Дать определение электрические машины

Электрические машины

Классификация

29d7f06183c56d7337f32ebdaf56ff9a

Если электрическая энергия преобразуется в механическую работу и тепло, тогда электрическая машина является электрическим двигателем; когда механическая работа преобразуется в электрическую энергию и тепло, тогда электрическая машина является электрическим генератором; когда электрическая энергия одного вида преобразуется в электрическую энергию другого вида, тогда электрическая машина является электромеханическим преобразователем и когда механическая и электрическая энергии преобразуются в тепло, тогда электрическая машина является электромагнитным тормозом. Для большинства машин выполняется принцип обратимости, когда одна и та же машина может выступать как в роли двигателя, так и в роли генератора или электромагнитного тормоза.

В большинстве электрических машин выделяют ротор — вращающуюся часть, и статор — неподвижную часть, а также воздушный зазор, их разделяющий.

По принципу действия выделяют нижеследующие виды машин:

Функции

Примечания

Полезное

Смотреть что такое «Электрические машины» в других словарях:

электрические машины — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN electrical machinery … Справочник технического переводчика

ЭЛЕКТРИЧЕСКИЕ МАШИНЫ судовые — устройства для преобразования механической энергии в электрическую и обратно. Электрические машины делятся на два основных вида: генераторы и электродвигатели. Конструктивно Электрические машины состоят из неподвижной и вращающейся системы… … Морской энциклопедический справочник

вспомогательные электрические машины железнодорожного тягового подвижного состава — вспомогательные электрические машины железнодорожного тягового подвижного состава: Электрические машины, обеспечивающие работу тяговых электрических двигателей, электрической и пневматической аппаратуры, систем управления и торможения. [ГОСТ Р… … Словарь-справочник терминов нормативно-технической документации

МАГНИТО-ЭЛЕКТРИЧЕСКИЕ МАШИНЫ — см. ДИНАМОМАШИНА. Словарь иностранных слов, вошедших в состав русского языка. Павленков Ф., 1907 … Словарь иностранных слов русского языка

двигатель Шраге (вращающиеся электрические машины) — двигатель Шраге Коллекторный двигатель параллельного возбуждения с двойным комплектом щёток. [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики машины… … Справочник технического переводчика

Машины ручные электрические класса I — Машины класса I (class I tool): машины, в которых защита от поражения электрическим током не только обеспечена основной, двойной или усиленной изоляцией, но и включает в себя дополнительные меры безопасности, при которых проводящие доступные… … Официальная терминология

Машины ручные электрические класса II — Машины класса II (class II tool): машины, в которых защита от поражения электрическим током не только обеспечена основной изоляцией, но и предусмотрены дополнительные меры безопасности, такие как двойная или усиленная изоляция, при этом не… … Официальная терминология

Машины ручные электрические класса III — Машины класса III (class III tool): машины, в которых защита от поражения электрическим током обеспечена питанием безопасным сверхнизким напряжением и в которых не возникают напряжения, превышающие безопасные сверхнизкие напряжения. Источник:… … Официальная терминология

МАШИНЫ ШПИЛЕВЫЕ — судовые вспомогательные механизмы, служащие для выбирания ката и др. тяжелых работ по тяге тросов и цепей. М. Ш. бывают паровые и электрические. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР,… … Морской словарь

МАШИНЫ РУЛЕВЫЕ — для управления современными быстроходными судами приходится к румпелю руля прикладывать весьма значительные усилия, не говоря уже о том, что в связи с этой же причиной появилось новое требование скорости перекладки руля. Все это привело к… … Морской словарь

Источник

Электрические машины

В качестве энергоносителя в электрической машине может быть использовано как магнитное, так и электрическое поле. Машины, в которых для преобразования энергии используется магнитное поле, называются индуктивными, а те, в которых используется электрическое поле, — емкостными. Возможно также совместное использование магнитного и электрического полей. Такие машины называются индуктивно-емкостными.

На практике наибольшее распространение получили индуктивные машины.

Принято различать электромеханические преобразователи в зависимости от цели преобразования энергии на:

Области применения электрических машин

drive power
Рисунок 1 – Области распространения электрических машин

Для управления современными электрическими машинами используются сложные электронные системы, которые конструктивно объединяются с электромеханическим преобразователем и образуют так называемую электромеханотронную систему, выступающую как единый технический комплекс. Все это существенно расширяет функциональные возможности электрических машин и обеспечивает их широкое внедрение во все сферы производственной и бытовой деятельности человечества [1].

Основополагающие законы электромеханического преобразования энергии в индуктивных машинах

Закон Ампера

principle amperes law1

Согласно закону, установленному Ампером, на проводник с током в магнитном поле действует сила

Направление этой силы определяется по правилу «левой руки».

Закон электромагнитной индукции Фарадея

Всякое изменение магнитного поля во времени возбуждает в окружающем пространстве электрическое поле. Циркуляция вектора напряженности E этого поля по любому неподвижному замкнутому контуру s определяется выражением [3] [4]

m18,

Электродвижущая сила индукции возникающая в замкнутом контуре, равна скорости изменения во времени потока магнитной индукции

m19,

Знак «-» показывает, что индукционный ток, возникающий в замкнутом проводящем контуре имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.

Вращающиеся электрические машины

Виды вращающихся электрических машин

По характеру магнитного поля в основном воздушном зазоре

Источник

КОНСПЕКТ ЛЕКЦИЙ НА ТЕМУ: «ЭЛЕКТРИЧЕСКИЕ МАШИНЫ»

ЛЕКЦИИ ПО ТЕМЕ «ЭЛЕКТРИЧЕСКИЕ МАШИНЫ»

ТЕМА: ЧТО ТАКОЕ ЭЛЕКТРИЧЕСКАЯ МАШИНА, ОБЩИЕ СВЕДЕНИЯ И ПОНЯТИЯ.

Что обычно представляет человек, когда он слышит выражение — электрические машины? Пожалуй, это что-то движущиеся и работающее от электричества. Всё верно. Следовательно, электрические машины — электромеханические устройства, которые способны преобразовывать электрическую энергию в механическую и обратно. Думаю, Вам не трудно будет догадаться, какие устройства можно отнести к электрическим машинам — это все виды электродвигателей, электрогенераторов и трансформаторов (о них особый разговор).

Большинству людей живущим в наше время хорошо известно: электродвигателя представляют собой устройства, которые начинают и продолжают вращаться при подсоединении к ним электрических проводов и подачи на них напряжения (то есть, пропускании через внутреннюю катушку самого двигателя электрического тока). Электрогенераторы, в общем, это те же электродвигатели, только они сами начинают вырабатывать электричество, если их начать и продолжать принудительно вращать, тем самым механику превращать в электрику. hello html m559ba111

В основе работы электрических машин лежат два физических явления: это воздействие силы Лоренса и проявление электромагнитной индукции, что действуют на проводник с электрическим током, перемещающегося в магнитном поле. Теперь более простыми словами — что бы понять принцип действия и работу электрических машин давайте заглянем внутрь процессов.

Как мы помним из школьной физики и химии, металл в твёрдом состоянии представляет собой множество мельчайших частичек (атомов) держащихся друг за друга под воздействием внутренних полей (которым обладает каждый атом в отдельности). Каждый атом состоит из ядра (кучка протонов и нейронов) вокруг которого по орбитам носятся малюсенькие электрончики. Именно в металлах электроны, которые расположены дальше всех от ядра могут легко отрываться и перелетать на соседние атомы. Такие электроны называются свободными.

Каждый электрон имеет вокруг себя поля (электрические и магнитные). Поля служат неким посредником при взаимодействии друг с другом электронов. То есть, поля двух электронов будут отталкиваться друг от друга, не давая возможности приблизиться этим электронам на более близкое расстояние. А если этих электронов много, то и сила их отталкивания будет значительной. Стоит добавить, наиболее эффективным полем для использования в электрических машинах является магнитное. Оно существует вокруг движущихся электронов и в постоянном магните (о работе магнита будет отдельная статья).

hello html 2366f8f9

Подводим итог, есть металл в виде проволоки, в нём существует множество свободных электронов, каждый электрон имеет вокруг себя поля. Если взять обычный постоянный магнит, вокруг которого на некотором расстоянии имеется магнитное поле и приблизить к проволоке, то поле магнита подействует на поля каждого из электронов. В результате наше механическое движение с магнитом превратится в электрическое движение электронов внутри проволоки (принцип электрогенератора). И на оборот, если пропустить электроток по проводу, то возникшее магнитное поле вокруг медной проволоки будет отталкивать наш постоянный магнит в наших руке (принцип электродвигателя).

Теперь что касается трансформатора. Трансформатор, по идеи, нельзя назвать электрической машиной, поскольку он не использует в своей основной работе механических движений и не соответствует нашей формулировке. Как мы знаем, трансформатор преобразует электрический ток и напряжение в магнитное поле (магнитный поток в сердечнике), а потом наоборот.

Однако внутренние электромагнитные процессы, что протекают в них, полностью аналогичны тем, которые происходят при работе электрических машин. Кроме этого, как трансформаторам, так и электрическим машинам свойственна единая природа электромагнитных и энергетических процессов, присутствующих при работе проводника с током и магнитного поля. Поэтому трансформаторы принято относить к электрическим машинам.

Основные функции электрических машин:

· преобразование энергии — в качестве двигателя или генератора;

· преобразование величины напряжения;

· преобразование переменного тока в постоянный;

· повышение коэффициента мощности электрических установок;

· усиление мощности электрических сигналов.

Тема: что такое машины электрического тока, их особенности и виды.

Все электрические машины можно разделить, с учётом иерархии, на два больших класса — коллекторные и бесколлектроные. Коллекторыне делаться на машины постоянного электрического тока и универсальные. В ту очередь, когда бесколлектроные машины делятся на синхронные и асинхронные. Думаю эти слова многим и ранее были знакомы на слух. По принципу непосредственного действия электромашины делятся так:

1. Асинхронная электрическая машина — машина, электрического типа, переменного тока, где роторная частота вращения в некоторой степени отлична от вращающейся частоты электромагнитного поля в зазоре на некоторую частоту скольжения (воздушный зазор между ротором и статором).

2. Синхронная машина электрическая — машина, электрического типа, переменного тока, где вращающиеся частоты магнитного поля и ротора в зазоре полностью совпадают.

3. Электрическая машина двойного электропитания — машина, электрического типа, переменного тока, где статор и ротор имеют разные частоты (в общем случае) питающего тока. В итоге ротор машины движется с частотой вращения, приравненной сумме (либо же разности) питающих частот.

4. Электрическая машина постоянного тока — машина, имеющая коллектор и питаемая постоянным током. Наиболее распространённый и используемый вид.

5. Электрический трансформатор — аппарат переменного электрического тока (преобразователь), обращающий напряжение и силу тока одного номинала в напряжения и ток иного номинала. Бывают поворотные и статические электрические трансформаторы.

6. Инвертор (умформер, преобразователь на базе электромашины) — обычно, это две электрические машины, которые между собой соединены валом (редуктором), совершающих трансформацию определённого рода тока (переменный, в постоянный либо же наоборот), частоты электрического тока, напряжения, числа фаз.

7. Вентильный электродвигатель — машина, электрического типа, постоянного тока, где в место механического коллектора установлен полупроводниковый коммутатор, возбуждение машины происходит от имеющихся постоянных магнитов, установленных на роторе, а статорная обмотка машины, такая же как в синхронной электрической машине. Полупроводниковый коммутатор по сигналам цифровой системы поочерёдно, в заданной последовательности, попарно включает электрические фазы двигателя к постоянному источнику тока, тем самым образовывая вращающееся электромагнитное поле статора, что, взаимодействуя с магнитным полем магнита (постоянного) ротора, порождает вращающий момент электрическому двигателю.

8. Сельсин — машина, служащая для дистанционной передачи угла поворота (информации о нём). Принцип действия основан на балансе электромагнитных сил.

Тема: особенности и работа электрических машин постоянного тока.

Электромашина постоянного тока представляет собой электротехническое устройство, главная особенность которого выражается в различных способах преобразования электрической энергии постоянного тока в механическую энергию (с естественным выделением тепла), либо же наоборот, механическая энергия трансформируется в электроэнергию постоянного тока. Следует учесть, что данный тип электромашин имеет способность к обратимости процессов. Работа данного вида электрических машин, естественно проходит через явления электромагнитных преобразований. То есть, к примеру, в режиме работы электродвигателя электроэнергия постоянного тока образуя и взаимодействуя с магнитными полями в результате порождает механическое движение (процесс вращения вала двигателя).

В силу того, что устройство, конструкция, характеристики, принцип действия, физические процессы в работе устройств переменного тока и постоянного во многом различны, то следовательно и электрические машины постоянного тока имеют свои конструктивные особенности. Самой простой моделью электромашины постоянного тока является следующая электротехническая система: имеется статор, который выступает в роли неподвижной и опорной части устройства, есть ротор, что выполняет роль подвижного элемента машины. Вряд ли найдётся человек, в детстве не разбиравший обычный электромотор от собственноручно сломанной детской машинки. Внутри него были постоянные магниты, расположенные на внутренней части основания мотора (это и есть статор). Внутри статора находился ротор, имевший вид железного сердечника с намотанной на нём медной проволокой, концы которых припаяны к контактным лепесткам. Эта контактная часть называется коллектором.

Итак, электрические машины постоянного тока при поступлении на них тока (постоянного) начинают вращаться. Это происходит потому, что заряженные частицы поступают на входные контакты и передаются через коллектор на обмотку двигателя, вокруг неё образуется электромагнитное поле. Вокруг постоянных магнитов, расположенных на статоре движка, также имеется своё поле. Естественно, одно поле стремится оттолкнуться или притянутся друг к другу (в зависимости от полюсов). В итоге сила взаимодействующих полей разворачивает подвижную часть электромашины на определённый угол. При вращении на коллекторе происходит смена электрических полюсов, что даёт новый толчок отталкивания магнитных полей ротора и статора. Вот и постоянное движение. hello html 166721d8

Подав на подобный электродвигатель переменное напряжение вышеописанного процесса не последует. Двигатель просто будет гудеть и греться, что приведёт его к поломке. Это происходит потому, что полюса переключаются быстро, а это ведёт к взаимному гашению магнитных сил. Только изменив принципиальную конструкцию можно добиться работоспособности этой электрической машины, сделав из ней машину переменного тока.

Электрические машины постоянного тока могут работать и как генераторы электроэнергии. Если в режиме работыдвигателя устройство машины движется за счёт толкания полей, первопричиной чему является движение зараженных частиц в обмотке ротора, то если начать вращать вал электрической машины, получим обратный эффект. Внутри медной обмотки имеются свободные электроны, которые в проводящем материале располагаются хаотичным образом, и вокруг которых существует своё электромагнитное поле. При вращении ротора, а следовательно и перемещая медную катушку в магнитном поле постоянных магнитов, мы воздействуем на свободные электроны внутри меди. Это заставляет их упорядочиваться и начинать движение (если электрическая цепь замкнута). Если цепь разомкнута, то при механическом движении вала электрической машины постоянного тока на еёклеммах будет возникать постоянное напряжение определённой величины. hello html m4dd4b363

Тема: особенности и работа электрических машин переменного тока.

Из самого названия понятно, что отличительной особенностью данного рода электрических машин является то, что они функционируют на переменном токе. Если при постоянном токе электрические заряженные частицы перемещаются только в одном направлении, и могут в определённом диапазоне менять свою интенсивность (величина разности потенциалов, напряжение), то у переменного тока появляются новые характеристики — такие как частота, её форма и т.д. Что естественным образом влияет на непосредственную конструкцию и принцип действия электрической машины. В статье разберём основные особенности и работу электрических машин переменного тока. hello html 138c729c

Электромашины переменного тока представляют собой электротехнические устройства, которые являются своеобразными преобразователями электрической энергии, в основе принципа действия которых лежат силы Лоренца и явление электромагнитной индукции, работающие на переменном токе. К таким электромашинам относятся много разновидностей — электродвигатели, электрогенераторы, сельсины, трансформаторы. Итак, двигатели и генераторы по принципу действия разделяются на синхронные и асинхронные. Что бы было ясно дальнейшее объяснение хочу сказать о следующем.

Главной особенностью электрических машин переменного тока, что электрическую энергию преобразуют в механическую или наоборот, является взаимодействие магнитных полей, одно из которых является вращающимся, динамическим (получаемое в силу работы переменного тока — циклические изменения силы тока и напряжения, как по величине, так и по полюсам), а другое поле в определённом смысле статическое, постоянное. Следовательно, для получения движения ротора движущееся магнитное поле должно действовать на постоянное поле, что и порождает механическое движение вала машины. Это ближе к электродвигателям, у генераторов работа проходит по иному принципу. Есть два различных принципа работы переменных электромашин (двигателей и генераторов) — синхронные и асинхронный. hello html m7bb4afa2

Общий принцип работы асинхронной электрической машины переменного тока заключается в следующем. Разберём классический вариант трёхфазника. Имеются на статоре три обмотки, к которым подключают три электрические фазы. Из электротехники известно, что трёхфазный ток представляет собой циклическое изменение величин тока и напряжения плавно перетекающее по кругу (обычная плавно меняющаяся синусоида). То есть, максимум электрической мощности плавно переходит из одной точки, обмотки в другую, естественно на противоположной стороне круга будет минимум мощности. Так вот при подачи трёхфазного напряжения на три обмотки статора асинхронного электродвигателя мы имеем вращающееся магнитное поле, частота которой равна 50 Гц (стандартная производственная частота).

Из электрофизики также известно, что при помещении электрического проводника в переменное магнитное поле на его концах появляется разность потенциалов, а если его замкнут (соединить концы), потечёт ток, который образует вокруг себя своё магнитное поле. Вот это и используется в асинхронных электрических машинах. Внутри машины расположен короткозамкнутый ротор (является упрощённой обмоткой). Во вращающемся магнитном поле на нём наводится ЭДС и у него появляется собственное магнитное поле, что и отталкивается от поля статора. Учтите, что поле на короткозамкнутом роторе может возникнуть только в силу некоторого отставания одного поля от другого, по этому и называются эти машины асинхронными. hello html 5afb11d2

У синхронных машин подобного отставания нет. Там поле индуктора (статического, постоянного магнитного поля) как бы цепляется за вращающееся поле якоря (подвижное, динамическое поле), что и ведёт к синхронной работе магнитных полей. Если в асинхронниках статическое поле является следствием работы динамического, то в синхронниках в определённом смысле причины появления вращающегося полями и поля статического независимы друг от друга, но их взаимодействие и позволяет осуществлять работу электрической машины переменного тока.

Тема: работа и принцип действия асинхронных электрических машин.

На производстве в качестве основной движущей силы для различных электротехнических машин и устройств широко используют асинхронные электрические двигатели. А почему они получили такое распространение и в чём их конструктивные особенности? В этой теме давайте с вами разберёмся, что вообще собой представляет данное электротехническое устройство, какой основной принцип его действия и работа. Для начала заметим, что само слово асинхронность другими словами можно выразить как разновременность нескольких действие, движений, работ (синхронность — это одновременность). hello html 32b9856e

В целом принцип действия асинхронной машины электрической очень прост. Для начала нам следует вспомнить уроки физики из раздела по основам электричества. Итак, существуют два важных явления, благодаря которым и работает асинхронная электрическая машина. Во-первых, если электрический проводник движется в магнитном поле (или само магнитное поле перемещается относительно неподвижного проводника), то на его концах возникает напряжение (если цепь замкнута, то начинает течь электрический ток в этом проводнике). Во-вторых, при протекании электрического тока по проводнику вокруг него образуется своё магнитное поле.

Теперь посмотрим, как эти явления соотносятся с асинхронными электрическими машинами (их непосредственной работой). Итак, классическим вариантом асинхронника является трёхфазный двигатель. Он состоит из статора (неподвижная часть электродвигателя) и ротора (подвижной части движка). Статор (основание, корпус) внутри имеет обмотки, которые соединены таким образом, что от них выходит три электрических вывода (сам металлический корпус заземляется четвёртым проводом) прикрученные на клеммник двигателя. На эти обмотки подаётся трёхфазное напряжение, что приводит к образованию внутри статора вращающегося магнитного поля. Вспоминаем, как действует движущееся магнитное поле на электрический проводник! hello html 4b5eccde

Ротор у асинхронной электрической машины (асинхронного электродвигателя) короткозамкнутый. Он представляет собой металлический сердечник, в пазы которого залит алюминий. То есть, это своего рода одновитковые обмотки между пазами сердечника (это и есть электрический проводник). Следовательно, в момент появления вращающегося магнитного поля, что индуцируется статорными обмотками, в короткозамкнутом роторе наводится ЭДС (электродвижущая сила, напряжение) и возникает течение тока внутри алюминиевого проводника. Что, в свою очередь, порождает своё магнитное поле вокруг ротора асинхронной электрической машины.

В результате вращающееся магнитное поле статорных обмоток начинает взаимодействовать с магнитным полем ротора, появившегося вокруг него. Это приводит к вращательному движению оси электродвигателя. В этом случае, как можно понять, возникает асинхронность в работе магнитных полей электрической машины. То есть, только при условии небольшого отставания скорости вращения ротора от магнитного поля статора возможно образование на роторе своего магнитного поля. Если это условие нарушится (скорость будет одинаковой) то получится, что проводник (короткозамкнутый ротора) уже не будет передвигаться относительно магнитного поля статора, а это приведёт к отсутствию эффекта образования собственного магнитного поля ротора. Поэтому такие электрические машины и называются асинхронными. hello html m6de2f921

Тема: работа и принцип действия синхронных электрических машин.

Не смотря на научно-техническое название, работа и устройство электрической синхронной машины очень просто. В принципе, из самого названия должно быть ясно, что в основе лежит синхронная работа. Поскольку главными элементами в электрической машине являются именно магнитные поля, как сила взаимодействия, то и синхронность относится именно к ним. А как именно это происходит внутри самой машины мы увидим дальше, по ходу описания принципа действия и работы синхронных машин электрических. Существует и другой вид электромашин, с обратным принципом работы, асинхронные электрические машины, но о их мы рассмотрим в другой статье. hello html 3791a9d8

Итак, рассмотрим синхронные машины электрические на примере работы электродвигателя. Для обеспечения постоянного вращения двигателя ему нужны силы, которые также постоянно отталкивались бы друг от друга, тем самым совершая беспрерывное вращение. Одной такой силой является вращающееся магнитное поле «якоря», что образуется в результате циклического хождения электрической энергии переменного тока по имеющийся внутри электрической машины катушкам. На практике повсеместно используется трёхфазное напряжение, ток. Его смысл заключается в том, что величина электрической энергии делится на три части, каждая из которых друг от друга отстаёт на угол в 120 градусов.

Иными словами говоря, есть статор электродвигателя (неподвижная часть синхронной электрической машины), на котором имеются, допустим, три обмотки, равноудалённых друг от друга. При подключении к этим трём катушкам трёх электрических фаз (и подачи напряжения) внутри статора будет образовываться и действовать вращающееся магнитное поле (переменный ток изменяющейся циклически и будет это делать). Естественно, если на роторе сделать катушку, которая будет иметь постоянные магнитные полюса (или вовсе поставить на ротор постоянный магнит — это делается на маломощных синхронных электрических машинах), то эти магнитные полюса будут «зацепляться» за вращающееся поле якоря, что и вызовет синхронный режим работы электрической машины. hello html m1143fbe4

Что бы было понятнее представьте себе обычные шестерёнки. Обмотка статора образует вращающееся магнитное поле, у которого форма похожа на зубья шестерёнки, расположенных во внутрь. Именно такую форму имеет вращающееся магнитное поле якоря. Внутрь этой магнитной шестерёнки помещается плоская пластина, которая своими сторонами зацепляется за внутренние магнитные зубья нашей магнитной шестерёнки. Ротор с индукторной катушкой и является таким плоским предметом. В результате вращающееся магнитное поле просто зацепляет поле индукторной катушки и заставляет вращаться ротор. При нормальной своей работе частота вращения вращающегося поля якоря полностью совпадает с частотой вращения ротора, имеющего индукторную катушку с постоянным полем. Поэтому и называют такие электрические машины синхронными.

Это описание позволит вам понять саму суть синхронных электрических машин, их принцип действия и работу, хотя разновидностей конструкций, вариантов исполнения имеется множество, что может сильно отличатся от приведённого классического устройства. Когда мы разберём в другой статье устройство и работу асинхронной машины, вы поймёте принципиальную разницу. Пока что будет достаточно и этой информации. Разве что хотелось заметить, что индуктор — это обмотка электрической машины, которая имеет постоянное поле вокруг себя, а якорь — это обмотка электромашины, в которой возникает переменное, вращающееся магнитное поле. hello html 3322318

Источник

Оцените статью
Avtoshod.ru - все самое важное о вашем авто