Давление в глушителе автомобиля

Как обратное давление выхлопных газов влияет на мощность автомобиля?

Что такое обратное давление выхлопных газов, и насколько оно влияет на мощность?

1515599959 ds

Умудренные опытом автомеханики говорят, что высокое обратное давление выхлопных газов – это плохо. Если вы хотите сохранить максимальную мощность, то должны минимизировать обратное давление выхлопных газов*.

* Немного теории. Противодавление (обратное давление) на выхлопе является давлением, противоположенным току газов из камеры сгорания вдоль по ограниченному пространству трубы (в данном случае автомобильной). Часто причиной появления противодавления являются неровные поверхности стенок выхлопной трубы, препятствия или закругления в ней.

Обратное давление, вызванное установленной выхлопной системой (состоящей из выпускного коллектора, каталитического нейтрализатора, глушителя и соединительных труб) автомобильного четырехтактного двигателя, негативно влияет на эффективность работы двигателя, что приводит к снижению выходной мощности и должно быть компенсировано увеличением расхода топлива.

Немного практики. Возьмем автомобиль с очень «свободно дышащей» выхлопной системой: специальный гоночный автомобиль – драгстэр.

1515600082 1 4

В выхлопной системе этого гоночного аппарата на каждом цилиндре применяется отдельная выхлопная труба. Длина каждой выхлопной трубы не превышает 1 метра, и служат они исключительно для управления потоком выхлопных газов, направляя их вверх и в сторону от двигателя и кузова автомобиля в процессе заезда, используя силу выхлопа для создания небольшого количества дополнительной прижимной силы для повышения тяги.

И вроде бы все в этом гоночном болиде ладно сделано и хорошо скроено, но есть одна противоречивая теория, которую время от времени озвучивают как на форумах Рунета, так и на зарубежных ресурсах, посвященных автомобилям. Главный посыл теоретической мысли – нехватка обратного давления в системе отрицательно влияет на мощность. Иными словами, если у вашего автомобиля в выхлопной системе слишком свободный ток выхлопных газов, это может фактически уменьшить выходную мощность.

1515600096 1 3

К счастью, Джейсон Фенске с YouTube объяснил, что в данном случае хорошо, а что не очень.

Главная задача состоит в подборе труб системы правильной длины, от стенок которых волны выхлопных газов будут вовремя отражаться для возврата части энергии обратно, например к тому же цилиндру, во время открытия выпускного клапана, что позволит лучше очистить камеру сгорания от продуктов распада топлива. Буквально провентилировать ее изнутри.

Помимо этого, расчеты инженеров устремляются в сторону создания зон пониженного давления в трубах коллектора – другими словами, вакуума при помощи противодавления. Этот частичный вакуум может фактически высасывать выхлопные газы из цилиндра. Правильно спроектированная система выхлопа увеличивает этот эффект в широком диапазоне оборотов, эффективно очищая цилиндры от отработанных выхлопных газов при помощи точно настроенной формы выхлопной системы.

1515600110 1 2

Двигатель, в котором лучше очищаются цилиндры, будет выдавать большую мощность, будет работать эффективнее, экологичнее и экономичнее. Без верно настроенных труб выхлопа, которые будут правильным образом распределять волны обратного давления, этого добиться будет крайне сложно, и отсюда неминуема потеря мощности.

Тем, кому интересно узнать больше нюансов, можно посмотреть видео, предварительно включив субтитры и выбрав перевод на русский в меню «Настройки» (шестеренка в правом нижнем углу видео).

Источник

42f7826s 100

Самый надежный способ проверить выхлопную систему на противодавление заключается в измерении давления в выпускной системе. Для этого вместо первого датчика кислорода с помощью переходника вкручивается манометр с максимальным давлением 1 атм ( 100 кПа ) и снимаются показания на различных режимах работы двигателя. Погуглив интернет Считается, что на 2500 об/мин давление не должно превышать 0,3 кгс/см2 (300 кПа ) а с книги кА.Е. Хрулёва «Ремонт двигателей зарубежных автомобилей», 0,1 — 0,15 кгс/см2

2d2d585s 960

ec56585s 960

Лада Приора Седан 2011, двигатель бензиновый 1.6 л., 98 л. с., передний привод, механическая коробка передач — своими руками

Машины в продаже

Комментарии 21

RWgAAgDzd A 60

Друг, противодавление проверяют на ходу,
3-я передача,
дроссель 100%
и до отсечки.
А на видео мотор работает без нагрузки
с расходом 40 — 50 кг/ч.

WYAAAgEBuOA 60

Для чего делают этот тест?

42f7826s 60

Если нет выхода выхлопных газов свободного катализатор или глушитель забит то цилиндры не наполняются смесью и машина тупит не едет

WYAAAgEBuOA 60

Так это и лямбда после ката покажет

42f7826s 60

Лямда показывает состав смеси а не давление это разные вещи

WYAAAgEBuOA 60

)))Чем бедне смесь фиксирует лямбда после ката тем сильне забиткат, завод блин для этого её туда в сучил чтоб она контролировала состояние ката!

60

смесь может попасть на вторую лямбду если она не догорела на каталике, для этого он и служит — дожигать смесь. а вот не догореть она может по разным причинам, не обязательно каталик забит, может он просто осыпался или покрылся тонким слоем нагара, сохранив при этом пропускную способность. так что вторая лямбда это никак не показатель именно забитого каталика, а не исправного да

42f7826s 60

WYAAAgEBuOA 60

Это после новогодней ночи тебе такой мараз приснился?Если у тебя смесь недогорает в цилиндре то нужно двс капиталить))!А в катализаторе под высокой тепературой происходит химический процес по очищенинию выхлопных газов от тяжёлых металов так как это невозможно в цилиндре.А про спаренную роботу лямбд и функцию лямбды после каталицатора, для чего они существуют в системе управления двс читай в описании!А про тонкий слой нагара схранив при этом пропускную способность))))это вобще вешалка ты хоть видел соты в каталике?А вторая лямбда какраз по заводу для контроля роботы каталика и поставлена!но ты наверно умнее инженеров и можеш опровергнуть их мнение но про это у них на форуме писать нужно а не тут!

60

я сказал, что забитый катали — это не единственная причина неисправности каталика, которую показывает вторая лямбда. если лямбда выдала ошибку — это еще не означает что каталик забит, у него может просто выгореть каталитический слой. А ты если такой умник и разбираешься в нормах евро, иди производителям датчика кислорода расскажи, как он у них тяжелые металлы научился нюхать. потому что по твоим сочинениям, если каталик не исправен и не дожигает «тяжелые металлы», то лямбда их определяет. ну ну, держи меня в курсе)) датчик кислорода — ключевое слово «КИСЛОРОДА». ну или дожигает смесь или дожигает «тяжелые металлы» содержащиеся в этой смеси — это ты уже к словам цепляешься 😉

4e8f66u 60

42f7826s 60

ну не детский же сад мультики снимать ) 2500 об/мин не создали давление в выпускном тракте поэтому прогазовка для создания большего потока выхлопных газов для создания давления в выпускном тракте

4e8f66u 60

тогда покажи какой переходник сделал ну и т.д! и раз с манометром сидел в салоне.значит шланг был!так?или просто манометр в руках держал?)) и газовал!

42f7826s 60

переходник произвольный резьба для датчика кислорода М18*1,5, шланг удленнитель я использовал высокого давления диаметр 8 мм рабочее давление 350 атм что под руки попался на работе, но можно и тормозной шланг приколхозить не критично и кислородный любой

Источник

Выхлопные системы. Атмо Ч1

d1c0108s 100

ПОЧЕМУ ВЫПУСКНОЙ ТРАКТ ВЛИЯЕТ НА РАБОТУ МОТОРА.

ДВС иначе можно назвать воздушным насосом. Мощность мотора зависит от количества воздуха напрямую, топлива можно запихать сколько угодно. Чем больше пройдёт кислорода за единицу времени, тем больше мощности, а точнее крутящего момента будет.

2d86614s 960

Задаёмся вопросом каким образом в атмомотор запихать кучу воздуха?! Ведь атмо ДВС засосёт столько сколько ему нужно, и никто ему насильно, как в турбо, нагнетать не станет.
Важно понимать — нужен нам не воздух в общем, а сам кислород. Плотность воздуха как и любого газа зависит от температуры, больше температура — больше расстояние между молекулами, следовательно в одном объёме меньше кислорода, а это сказывается на мощности. Чем холоднее воздух тем лучше.
Основная цель выпускной системы на спортивном авто или на любом гражданском от которого мы хотим больше отдачи — это обеспечение лучшего наполнения смесью, а как это должно быть сейчас расскажу.
Кто то думает, чем больше диаметр трубы, тем меньше сопротивление газам, а значит нет подпора и движок может переработать больше воздуха. Оно конечно так, если бабушка у подъезда заткнёт вам в глушак картошку, чтобы не тарахтел, конечно тачка нифига не повалит =) Но наполнение цилиндра можно ещё больше улучшить!

ГДЕ “СПРЯТАНА” ДОПОЛНИТЕЛЬНАЯ МОЩНОСТЬ?

Выпускную систему можно построить таким образом, что распространяющиеся в трубах ударные волны, отражаясь от различных элементов системы, будут возвращаться к выпускному клапану в виде скачка давления или разрежения. Про давление понятно, заткнём картошку в глушак, выпускные газы отразятся от неё и пойдут обратно к выпускным клапанам, потом опять к картошке, пока не заполнят весь тракт, потом картошка вылетит бабке по лбу, если ржавых дырок нет, или движка заглохнет. Как поняли нас интересует разряжение. Откуда оно берётся?
Дело в том, что в силу инерции газов за скачком давления всегда следует фронт разрежения. Именно фронт разрежения интересует нас больше всего. Нужно только сделать так, чтобы он был в нужном месте в нужное время. Тут вспоминается как пацаном сливали с шохи соседа дятла бенз для мотака. За шоху не переживайте, она всё равно стояла комом третий год из за лопнувшего блока. А дятел потому что, нефиг зимой воду забывать сливать… Принцип разряжения похож, суём шланг в бак, создаём разряжение, и быстро отплёвываясь бензом, пытаемся попасть в горлышко канистры. Тогда меня удивляло, как это он сам льётся не переставая. Догнал наконец то =)
Ну так вот про нужное место и время. Место это выпускной клапан. Тут как раз и нужно создать разрежение, то есть область давления ниже чем атмосферное давление.

4a26614s 960

Когда давление в цилиндре уже упало почти до атмосферного. Поршень находится около ВМТ, значит, объем над поршнем минимален. Да еще и впускной клапан уже приоткрыт. Называется это фазой перекрытия где собственно и осуществляется процесс продувки, когда все отработавшие газы должны вытянуться разряжением, да ещё и подтянуть часть свежего воздуха в цилиндр и даже в выпускной тракт.

ccba614s 960

Получается это разряжение по следующей причине. При сгорании смеси в цилиндре образуется огромное давление, которое в момент открытия выпускного клапана устремляется с большой скоростью по одной из 4х каналов в выпускном коллекторе. (если 4х цил двигатель).

9e06614s 960

В схеме с приёмной трубой в 2 трубы, этот поток проходит дальше к месту соединения 2 труб в 1 большую, где происходит рассеивание потока и уменьшение скорости. Отражения нет, тут и возникает разряжение во всём канале коллектора и приёмной трубы, но до того места где трубы сходятся в одну. Получается с одной стороны хорошо, перекрытие есть, смесь продувается, а с другой газы уменьшают скорость, останавливаются и обратно… Плохо когда эти газы опять входят в цилиндр, а такое происходит на малой частоте вращения.
Как вы понимаете существует только небольшой диапазон оборотов где из за продувки обеспечивается хорошее наполнение, а следовательно наибольший крутящий момент. И этот диапазон по оборотам мы можем двигать, на высокие или средние обороты, низкие нам не интересны. А двигать его возможно изменением длины выпускного коллектора до места входа в одну большую трубу. Но об этом во 2ой части =)

Писал я эту статью, если можно так сказать, своими словами, чтобы было понятно каждому сразу. Упущены некоторые детали, которые для общего понимания на начальном уровне не нужны.

Источник

Vectra Club Russia

Давление выхлопа Ч20ЧУМ. HELP

Давление выхлопа Ч20ЧУМ. HELP

Сообщение konung » 14 июн 2013 12:19

Сообщение tom-cat » 14 июн 2013 12:25

Сообщение lameeer » 14 июн 2013 12:30

Все просто, откручиваешь крепления на стыках поочередно и смотришь что забито.
1. сдох катализатор.
2. забита крайняя банка остатками резонатора.

Обычно эти места всему виной.

Сообщение konung » 14 июн 2013 12:42

Сообщение lameeer » 14 июн 2013 13:57

тфу ты. я даже сообщение не читал, думал как у всех забито все в вхлопе.

Сколько машина кушает? У тебя не перелив там случайно?

Сообщение tom-cat » 14 июн 2013 14:24

Сообщение konung » 14 июн 2013 14:40

Сообщение mrakus » 14 июн 2013 15:24

Сообщение konung » 14 июн 2013 15:34

Сообщение Andrei81 » 14 июн 2013 16:25

Сообщение konung » 14 июн 2013 16:29

Сообщение Bryce » 14 июн 2013 16:30

Сообщение konung » 14 июн 2013 16:32

Сообщение Bryce » 14 июн 2013 16:39

Сообщение Andrei81 » 14 июн 2013 16:40

Сообщение konung » 14 июн 2013 16:48

Сообщение Serj B » 14 июн 2013 17:09

Сообщение konung » 14 июн 2013 17:17

Сообщение Serj B » 14 июн 2013 17:41

Сообщение konung » 14 июн 2013 18:13

Сообщение Andrei81 » 14 июн 2013 18:28

konung
По моему все деффекты будут снижать напор выхлопа, повысить его может только выгоревший напрочь глушак.
Видео сними как дует и какой звук при этом на холостом и на оборотах. 🙂 я пошел видео снимать у себя :mrgreen:

http://vk.com/video137871291_165560896 :mrgreen: :mrgreen: :mrgreen:
На холодную дует сантиметров на 20, после как прогреется чуток, сантиметров на 70 рука чувствует, но не сдувает точно :mrgreen:

Сообщение mrakus » 14 июн 2013 19:08

Сообщение konung » 14 июн 2013 19:18

Сообщение SlasheR » 14 июн 2013 19:23

Источник

ПОЧЕМУ ВЫПУСКНОЙ ТРАКТ ВЛИЯЕТ НА РАБОТУ МОТОРА.

ae9476u 100

Если мы все дружно понимаем, что мощность есть произведение вращающего момента на скорость вращения коленчатого вала (обороты), то понятно, что мощность — зависимая от скорости величина. Рассмотрим чисто теоретический двигатель (не важно, электрический он, внутреннего сгорания или турбореактивный), который отдает постоянный вращающий момент на оборотах от 0 до бесконечности, (кривая 2 на рис. ниже) Тогда его мощность будет линейно расти с оборотами от 0 до бесконечности (кривая 1 на рис. ниже). Предмет нашего интереса — четырехтактные многоцилиндровые двигатели внутреннего сгорания в силу конструкции и процессов, в них происходящих, имеют рост момента с увеличением оборотов до его максимальной величины, и с дальнейшим увеличением оборотов момент снова падает (кривая 3 на рис. ниже). Тогда и мощность будет иметь аналогичный вид (кривая 4 на рис. ниже).

Важным обстоятельством для понимания функций выпускной системы является связь вращающего момента с коэффициентом наполнения цилиндра. Давайте себе представим процесс, происходящий в цилиндре в фазе впуска. Предположим, коленчатый вал двигателя вращается настолько медленно, что мы можем наблюдать движение топливовоздушной смеси в цилиндре и в любой момент времени давление во впускном трубопроводе и цилиндре успевает выравниваться. Предположим, что в верхней мертвой точке (ВМТ) давление в камере сгорания равно атмосферному. Тогда при движении поршня из ВМТ в нижнюю мертвую точку (НМТ) в цилиндр попадет количество свежей топливовоздушной смеси, точно равное объему цилиндра. Говорят, что в таком случае коэффициент наполнения равен единице. Предположим, что в вышеописанном процессе мы закроем впускной клапан в положении поршня, соответствующем 80% его хода. Тогда мы наполним цилиндр только на 80% его объема и масса заряда составит соответственно 80%. Коэффициент наполнения в таком случае будет 0,8. Другой случай. Пусть некоторым образом нам удалось во впускном коллекторе создать давление на 20% выше атмосферного. Тогда в фазе впуска мы сможем наполнить цилиндр на 120% по массе заряда, что будет соответствовать коэффициенту наполнения 1,2. Так, теперь самое главное. Вращающий момент двигателя совершенно точно на кривой момента соответствует коэффициенту наполнения цилиндра. То есть вращающий момент там выше, где коэффициент наполнения выше, и ровно во столько же раз, если, конечно, мы не учитываем внутренние потери в двигателе, которые растут со скоростью вращения. Из этого понятно, что o кривую момента и, соответственно, кривую мощности определяет зависимость коэффициента наполнения от оборотов. У нас есть возможность влиять в некоторых пределах на зависимость коэффициента наполнения от скорости вращения двигателя с помощью изменения фаз газораспределения. В общем случае, не вдаваясь в подробности, можно сказать, что чем шире фазы и чем в более раннюю по отношению к коленчатому валу область мы их сдвигаем, тем на больших оборотах будет достигнут максимум вращающего момента. Абсолютное значение максимального момента при этом будет немного меньше, чем с более узкими фазами (кривая 5 на рис. выше). Существенное значение имеет так называемая фаза перекрытия. Дело в том, что при высокой скорости вращения определенное влияние оказывает инерция газов в двигателе. Для лучшего наполнения в конце фазы выпуска выпускной клапан надо закрывать несколько позже ВМТ, а впускной открывать намного раньше ВМТ. Тогда у двигателя появляется состояние, когда в районе ВМТ при минимальном объеме над поршнем оба клапана открыты и впускной коллектор сообщается с выпускным через камеру сгорания. Это очень важное состояние в смысле влияния выпускной системы на работу двигателя.

Теперь, я думаю, пора рассмотреть функции выпускной системы. Сразу скажу, что в выпускной системе присутствует три процесса. Первый — сдемпфированное в той или иной степени истечение газов по трубам. Второй — гашение акустических волн с целью уменьшения шума. И третий — распространение ударных волн в газовой среде. Любой из названных процессов мы будем рассматривать с позиции его влияния на коэффициент наполнения. Строго говоря, нас интересует давление в коллекторе у выпускного клапана в момент его открытия. Понятно, что чем меньшее давление, а лучше даже ниже атмосферного, удастся получить, тем больше будет перепад давления от впускного коллектора к выпускному, тем больший заряд получит цилиндр в фазе впуска.

Начнем с достаточно очевидных вещей. Выпускная труба служит для отвода выхлопных газов за пределы кузова автомобиля. Совершенно понятно, что она не должна на оказывать существенного сопротивления потоку. Если по какой-то причине в выпускной трубе появился посторонний предмет, закрывающий поток газов (например, соседи пошутили и засунули в выхлопную трубу картошку), то давление в выпускной трубе не будет успевать падать, и в момент открытия выпускного клапана давление в коллекторе будет противодействовать очистке цилиндра. Коэффициент наполнения упадет, так как оставшееся большое количество отработанных газов не позволит наполнить цилиндры в прежней степени свежей смесью. Соответственно, двигатель не сможет вырабатывать прежний вращающий момент. Весьма важно понимать, что размеры трубы и конструкция глушителей шума в серийном автомобиле достаточно хорошо соответствуют количеству отработанных газов, вырабатываемых двигателем в единицу времени. Как только серийный двигатель подвергся изменениям с целью увеличения мощности (будь то увеличение рабочего объема или увеличение момента на высоких оборотах), сразу увеличивается расход газа через выпускную трубу и следует ответить на вопрос, а не создает ли теперь в новых условиях избыточного сопротивления серийная выпускная система. Так что из рассмотрения первого процесса, обозначенного нами, следует сделать вывод о достаточности размеров труб. Совершенно понятно, что после некоторого разумного размера увеличивать сечение труб для конкретного двигателя бессмысленно, улучшения не будет. А отвечая на вопрос, где же мощность, можно сказать, что тут главное не потерять, прибрести же ничего невозможно. Из практики могу сказать, что для двигателя объемом 1600 куб.см, имеющего хороший вращающий момент до 8000 об./мин., вполне достаточно трубы диаметром 52 мм.

Как только мы говорим о сопротивлении в выпускной системе, необходимо упомянуть о таком важном элементе, как глушитель шума. Так как в любом случае глушитель создает сопротивление потоку, то можно сказать, что лучший глушитель — полное его отсутствие. К сожалению, для дорожного автомобиля это могут себе позволить только отчаянные хамы. Борьба с шумом — это, как ни верти, забота о нашем с вами здоровье. Не только в повседневной жизни, но и в автоспорте действуют ограничения на шум, производимый двигателем автомобиля. Должен сказать, что в большинстве классов спортивных автомобилей шум выпуска ограничен уровнем 100 дб. Это довольно лояльные условия, но без глушителя ни один автомобиль не будет соответствовать техтребованиям и не сможет быть допущенным к соревнованиям. Поэтому выбор глушителя — всегда компромисс между его способностью поглощать звук и низким сопротивлением потоку.

КАКИМ ОБРАЗОМ ЗВУК ГАСИТСЯ В ГЛУШИТЕЛЕ.

Акустические волны (шум) несут в себе энергию, которая возбуждает наш слух. Задача глушителя состоит в том, чтобы энергию колебаний перевести в тепловую. По способу работы глушители надо разделить на четыре группы. Это ограничители, отражатели, резонаторы и поглотители.

ОГРАНИЧИТЕЛЬ
Принцип его работы прост. В корпусе глушителя имеется существенное заужение диаметра трубы некое акустическое сопротивление, а за ним сразу большой объем, аналог емкости. Продавливая через сопротивление звук, мы колебания сглаживаем объемом. Энергия рассеивается в дросселе, нагревая газ. Чем больше сопротивление (меньше отверстие), тем эффективней сглаживание. Но тем больше сопротивление потоку. Наверное, плохой глушитель. Однако в качестве предварительного глушителя в системе — довольно распространенная конструкция.

ОТРАЖАТЕЛЬ
В корпусе глушителя организуется большое количество акустических зеркал, от которых звуковые волны отражаются. Известно, что при каждом отражении часть энергии теряется, тратится на нагрев зеркала. Если устроить для звука целый лабиринт из зеркал, то в конце концов мы рассеем почти всю энергию и наружу выйдет весьма ослабленный звук. По такому принципу строятся пистолетные глушители. Значительно лучшая конструкция, однако так как в недрах корпуса мы заставим также газовый поток менять направление, то все равно создадим некоторое сопротивление выхлопным газам. Такая конструкция чаще всего применяется в оконечных глушителях стандартных систем.

РЕЗОНАТОР
Глушители резонаторного типа используют замкнутые полости, расположенные рядом с трубопроводом и соединенные с ним рядом отверстий. Часто в одном корпусе бывает два неравных объема, разделенных глухой перегородкой. Каждое отверстие месте с замкнутой полостью является резонатором, возбуждающим колебания собственной частоты. Условия распространения резонансной частоты резко меняются, и она эффективно гасится вследствие трения частиц газа в отверстии. Такие глушители эффективно в малых размерах гасят низкие частоты и применяются в основном в качестве предварительных, первых в выпускных системах. Существенного сопротивления потоку не оказываю, т.к. сечение не уменьшают.

ПОГЛОТИТЕЛЬ
Способ работы поглотителей заключается в поглощении акустических волн неким пористым материалом. Если мы звук направим, например, в стекловату, то он вызовет колебания волокон ваты и трение волокон друг о друга. Таким образом, звуковые колебания будут преобразованы в тепло. Поглотители позволяют построить конструкцию глушителя без уменьшения сечения трубопровода и даже без изгибов, окружив трубу с прорезанными в ней отверстиями слоем поглощающего материала. Такой глушитель будет иметь минимально возможное сопротивление потоку, однако и хуже всего снижает шум.

Надо сказать, что серийные выпускные системы используют в большинстве случаев различные комбинации всех приведенных способов. Глушителей в системе бывает два, а иногда и больше. Следует обратить внимание на особенность конструкций глушителей, которая в случае самостоятельного изготовления не позволяет достичь эффективного снижения шума, хотя кажется, что все сделано правильно. Если внутри глушителя у его стенок нет поглощающего материала, то источником звука становятся стенки корпуса. Многие замечали, что некоторые глушители имеют снаружи асбестовую обкладку, прижатую дополнительным листом фальшкорпуса. Это и есть та мера, которая позволит ограничить излучение через стенки и предотвратить нагрев соседних элементов автомобиля. Такая мера характерна для глушителей первого и второго типов.

Есть еще одно обстоятельство, которое нельзя обойти вниманием в статье о тюнинге. Это тембр звука. Часто пожелания клиента к тюнинговой компании состоят в том, чтобы посредством замены глушителя добиться “благородного” звучания мотора. Надо заметить, что если требования к выпускной системе не распространяются дальше изменения “голоса”, то задача существенно упрощается. Можно сказать, что, вероятнее всего, для таких целей больше подходит глушитель поглотительного типа. Его объем, количество набивки, а также сама набивка определяют спектр частот, интенсивно поглощаемых. Практически любая мягкая набивка поглощает в большей степени высокочастотную составляющую, придавая бархатистость звуку. Глушители резонаторного типа гасят низкие частоты. Таким образом, варьируя размеры, содержимое и набор элементов, можно подобрать тембр звучания.

ГДЕ «СПРЯТАНА» ДОПОЛНИТЕЛЬНАЯ МОЩНОСТЬ?

Как мы уже уяснили, коэффициент наполнения, вращающий момент и мощность зависят от перепада давления между впускным и выпускным коллекторами в фазе продувки. Выпускную систему можно построить таким образом, что распространяющиеся в трубах ударные волны, отражаясь от различных элементов системы, будут возвращаться к выпускному клапану в виде скачка давления или разрежения. Откуда же появится разрежение, спросите вы. Ведь в трубу мы всегда только нагнетаем и никогда не отсасываем. Дело в том, что в силу инерции газов за скачком давления всегда следует фронт разрежения. Именно фронт разрежения интересует нас больше всего. Нужно только сделать так, чтобы он был в нужном месте в нужное время. Место нам уже хорошо известно. Это выпускной клапан. А время нужно уточнить. Дело в том, что время действия фронта весьма незначительное. А время открытия выпускного клапана, когда фронт разрежения может создать полезную для нас работу, сильно зависит от скорости вращения двигателя. Да и весь период фазы выпуска нужно разбить на две составляющие. Первая — когда клапан только что открылся. Эта часть характеризуется большим перепадом давления и активным истечением газов в выпускной коллектор. Отработанные газы и без посторонней помощи после рабочего хода покидают цилиндр. Если в этот момент волна разрежения достигнет выпускного клапана, маловероятно, что она сможет повлиять на процесс очистки. А вот конец выпуска более интересен. Давление в цилиндре уже упало почти до атмосферного. Поршень находится около ВМТ, значит, объем над поршнем минимален. Да еще впускной клапан уже приоткрыт. Помните? Такое состояние (фаза перекрытия) характеризуется тем, что впускной коллектор через камеру сгорания сообщается с выпускным. Вот теперь, если фронт разрежения достигнет выпускного клапана, мы сможем существенно улучшить коэффициент наполнения, так как даже за короткое время действия фронта удастся продуть маленький объем камеры сгорания и создать разрежение, которое поможет разгону топливовоздушной смеси в канале впускного коллектора. А если представить себе, что как только все отработанные газы покинут цилиндр, а разрежение достигнет своего максимального значения, выпускной клапан закроется, мы сможем в фазе впуска получить заряд больший, чем если бы очистили цилиндр только до атмосферного давления. Этот процесс дозарядки цилиндров с помощью ударных волн в выпускных трубах может позволить получить высокий коэффициент наполнения и, как следствие, дополнительную мощность. Результат его действия примерно такой, как если бы мы нагнетали давление во впускном коллекторе с помощью компрессора. В конце концов, какая разница, каким образом создан перепад давления, заталкивающий свежую смесь в камеру сгорания, с помощью нагнетания со стороны впуска или разрежения в цилиндре?

Такой вот процесс может вполне происходить в выпускной системе ДВС. Осталась сущая мелочь. Нужно такой процесс организовать.

Первым необходимым условием дозарядки цилиндров с помощью ударных волн надо назвать существование достаточно широкой фазы перекрытия. Строго говоря, нас интересует не столько сама ширина фазы как геометрическая величина, сколько интервал времени, когда оба клапана открыты. Без особых разъяснений понятно, что при постоянной фазе с увеличением скорости вращения время уменьшается. Из этого автоматически следует, что при настройке выпускной системы на определенные обороты одним из варьируемых параметров будет ширина фазы перекрытия. Чем выше обороты настройки, тем шире нужна фаза. Из практики можно сказать, что фаза перекрытия менее 70 градусов не позволит иметь заметный эффект, а значение для настроенных на обычные 6000 об/мин систем составляет 80 — 90 градусов.

Второе условие уже определили. Это необходимость вернуть к выпускному клапану ударную волну. Причем в многоцилиндровых двигателях вовсе необязательно возвращать ее в тот цилиндр, который ее сгенерировал. Более того, выгодно возвращать ее, а точнее, использовать в следующем по порядку работы цилиндре. Дело в том, что скорость распространения ударных волн в выпускных трубах — есть скорость звука. Для того чтобы возвратить ударную волну к выпускному клапану того же цилиндра, предположим, на скорости вращения 6000 об/мин, надо расположить отражатель на расстоянии примерно 3,3 метра. Путь, который пройдет ударная волна за время двух оборотов коленчатого вала при этой частоте, составляет 6,6 метра. Это путь до отражателя и обратно. Отражателем может служить, например, резкое многократное увеличение площади трубы. Лучший вариант — срез трубы в атмосферу. Или, наоборот, уменьшение сечения в виде конуса, сопла Лаваля или, совсем грубо, в виде шайбы. Однако мы договорились, что различные элементы, уменьшающие сечение, нам неинтересны. Таким образом, настроенная на 6000 об/мин выпускная система предполагаемой конструкции для, например, четырехцилиндрового двигателя будет выглядеть как четыре трубы, отходящие от выпускных окон каждого цилиндра, желательно прямые, длиной 3,3 метра каждая. У такой конструкции есть целый ряд существенных недостатков. Во-первых, маловероятно, что под кузовом, например, Гольфа длиной 4 метра или даже Ауди А6 длиной 4,8 метра возможно разместить такую систему. Опять же, глушитель все-таки нужен. Тогда мы должны концы четырех труб ввести в банку достаточно большого объема, с близкими к открытой атмосфере акустическими характеристиками. Из этой банки надо вывести газоотводную трубу, которую необходимо оснастить глушителем.
Короче, такого типа система для автомобиля не подходит. Хотя справедливости ради надо сказать, что на двухтактных четырехцилиндровых мотоциклетных моторах для кольцевых гонок она применяется. Для двухтактного мотора, работающего на частоте выше 12 000 об/мин, длина труб сокращается более чем в четыре раза и составляет примерно 0,7 метра, что вполне разумно даже для мотоцикла. Вернемся к нашим автомобильным двигателям. Сократить геометрические размеры выпускной системы, настроенной на те же 6000 об/мин, вполне можно, если мы будем использовать ударную волну следующим по порядку работы цилиндром. Фаза выпуска в нем наступит для трехцилиндрового мотора через 240 градусов поворота коленчатого вала, для четырехцилиндрового — через 180 градусов, для шестицилиндрового — через 120 и для восьмицилиндрового — через 90. Соответственно, интервал времени, а следовательно, и длина отводящей от выпускного окна трубы пропорционально уменьшается и для, например, четырехцилиндрового двигателя сократится в четыре раза, что составит 0,82 метра. Стандартное в таком случае решение — всем известный и желанный “паук”. Конструкция его проста. Четыре так называемые первичные трубы, отводящие газы от цилиндров, плавно изгибаясь и приближаясь друг к другу под небольшим углом, соединяются в одну вторичную трубу, имеющую площадь сечения в два-три раза больше, чем одна первичная. Длина от выпускных клапанов до места соединения нам уже известна — для 6000 об/мин примерно 820 мм. Работа такого “паука” состоит в том, что следующий за ударной волной скачок разрежения, достигая места соединения всех труб, начинает распространяться в обратном направлении в остальные три трубы. В следующем по порядку работы цилиндре в фазе выпуска скачок разрежения выполнит нужную для нас работу.

Тут надо сказать, что существенное влияние на работу выпускной системы оказывает также длина вторичной трубы. Если конец вторичной трубы выпущен в атмосферу, то импульсы атмосферного давления будут распространяться во вторичной трубе навстречу импульсам, сгенерированным двигателем. Суть настройки длины вторичной трубы состоит в том, чтобы избежать одновременного появления в месте соединения труб импульса разрежения и обратного импульса атмосферного давления. На практике длина вторичной трубы слегка отличается от длины первичных труб. Для систем, которые будут иметь дальше глушитель, на конце вторичной трубы необходимо разместить максимального объема и максимальной площади сечения банку с поглощающим покрытием внутри. Эта банка должна как можно лучше воспроизводить акустические характеристики бесконечной величины воздушного пространства. Следующие за этой банкой элементы выпускной системы, т.е. трубы и глушители, не оказывают никакого воздействия на резонансные свойства выпускной системы. Их конструкцию, влияние на сопротивление потоку, на уровень и тембр шума мы уже обсудили. Чем ниже избыточное давление они обеспечат, тем лучше.

Источник

Оцените статью
Avtoshod.ru - все самое важное о вашем авто