двигателя преобразует возвратно-поступательное движение поршней (от энергии сгорания топливной смеси) во вращательное движение коленчатого вала и наоборот. Это технически сложный механизм, составляющий основу ДВС. В статье подробно рассмотрим устройство и особенности работы КШМ.

Краткая история возникновения

Первые свидетельства о применении кривошипа найдены ещё в III веке нашей эры, в Римской Империи и Византии в VI веке нашей эры. Ярким примером является пилорама из Иераполиса, на которой был применен коленчатый вал. Металлический кривошип был найден в римском городе Августа-Раурика на территории современной Швейцарии. Как бы то ни было, запатентовал изобретение некий Джеймс Пакард в 1780 году, хотя свидетельства его изобретения были найдены еще в древности.

Подвижные и неподвижные части КШМ

Составные части КШМ условно делят на подвижные и неподвижные компоненты. К подвижным частям относятся:

Неподвижные части КШМ выполняют функцию основы, крепежей и направляющих. К ним относятся:

Картер и поддон картера двигателя

Картер – это нижняя часть двигателя, где располагаются опоры и каналы смазочной системы для коленчатого вала. В картере происходит движение шатунов и вращение коленвала. Поддон картера представляет собой резервуар с моторным маслом.

Основа картера в работе подвергается постоянным тепловым и силовым нагрузкам. Поэтому для этой детали предъявляются особые требования по прочности и жесткости. Для его изготовления используют алюминиевые сплавы или чугун.

Картер двигателя крепится к блоку цилиндров. Вместе они составляют остов двигателя, основную часть его корпуса. В блоке располагаются непосредственно сами цилиндры. Сверху крепится головка блока ДВС. Вокруг цилиндров имеются полости для жидкостного охлаждения.

Расположение и число цилиндров

На сегодняшний день существуют следующие наиболее популярные схемы:

В простом рядном расположении цилиндры и поршни расположены в ряд перпендикулярно коленчатому валу. Такая схема наиболее простая и надежная.

Головка блока цилиндров

К блоку с помощью шпилек или болтов крепится головка блока цилиндров. Она накрывает цилиндры с поршнями сверху, образуя герметичную полость – камеру сгорания. Между блоком и головкой предусмотрена прокладка. Также в ГБЦ располагаются клапанный механизм и свечи зажигания.

Цилиндры

В цилиндрах двигателя непосредственно происходит движение поршней. От хода поршня и его длины зависит их размер. Цилиндры работают в условиях меняющегося давления и высоких температур. Во время работы стенки подвергаются непрерывному трению и температурам до 2500°C. К материалам и обработке цилиндров также предъявляются особые требования. Они изготавливаются из легированного чугуна, стали или алюминиевых сплавов. Поверхность деталей должна быть не только прочной, но и легко подвергаться обработке.

Внешнюю рабочую поверхность называют зеркалом. Ее покрывают хромом и полируют до зеркальной поверхности, чтобы максимально снизить трение в условиях ограниченной смазки. Цилиндры отливаются вместе с блоком (цельные) или изготавливаются в виде съемных гильз.

Кривошипно-шатунный механизм

Основными рабочими компонентами КШМ являются коленчатый вал, поршни с шатунами и маховик.

Поршень

Движение поршня в цилиндре происходит в результате сгорания топливовоздушной смеси. Возникает давление, которое воздействует на днище поршня. В разных типах двигателей оно может отличаться по своей форме. В бензиновых изначально днище было плоским, затем стали применять вогнутые конструкции с проточками под клапаны. В дизельных моторах в камере сгорания сжимается изначально не топливо, а воздух. Поэтому днище поршня имеет также вогнутую форму, которая и образует камеру сгорания.

Форма днища имеет большое значение для формирования правильного факела сгорания топливовоздушной смеси.

Остальная часть поршня называется юбкой. Это своего рода направляющая, которая движется в цилиндре. Нижняя часть поршня или юбки сделана так, чтобы она не соприкасалась с шатуном во время его движения.

На боковой поверхности поршней выполнены канавки или проточки под поршневые кольца. Сверху располагаются два или три компрессионных кольца. Они необходимы для создания компрессии, то есть препятствуют проникновению газов между стенками цилиндра и поршнем. Кольца прижимаются к зеркалу, уменьшая зазор. Снизу расположен паз под маслосъёмное кольцо. Оно необходимо для снятия излишков масла со стенок цилиндра, чтобы то не проникало в камеру сгорания.

Поршневые кольца, особенно компрессионные, работают при постоянных нагрузках и высокой температуре. Для их изготовления применяется высокопрочные материалы типа легированного чугуна, который покрывают пористым хромом.

Поршневой палец и шатун

Шатун крепится к поршню при помощи поршневого пальца. Он представляет собой цельную или полую деталь цилиндрической формы. Палец устанавливается в отверстие в поршне и в верхней головке шатуна.

Существуют два типа крепления пальца:

Наиболее распространен так называемый «плавающий палец». Для его фиксации используются стопорные кольца. Фиксированный палец устанавливается с натягом. Как правило, используется тепловая посадка.

Шатун, в свою очередь, соединяет коленчатый вал и поршень и создает вращательные движения. При этом возвратно-поступательные движения шатуна описывают восьмерку. Он состоит из нескольких элементов:

Для уменьшения трения и смазки соприкасающихся деталей в поршневой головке запрессовывается бронзовая втулка. Кривошипная головка выполнена разборной, чтобы обеспечить возможность сборки механизма. Детали точно подогнаны друг к другу и крепятся с помощью болтов и контргаек. Чтобы уменьшить трение, устанавливаются шатунные подшипники скольжения. Они выполнены в форме двух стальных вкладышей с замками. По масляным канавкам осуществляется подвод масла. Подшипники с высокой точностью подогнаны под размер соединения.

Вопреки расхожему мнению, вкладыши удерживаются от проворота не за счет замков, а из-за возникающей силы трения между их внешней поверхностью и головкой шатуна. Поэтому при установке внешнюю часть подшипника скольжения нельзя смазывать маслом.

Коленчатый вал

Коленчатый вал является сложной по устройству и изготовлению деталью. Он принимает на себя крутящий момент, давление и другие нагрузки, поэтому выполнен из высокопрочной стали или чугуна. Коленвал передает вращение от поршней на трансмиссию и другие элементы автомобиля (например, приводной шкив).

Коленчатый вал состоит из нескольких основных элементов:

Конструкция коленвала во многом будет зависеть от количества цилиндров в двигателе. В простом рядном четырехцилиндровом двигателе на коленчатом валу имеются четыре шатунных шейки, на которых устанавливаются шатуны с поршнями. Пять коренных шеек расположены по центральной оси вала. Они устанавливаются в опоры блока цилиндров или картера на подшипники скольжения (вкладыши). Сверху коренные шейки закрываются крышками на болтах. Соединение образует П-образную форму.

Специально обработанное место опоры под установку коренной шейки с вкладышем называется постелью.

Коренные и шатунные шейки соединены так называемыми щеками. Противовесы обеспечивают гашение излишних колебаний и обеспечивают равномерное движение коленчатого вала.

Шейки коленвала термически обработаны и отполированы, что обеспечивает высокую прочность и точность посадки. Коленчатый вал также имеет очень точную балансировку и центровку для равномерного распределения всех действующих на него сил. В районе центральной коренной шейки, по бокам от опоры, устанавливаются упорные полукольца. Они необходимы для компенсации осевых перемещений.

На хвостовик коленвала крепятся шестерни (звездочки) привода ГРМ, а также приводной шкив навесного оборудования двигателя.

Маховик

На задней части вала имеется фланец, к которому крепится маховик. Это чугунная деталь, представляющая собой массивный диск. Благодаря своей массе маховик создает необходимую инерцию для работы КШМ, а также обеспечивает равномерную передачу крутящего момента на трансмиссию. На ободе маховика выполнен зубчатый венец для соединения с шестерней стартера. Именно маховик раскручивает коленвал и приводит в движение поршни в момент запуска двигателя.

Кривошипно-шатунный механизм, конструкция и форма коленчатого вала долгие годы остаются неизменными. В основном происходят только небольшие конструктивные доработки, направленные на снижение веса, сил инерции и трения.

Источник

Что такое КШМ и для чего нужен кривошипно-шатунный механизм?

%D0%9A%D0%A8%D0%9C

Если есть что-то, что прочно ассоциируется с любым автомобилем, это механизм двигателя. Как ни странно, принцип его действия мало изменился с тех пор, как 120 лет назад Карл Бенц запатентовал свой первый автомобиль. Система усложнялась, обрастала сложной электроникой, совершенствовалась, но кривошипно-шатунный механизм (КШМ) остался самым узнаваемым “портретом” любого мотора.

Что такое КШМ и для чего он нужен?

Двигатель в процессе работы должен давать какое-то постоянное движение, и удобней всего, чтобы это было равномерное вращение. Однако силовая часть (цилиндро-поршневая группа, ЦПГ) вырабатывает поступательное движение. Значит, нужно сделать так, чтобы один тип движения преобразовался в другой, причем с наименьшими потерями. Вот для этого и был создан кривошипно-шатунный механизм.
По сути, КШМ – это устройство для получения и преобразования энергии и передачи ее дальше, другим узлам, которые уже эту энергию используют.

Устройство КШМ

Строго говоря, КШМ автомобиля состоит из самого кривошипа, шатунов и поршней. Однако говорить о части, не рассказав о целостной конструкции, было бы в корне неправильно. Поэтому схема и назначение КШП и смежных элементов будет рассматриваться в комплексе.

Эти и другие элементы КШМ можно условно разделить на подвижные, те, что выполняют непосредственную работу, и неподвижные вспомогательные элементы.

Подвижная (рабочая) группа КШМ

Как понятно из названия, к подвижной группе относятся элементы, которые активно задействованы в работе двигателя.

Неподвижная группа КШМ

Неподвижной группой можно назвать внешнюю часть двигателя, в которой находится КШП.

Принцип работы КШМ

Работа механизма двигателя основана на энергии расширения при сгорании топливно-воздушной смеси. Именно эти “микровзрывы” являются движущей силой, которую кривошипно-шатунный механизм переводит в удобную форму. На видео, ниже, подробно описанный принцип работы КШМ в 3Д анимайии.

Принцип работы КШМ:

Интересно, что для старта двигателя нужно сначала раскрутить маховик. Для этой цели нужен стартер, который сцепляется с зубчатым венцом маховика и раскручивает его, пока мотор не заведется. Закон сохранения энергии в действии.

Остальные элементы двигателя: клапаны, распредвалы, толкатели, система охлаждения, система смазки, ГРМ и прочие – необходимые детали и узлы для обеспечения работы КШМ.

Основные неисправности

Учитывая нагрузки, как механические, так и химические, и температурные, кривошипно-шатунный механизм подвержен различным проблемам. Избежать неприятностей с КШП (а значит, и с двигателем) помогает грамотное обслуживание, но всё равно от поломок никто не застрахован.

Стук в двигателе

Один из самых страшных звуков, когда в моторе вдруг появляется странный стук и прочие посторонние шумы. Это всегда признак проблем: если что-то начало стучать, значит, с ним проблема. Поскольку в двигателе элементы подогнаны с микронной точностью, стук свидетельствует об износе. Придется разбирать двигатель, смотреть, что стучало, и менять изношенную деталь.

Основной причиной износа чаще всего становится некачественное ТО двигателя. Моторное масло имеет свой ресурс, и его регулярная замена архиважна. То же относится и к фильтрам. Твердые частички, даже мельчайшие, постепенно изнашивают тонко пригнанные детали, образуют задиры и выработку.

Стук может говорить и об износе подшипников (вкладышей). Они также страдают от недостатка смазки, поскольку именно на вкладыши приходится огромная нагрузка.

Снижение мощности

Потеря мощности двигателя может говорить о залегании поршневых колец. В этом случае кольца не выполняют свою функцию, в камере сгорания остается моторное масло, а продукты сгорания прорываются в двигатель. Прорыв газов говорит и о пустой растрате энергии, и это чувствует автовладелец как снижение динамических характеристик. Продолжительная работа в такой ситуации может только ухудшить состояние двигателя и довести стандартную, в общем-то, проблему до капремонта двигателя.

Проверить состояние мотора можно самостоятельно, измерив компрессию в цилиндрах. Если она ниже нормативной для данной модификации двигателя, значит, предстоит ремонт двигателя.

Повышенный расход масла

Если двигатель начал “жрать” масло, это явный признак залегания поршневых колец или других проблем с цилиндро-поршневой группой. Масло сгорает вместе с топливом, из выхлопной трубы идет черный дым, температура в камере сгорания превышает расчетную, и это не добавляет двигателю здоровья. В некоторых случаях может помочь очистка без демонтажа двигателя, но в большинстве случаев предстоит разборка и дефектовка двигателя.

Нагар

Отложения на поршнях, клапанах и свечах зажигания говорят о том, что с двигателем есть проблема. Если топливо не сгорает полностью, нужно искать причину неисправности и устранять ее. В противном случае мотору грозит перегрев из-за ухудшения теплопроводности поверхностей со слоем нагара.

Белый дым из выхлопной трубы

Появляется, когда в камеру сгорания попадает антифриз. Причиной чаще всего бывает износ прокладки ГБЦ или микротрещины в рубашке охлаждения двигателя, и для устранения проблемы необходима ее замена.

Медлить в этой ситуации нежелательно: маленькая протечка может обернуться гидроударом. Камера сгорания наполняется жидкостью, поршень движется вверх, но жидкость, в отличие от воздуха, не сжимается, и получается эффект удара о твёрдую поверхность. Последствия такой катастрофы могут быть любые, вплоть до “кулака дружбы” и продажи машины на запчасти.

Заключение

Несмотря на высокие нагрузки, критические условия работы и даже небрежность владельцев, кривошипно-шатунный механизм отличается завидной живучестью. Вывести его из строя можно неправильным обслуживанием, нештатными нагрузками, поломкой смежных элементов. Да, двигатель почти всегда можно починить, но эта услуга обойдётся в разы дороже, чем просто грамотное регулярное ТО. Недаром же есть двигатели “миллионники”, которые способны служить десятилетиями, не доставляя проблем владельцу машины.

Источник

Разрушители легенд. Двигатель внутреннего сгорания. Часть №6. Кривошипно-шатунный механизм. Часть №1. Шатун.

4045866s 100

Вся история существования и развития двигателей внутреннего сгорания(ДВС) непрерывно связана с применением кривошипно-шатунного механизма(КШМ), без которого двигатели в давно и всем известном виде просто непредставимы. Поршень в цилиндре движется прямолинейно-поступательно и преобразовать это движение во вращательное без КШМ не представляется возможным.

Чего наворотили на основе КШМ за последние сто лет можно посмотреть здесь:

При всём кажущемся совершенстве конструкций на основе КШМ попытки создать двигатель без КШМ не прекращаются по сей день. Ничего путнего на горизонте мы пока не наблюдаем, но изобретателей это не останавливает.

Двухсотлетнее стремление избавиться от КШМ давно уже выродилось в самоцель и, похоже, народ давно позабыл(или никогда и не знал?)первопричину этих потуг. Почему же конструкторы всех мастей с маниакальным упорством продолжают опять и опять изобретать велосипед?
Чем так не угодил КШМ создателям ДВС?

Я уже давал ответ на этот вопрос в предыдущих своих статьях, но сегодня хочу остановиться на этом вопросе подробнее. Давайте ещё раз рассмотрим конструкцию КШМ.

Давление газов в цилиндре ДВС равномерно распределено по поверхности «камеры сгорания». Вектор силы этого давления НА ПОРШЕНЬ действует вдоль стенок цилиндра в район оси вращения коленвала. Поршень воздействует на кривошип через шатун, который поворачивается при вращении коленвала на довольно значительный угол — соответственно шатун передаёт на кривошип хоть и бОльшую, но только ЧАСТЬ давления газов. Кривошип в свою очередь преобразует в крутящий момент только ту ЧАСТЬ передаваемого шатуном усилия, которая направлена по КАСАТЕЛЬНОЙ относительно коленвала — таким образом теряя ещё значительную часть передаваемого усилия. Все силы, которые не преобразуются в крутящий момент на коленвалу — деформируют коленвал, шатун, стенки цилиндров, поршень, подшипники и всё прочее типа блока цилиндров — в итоге взаимокомпенсируются через механизмы двигателя и потому полезной работы не совершают. Пропадают зря.

Давайте проследим путь СИЛЫ давления газов на поршень до выходного вала ДВС.
Как видно из рисунка — в каждом КШМ имеется ДВА узла, манипулирующих силами давления газов:

y YjDTSVuNS7TU7UqXAuXRiK2pE 960

Первый такой узел — это сочленение ПОРШЕНЬ-ШАТУН.
Максимальный коэффициент трансформации силы(далее КТС) давления газов через шатун возникает когда шатун расположен по оси силы давления — соответственно этот момент возникает только в ВМТ и НМТ. По мере отклонения шатуна от вертикали передаваемая на кривошип сила уменьшается по закону Pt=P1*cos(β) от 100% до некоего минимума, возникающего при повороте кривошипа на 90 градусов после ВМТ.
«Наука» теплотехника несколько извращённо трактует взаимодействие сил в этом сочленении.
Третий закон Ньютона пока ещё никто не отменял, но некоторые уже давно и успешно его забыли — сила действия ВСЕГДА равна силе противодействия. Именно поэтому НА САМОМ ДЕЛЕ боковая составляющая вызвана силой ПРОТИВОДАВЛЕНИЯ, действующей в ответ на силу ДАВЛЕНИЯ газов. Поскольку эти силы взаимодействуют под углом — то и «возникает» третья сила, в полном соответствии с законами сложения и разложения сил. В старых учебниках по ДВС ещё можно найти адекватные иллюстрации:

2H8m3KLT3FB2qmff6Q9pCdcjfJg 960

Чем сильнее отклоняется шатун — тем БОЛЬШЕ получается сила(N) давления поршня на стенки цилиндра.
Чем сильнее отклоняется шатун — тем МЕНЬШЕ получается сила(Pt), передаваемая через шатун на кривошип!

Максимальный угол отклонения шатуна напрямую зависит от соотношения ДЛИНЫ ШАТУНА к РАДИУСУ КРИВОШИПА. Чем длиннее шатун — тем меньше возникающий угол. Лучше всего когда шатун длиннее плеча кривошипа в 4 раза и более — максимальный угол отклонения шатуна тогда минимален.

Алхимики от двигателестроения шифруются и потому у них своя система координат — они манипулируют соотношением длины шатуна и рабочего хода поршня — это соотношение у них принято обзывать «R/S». Как часто бывает(или это специально делается?) — общепринятый термин в очередной раз всё путает. Рабочий ход поршня к углу отклонения шатуна никакого отношения, конечно же, не имеет. Но поскольку в силу конструктивных особенностей КШМ рабочий ход поршня ровно в два раза больше радиуса кривошипа — то и такое соотношение можно использовать.
Только зачем?
Я терпеть не могу, когда термин перевирает техническую суть.
Потому я не буду использовать термин R/S в своём рассказе.

При коротком(3R) шатуне угол отклонения шатуна от вертикали достигает 20 градусов и, соответственно, передаваемое на кривошип усилие в сочленении ПОРШЕНЬ-ШАТУН уменьшается процентов на 6-7. Энергия не берётся из ниоткуда и не исчезает в никуда — всё, что недополучит от поршня кривошип, всё это усилие будет впечатывать поршень в стенки цилиндра, что многократно увеличивает трение в цилиндро-поршневой группе(что тоже чревато увеличением потерь мощности) и существенно ускоряет износ.
Т.е. часть сил давления газов замыкается в двигателе накоротко уже на этом этапе.

Чем короче шатун — тем сильнее он отклоняется от вертикали при вращении кривошипа и тем больше «ГЕОМЕТРИЧЕСКИЕ» потери сил в сочленении ПОРШЕНЬ-ШАТУН:

dl19BvYEfJa4AmI8HztssAImSYk 960

lTQLR42BptXzwSdaA7 zS vDHM4 960

Потому, как ни странно прозвучит — но именно длина шатуна обуславливает МАКСИМАЛЬНУЮ эффективность КШМ в целом! Подавляющее большинство двигателей имеет шатуны длиной 3-3.5R — соответственно за счёт сочленения ПОРШЕНЬ-ШАТУН двигатель с такой геометрией никак не может передать на кривошип больше условных 95% сил, воздействующих на поршень.

Даже 5% потерь уже готового к употреблению момента — это очень дофига. Это просто неприлично много. В потугах хоть как-то отыграть эти потери применяют смещение оси движения поршня(«дезаксиал»\»дезаксаж») — либо сдвигают точку крепления шатуна к поршню, либо сдвигают сами цилиндры в блоке так, чтобы шатун в зоне максимального давления газов был перпендикулярен(ну или хотя бы БОЛЕЕ перпендикулярен) днищу поршня и направлен строго вдоль вектора силы передаваемого через шатун давления:

bVnnR5nFlXZq2NQZHbfVD4FNceY 960

Как видите — смещение уменьшает угол между шатуном и вектором силы давления газов в самом ответственном положении коленвала. За счёт этого средний момент, предаваемый шатуном на кривошип получается увеличить на 1-2 процента.
Это как бы немного, но не будем забывать, что это чуть ли не ПОЛОВИНА ПОТЕРЬ в сочленении ПОРШЕНЬ-ШАТУН. Соответственно при смещении оси движения поршня значительно снижается давление поршня на стенки цилиндра, уменьшается скорость поршня на рабочем такте, это в свою очередь приводит к уменьшению потерь на трение в цилиндре и к уменьшению износа ЦПГ. Уменьшается шум и нагрузки при перекладке поршня…
Но это всё ПРОИЗВОДНЫЕ от потерь в сочленении ПОРШЕНЬ-ШАТУН при отклонении шатуна от оси движения поршня. Я не буду влезать в дезаксиал глубоко — к сожалению он не решает всех проблем, а некоторые проблемы существенно усугубляет, увы.

Есть ещё одна проблема, которую вообще практически не озвучивают — это ДИНАМИЧЕСКИЕ потери. Дело в том, что шатун при работе двигателя движется по довольно замысловатой траектории. Длинный шатун(5R) перемещает поршень по очень близкой к синусоиде траектории. Так выглядит график ПЕРЕМЕЩЕНИЯ поршня на одинаковом коленвалу при разных шатунах(синяя кривая — при относительно длинном(5R) шатуне, красная при относительно коротком(3R) шатуне):

stbfao9kpo9rPLf9TEnyPm2 CIs 960

Как видите — отличия в кинематике поршня минимальны и непонятно о чём беспокоиться.
Но давайте посмотрим на график отклонения шатуна от оси движения поршня:

Rk2Sg84glhdGaM9OmUv7CqhGjxY 960

Как видите — максимальный угол отклонения шатуна отличается почти в два раза.
При длинном шатуне мы максимально теряем около 2% передаваемого момента(КТС=0.98), а при коротком — почти 6%(КТС=0.94). Т.е. ГЕОМЕТРИЧЕСКИЕ потери передаваемого момента в сочленении поршень-шатун из-за более сильного отклонения короткого шатуна выше в ТРИ РАЗА!

На самом деле можно взять шатуны и ещё длиннее длинного(тогда потери уменьшаются всё медленнее) и ещё короче короткого(тогда потери нарастают лавинообразно) — но в реальном двигателестроении даже рассмотренные крайности применяются редко, а лезть в галимую теорию я смысла не вижу — меня интересуют чисто практические вещи.

Понятно, что на кону всего-то-навсего 4% от крутящего момента двигателя, но это очень не мало и это всё ещё СТАТИКА, о которой я писал выше.

Давайте смотреть ДИНАМИКУ.
График СКОРОСТИ поршней и шатунов уже начинает вызывать тревогу:

jT4HvuXrtgyAQkjofDHoEuo zd4 960

Дело в том, что скорость поршней в цилиндрах сильно влияет на сопротивление и износ.
А оба этих параметра — обратная сторона потерь энергии на трение.

Как видно на графике — скорость движения поршневой группы минимальна вблизи верхней мёртвой точки и вблизи нижней мёртвой точки, а максимальна — посередине хода поршня. Т.е. поршневая группа при каждом обороте коленчатого вала два раза разгоняется максимально и два раза тормозится до нулевой скорости.
Понятно, что каждый разгон и торможение требуют затрат энергии.
При возрастании скорости в два раза — ускорения(а значит и затраты энергии на разгон-торможение) возрастают в четыре раза. А как мы видим на графике — максимальная скорость поршневой группы при коротком шатуне на 3% выше.

Давайте посмотрим на ускорения поршневой при разных шатунах:

XsIJWMazmPQbozCiK0Lv3jVuujs 960

Ускорение в ВМТ отличается на 11% и затраты энергии на возвратно-поступательно движение поршневой группы увеличатся пропорционально!

Вблизи НМТ картина ещё более интересная — там ускорение поршневой группы с коротким шатуном имеет сложный характер. На первый взгляд максимальное ускорение ниже, но дело в том, что там выше скорость изменения ускорения — РЫВОК. А рывок — это ещё более энергозатратная(и разрушительная!) штука, чем ускорение.
Кому интересны подробности — читайте например тут.

Вот кривая РЫВКА этих же поршней и шатунов:

iRBQLMjaP5wFU Nn sDYccwnTU 960

Как видно из графика максимальные скорости изменения ускорения при идеально РАВНОМЕРНОМ вращении коленвала находятся в районе 60 градусов ДО ВМТ и в районе 60 градусов ПОСЛЕ ВМТ. При коротком шатуне есть два явно выраженных всплеска в районе 25 градусов ДО НМТ(разгонный рывок) и в районе 25 градусов ПОСЛЕ НМТ(рывок торможения).
В четырёхцилиндровом РЯДНОМ двигателе рывки всех 4 цилиндров накладываются друг на друга — ведь они происходят одновременно в двух цилиндрах — при движении поршня вверх, и одновременно в двух других цилиндрах — при движении поршня вниз. Ещё и воспламенение в одном из цилиндров в районе ВМТ накладывается синфазно каждый такт…
Именно поэтому вибрации четырёхцилиндрового двигателя максимальны по амплитуде и потому именно он считается самым неуравновешенным.

Дезаксиал серьёзно ухудшает эту картину.
Но без него современный КОРОТКОШАТУННЫЙ двигатель немыслим.
В итоге вибрации двигателей получаются настолько высокими, что производителям пришлось изобретать и внедрять балансирные валы:

FivWVbvJ32dNFWBSzKXVsgi kBU 960

Эти неуравновешенные валы вращаются с вдвое более высокими оборотами, чем коленчатый вал — таким образом они тоже создают вибрации, но эти вибрации рассчитывают так, чтобы они действовали в противофазе к вибрациям коряво спроектированного КШМ и таким образом гасили их. Вот так производители «успешно» борются с проблемами, которые сами же и породили.
Правая рука не ведает, что вытворяет левая?
В результате внешних проявлений почти нет — трясётся короткошатунный двигатель не сильнее нормального длинношатунного, но внутри такого двигателя бушуют страсти — повышенные ударные нагрузки на коленвал и поршневую, значительные дополнительные вес и инерционные нагрузки, высокие ударные нагрузки на кучу дополнительных узлов — всё это приводит к ускоренному износу и повышенному расходу топлива…

Маниакальная страсть производителей ширпотребовских двигателей снять максимальную мощность с объёма завела индустрию в патовую ситуацию.
Мощность — это обороты.
Производители в погоне за оборотами(читай — за литровой мощностью) пошли по самому лёгкому пути — максимально снизили вес и РАЗМЕРЫ цилиндро-поршневой группы. Ну и получили что получили.
Паспортной МАКСИМАЛЬНОЙ мощности до сих пор приносят в жертву и момент, и экономичность, и ресурс.

При увеличении оборотов в 10 раз — скорости поршневой группы увеличиваются в 10 раз, ускорения увеличиваются в 100 раз, а рывок — в 1000 раз. Соответственно лавинообразно увеличиваются ДИНАМИЧЕСКИЕ потери момента, которые просто обязаны пагубно отражаться на итоговом КПД двигателя в реальной работе. Особенно на высоких оборотах. Но считать их я не буду — это уже высшая математика, а мне бы с арифметикой двигателя разобраться для начала…

На картинках даже в современных учебниках по ДВС нарисованы двигатели в тех пропорциях, какими их представляли себе инженеры начала прошлого века — они-то понимали толк в том, что делали. Но в жизни мы подобные пропорции найдём разве что в судовых и локомотивных двигателях.
Ну и разумеется — в двигателях Формулы-1, которым приходится крутиться с оборотами под 22000, из-за чего в них все эти современные извращения просто недопустимы…
Легковое же двигателестроение уже давно заблудилось в трёх соснах — современные двигатели ВСЕ короткошатунные и короткоходые — и бензинки и дизеля.

Источник

Оцените статью
Avtoshod.ru - все самое важное о вашем авто